Merge "Add validation tests for consistency of model inputs and outputs." into pi-dev

This commit is contained in:
David Gross 2018-03-26 19:09:53 +00:00 committed by Android (Google) Code Review
commit fac7bca33e

View file

@ -286,6 +286,169 @@ TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest2) {
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus); EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
} }
class NeuralnetworksInputsOutputsTest
: public NeuralnetworksHidlTest,
public ::testing::WithParamInterface<std::tuple<bool, bool>> {
protected:
virtual void SetUp() { NeuralnetworksHidlTest::SetUp(); }
virtual void TearDown() { NeuralnetworksHidlTest::TearDown(); }
V1_1::Model createModel(const std::vector<uint32_t>& inputs,
const std::vector<uint32_t>& outputs) {
// We set up the operands as floating-point with no designated
// model inputs and outputs, and then patch type and lifetime
// later on in this function.
std::vector<Operand> operands = {
{
.type = OperandType::TENSOR_FLOAT32,
.dimensions = {1},
.numberOfConsumers = 1,
.scale = 0.0f,
.zeroPoint = 0,
.lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
.location = {.poolIndex = 0, .offset = 0, .length = 0},
},
{
.type = OperandType::TENSOR_FLOAT32,
.dimensions = {1},
.numberOfConsumers = 1,
.scale = 0.0f,
.zeroPoint = 0,
.lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
.location = {.poolIndex = 0, .offset = 0, .length = 0},
},
{
.type = OperandType::INT32,
.dimensions = {},
.numberOfConsumers = 1,
.scale = 0.0f,
.zeroPoint = 0,
.lifetime = OperandLifeTime::CONSTANT_COPY,
.location = {.poolIndex = 0, .offset = 0, .length = sizeof(int32_t)},
},
{
.type = OperandType::TENSOR_FLOAT32,
.dimensions = {1},
.numberOfConsumers = 0,
.scale = 0.0f,
.zeroPoint = 0,
.lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
.location = {.poolIndex = 0, .offset = 0, .length = 0},
},
};
const std::vector<Operation> operations = {{
.type = OperationType::ADD, .inputs = {0, 1, 2}, .outputs = {3},
}};
std::vector<uint8_t> operandValues;
int32_t activation[1] = {static_cast<int32_t>(FusedActivationFunc::NONE)};
operandValues.insert(operandValues.end(), reinterpret_cast<const uint8_t*>(&activation[0]),
reinterpret_cast<const uint8_t*>(&activation[1]));
if (kQuantized) {
for (auto& operand : operands) {
if (operand.type == OperandType::TENSOR_FLOAT32) {
operand.type = OperandType::TENSOR_QUANT8_ASYMM;
operand.scale = 1.0f;
operand.zeroPoint = 0;
}
}
}
auto patchLifetime = [&operands](const std::vector<uint32_t>& operandIndexes,
OperandLifeTime lifetime) {
for (uint32_t index : operandIndexes) {
operands[index].lifetime = lifetime;
}
};
if (kInputHasPrecedence) {
patchLifetime(outputs, OperandLifeTime::MODEL_OUTPUT);
patchLifetime(inputs, OperandLifeTime::MODEL_INPUT);
} else {
patchLifetime(inputs, OperandLifeTime::MODEL_INPUT);
patchLifetime(outputs, OperandLifeTime::MODEL_OUTPUT);
}
return {
.operands = operands,
.operations = operations,
.inputIndexes = inputs,
.outputIndexes = outputs,
.operandValues = operandValues,
.pools = {},
};
}
void check(const std::string& name,
bool expectation, // true = success
const std::vector<uint32_t>& inputs, const std::vector<uint32_t>& outputs) {
SCOPED_TRACE(name + " (HAL calls should " + (expectation ? "succeed" : "fail") + ", " +
(kInputHasPrecedence ? "input" : "output") + " precedence, " +
(kQuantized ? "quantized" : "float"));
V1_1::Model model = createModel(inputs, outputs);
// ensure that getSupportedOperations_1_1() checks model validity
ErrorStatus supportedOpsErrorStatus = ErrorStatus::GENERAL_FAILURE;
Return<void> supportedOpsReturn = device->getSupportedOperations_1_1(
model, [&model, &supportedOpsErrorStatus](ErrorStatus status,
const hidl_vec<bool>& supported) {
supportedOpsErrorStatus = status;
if (status == ErrorStatus::NONE) {
ASSERT_EQ(supported.size(), model.operations.size());
}
});
ASSERT_TRUE(supportedOpsReturn.isOk());
ASSERT_EQ(supportedOpsErrorStatus,
(expectation ? ErrorStatus::NONE : ErrorStatus::INVALID_ARGUMENT));
// ensure that prepareModel_1_1() checks model validity
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback;
ASSERT_NE(preparedModelCallback.get(), nullptr);
Return<ErrorStatus> prepareLaunchReturn =
device->prepareModel_1_1(model, preparedModelCallback);
ASSERT_TRUE(prepareLaunchReturn.isOk());
ASSERT_TRUE(prepareLaunchReturn == ErrorStatus::NONE ||
prepareLaunchReturn == ErrorStatus::INVALID_ARGUMENT);
bool preparationOk = (prepareLaunchReturn == ErrorStatus::NONE);
if (preparationOk) {
preparedModelCallback->wait();
preparationOk = (preparedModelCallback->getStatus() == ErrorStatus::NONE);
}
if (preparationOk) {
ASSERT_TRUE(expectation);
} else {
// Preparation can fail for reasons other than an invalid model --
// for example, perhaps not all operations are supported, or perhaps
// the device hit some kind of capacity limit.
bool invalid = prepareLaunchReturn == ErrorStatus::INVALID_ARGUMENT ||
preparedModelCallback->getStatus() == ErrorStatus::INVALID_ARGUMENT;
ASSERT_NE(expectation, invalid);
}
}
// Indicates whether an operand that appears in both the inputs
// and outputs vector should have lifetime appropriate for input
// rather than for output.
const bool kInputHasPrecedence = std::get<0>(GetParam());
// Indicates whether we should test TENSOR_QUANT8_ASYMM rather
// than TENSOR_FLOAT32.
const bool kQuantized = std::get<1>(GetParam());
};
TEST_P(NeuralnetworksInputsOutputsTest, Validate) {
check("Ok", true, {0, 1}, {3});
check("InputIsOutput", false, {0, 1}, {3, 0});
check("OutputIsInput", false, {0, 1, 3}, {3});
check("DuplicateInputs", false, {0, 1, 0}, {3});
check("DuplicateOutputs", false, {0, 1}, {3, 3});
}
INSTANTIATE_TEST_CASE_P(Flavor, NeuralnetworksInputsOutputsTest,
::testing::Combine(::testing::Bool(), ::testing::Bool()));
} // namespace functional } // namespace functional
} // namespace vts } // namespace vts
} // namespace V1_1 } // namespace V1_1