platform_hardware_interfaces/bluetooth/1.0/vts/functional/VtsHalBluetoothV1_0TargetTest.cpp
Yuexi Ma 93d2541aae Add columns to namespace for vts target base test invocation
Test: make vts
Change-Id: Ia0284fbc11eadef572dd510bb5847160852bd517
2017-02-28 20:49:00 +00:00

719 lines
25 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "bluetooth_hidl_hal_test"
#include <android-base/logging.h>
#include <android/hardware/bluetooth/1.0/IBluetoothHci.h>
#include <android/hardware/bluetooth/1.0/IBluetoothHciCallbacks.h>
#include <android/hardware/bluetooth/1.0/types.h>
#include <hardware/bluetooth.h>
#include <utils/Log.h>
#include <VtsHalHidlTargetBaseTest.h>
#include <condition_variable>
#include <mutex>
#include <queue>
using ::android::hardware::bluetooth::V1_0::IBluetoothHci;
using ::android::hardware::bluetooth::V1_0::IBluetoothHciCallbacks;
using ::android::hardware::bluetooth::V1_0::Status;
using ::android::hardware::hidl_vec;
using ::android::hardware::Return;
using ::android::hardware::Void;
using ::android::sp;
#define HCI_MINIMUM_HCI_VERSION 5 // Bluetooth Core Specification 3.0 + HS
#define HCI_MINIMUM_LMP_VERSION 5 // Bluetooth Core Specification 3.0 + HS
#define NUM_HCI_COMMANDS_BANDWIDTH 1000
#define NUM_SCO_PACKETS_BANDWIDTH 1000
#define NUM_ACL_PACKETS_BANDWIDTH 1000
#define WAIT_FOR_INIT_TIMEOUT std::chrono::milliseconds(2000)
#define WAIT_FOR_HCI_EVENT_TIMEOUT std::chrono::milliseconds(2000)
#define WAIT_FOR_SCO_DATA_TIMEOUT std::chrono::milliseconds(1000)
#define WAIT_FOR_ACL_DATA_TIMEOUT std::chrono::milliseconds(1000)
#define COMMAND_HCI_SHOULD_BE_UNKNOWN \
{ 0xff, 0x3B, 0x08, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 }
#define COMMAND_HCI_READ_LOCAL_VERSION_INFORMATION \
{ 0x01, 0x10, 0x00 }
#define COMMAND_HCI_READ_BUFFER_SIZE \
{ 0x05, 0x10, 0x00 }
#define COMMAND_HCI_WRITE_LOOPBACK_MODE_LOCAL \
{ 0x02, 0x18, 0x01, 0x01 }
#define COMMAND_HCI_RESET \
{ 0x03, 0x0c, 0x00 }
#define COMMAND_HCI_WRITE_LOCAL_NAME \
{ 0x13, 0x0c, 0xf8 }
#define HCI_STATUS_SUCCESS 0x00
#define HCI_STATUS_UNKNOWN_HCI_COMMAND 0x01
#define EVENT_CONNECTION_COMPLETE 0x03
#define EVENT_COMMAND_COMPLETE 0x0e
#define EVENT_COMMAND_STATUS 0x0f
#define EVENT_NUMBER_OF_COMPLETED_PACKETS 0x13
#define EVENT_LOOPBACK_COMMAND 0x19
#define EVENT_CODE_BYTE 0
#define EVENT_LENGTH_BYTE 1
#define EVENT_FIRST_PAYLOAD_BYTE 2
#define EVENT_COMMAND_STATUS_STATUS_BYTE 2
#define EVENT_COMMAND_STATUS_ALLOWED_PACKETS_BYTE 3
#define EVENT_COMMAND_STATUS_OPCODE_LSBYTE 4 // Bytes 4 and 5
#define EVENT_COMMAND_COMPLETE_ALLOWED_PACKETS_BYTE 2
#define EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE 3 // Bytes 3 and 4
#define EVENT_COMMAND_COMPLETE_STATUS_BYTE 5
#define EVENT_COMMAND_COMPLETE_FIRST_PARAM_BYTE 6
#define EVENT_LOCAL_HCI_VERSION_BYTE EVENT_COMMAND_COMPLETE_FIRST_PARAM_BYTE
#define EVENT_LOCAL_LMP_VERSION_BYTE EVENT_LOCAL_HCI_VERSION_BYTE + 3
#define EVENT_CONNECTION_COMPLETE_PARAM_LENGTH 11
#define EVENT_CONNECTION_COMPLETE_TYPE 11
#define EVENT_CONNECTION_COMPLETE_TYPE_SCO 0
#define EVENT_CONNECTION_COMPLETE_TYPE_ACL 1
#define EVENT_CONNECTION_COMPLETE_HANDLE_LSBYTE 3
#define EVENT_COMMAND_STATUS_LENGTH 4
#define EVENT_NUMBER_OF_COMPLETED_PACKETS_NUM_HANDLES 2
#define ACL_BROADCAST_ACTIVE_SLAVE (0x1 << 4)
#define ACL_PACKET_BOUNDARY_COMPLETE (0x3 << 6)
class ThroughputLogger {
public:
ThroughputLogger(std::string task)
: task_(task), start_time_(std::chrono::steady_clock::now()) {}
~ThroughputLogger() {
if (total_bytes_ == 0) return;
std::chrono::duration<double> duration =
std::chrono::steady_clock::now() - start_time_;
double s = duration.count();
if (s == 0) return;
double rate_kb = (static_cast<double>(total_bytes_) / s) / 1024;
ALOGD("%s %.1f KB/s (%zu bytes in %.3fs)", task_.c_str(), rate_kb,
total_bytes_, s);
}
void setTotalBytes(size_t total_bytes) { total_bytes_ = total_bytes; }
private:
size_t total_bytes_;
std::string task_;
std::chrono::steady_clock::time_point start_time_;
};
// The main test class for Bluetooth HIDL HAL.
class BluetoothHidlTest : public ::testing::VtsHalHidlTargetBaseTest {
public:
virtual void SetUp() override {
// currently test passthrough mode only
bluetooth = ::testing::VtsHalHidlTargetBaseTest::getService<IBluetoothHci>();
ASSERT_NE(bluetooth, nullptr);
ALOGI("%s: getService() for bluetooth is %s", __func__,
bluetooth->isRemote() ? "remote" : "local");
bluetooth_cb = new BluetoothHciCallbacks(*this);
ASSERT_NE(bluetooth_cb, nullptr);
max_acl_data_packet_length = 0;
max_sco_data_packet_length = 0;
max_acl_data_packets = 0;
max_sco_data_packets = 0;
initialized = false;
initialized_count = 0;
event_count = 0;
acl_count = 0;
sco_count = 0;
event_cb_count = 0;
acl_cb_count = 0;
sco_cb_count = 0;
ASSERT_EQ(initialized, false);
bluetooth->initialize(bluetooth_cb);
wait_for_init_callback();
ASSERT_EQ(initialized, true);
}
virtual void TearDown() override {
bluetooth->close();
EXPECT_EQ(static_cast<size_t>(0), event_queue.size());
EXPECT_EQ(static_cast<size_t>(0), sco_queue.size());
EXPECT_EQ(static_cast<size_t>(0), acl_queue.size());
}
void setBufferSizes();
// Functions called from within tests in loopback mode
void sendAndCheckHCI(int num_packets);
void sendAndCheckSCO(int num_packets, size_t size, uint16_t handle);
void sendAndCheckACL(int num_packets, size_t size, uint16_t handle);
// Helper functions to try to get a handle on verbosity
void enterLoopbackMode(std::vector<uint16_t>& sco_handles,
std::vector<uint16_t>& acl_handles);
void wait_for_command_complete_event(hidl_vec<uint8_t> cmd);
int wait_for_completed_packets_event(uint16_t handle);
// Inform the test about the initialization callback
inline void notify_initialized() {
std::unique_lock<std::mutex> lock(initialized_mutex);
initialized_count++;
initialized_condition.notify_one();
}
// Test code calls this function to wait for the init callback
inline void wait_for_init_callback() {
std::unique_lock<std::mutex> lock(initialized_mutex);
auto start_time = std::chrono::steady_clock::now();
while (initialized_count == 0)
if (initialized_condition.wait_until(lock,
start_time + WAIT_FOR_INIT_TIMEOUT) ==
std::cv_status::timeout)
return;
initialized_count--;
}
// Inform the test about an event callback
inline void notify_event_received() {
std::unique_lock<std::mutex> lock(event_mutex);
event_count++;
event_condition.notify_one();
}
// Test code calls this function to wait for an event callback
inline void wait_for_event() {
std::unique_lock<std::mutex> lock(event_mutex);
auto start_time = std::chrono::steady_clock::now();
while (event_count == 0)
if (event_condition.wait_until(lock,
start_time + WAIT_FOR_HCI_EVENT_TIMEOUT) ==
std::cv_status::timeout)
return;
event_count--;
}
// Inform the test about an acl data callback
inline void notify_acl_data_received() {
std::unique_lock<std::mutex> lock(acl_mutex);
acl_count++;
acl_condition.notify_one();
}
// Test code calls this function to wait for an acl data callback
inline void wait_for_acl() {
std::unique_lock<std::mutex> lock(acl_mutex);
while (acl_count == 0)
acl_condition.wait_until(
lock, std::chrono::steady_clock::now() + WAIT_FOR_ACL_DATA_TIMEOUT);
acl_count--;
}
// Inform the test about a sco data callback
inline void notify_sco_data_received() {
std::unique_lock<std::mutex> lock(sco_mutex);
sco_count++;
sco_condition.notify_one();
}
// Test code calls this function to wait for a sco data callback
inline void wait_for_sco() {
std::unique_lock<std::mutex> lock(sco_mutex);
while (sco_count == 0)
sco_condition.wait_until(
lock, std::chrono::steady_clock::now() + WAIT_FOR_SCO_DATA_TIMEOUT);
sco_count--;
}
// A simple test implementation of BluetoothHciCallbacks.
class BluetoothHciCallbacks : public IBluetoothHciCallbacks {
BluetoothHidlTest& parent_;
public:
BluetoothHciCallbacks(BluetoothHidlTest& parent) : parent_(parent){};
virtual ~BluetoothHciCallbacks() = default;
Return<void> initializationComplete(Status status) override {
parent_.initialized = (status == Status::SUCCESS);
parent_.notify_initialized();
ALOGV("%s (status = %d)", __func__, static_cast<int>(status));
return Void();
};
Return<void> hciEventReceived(
const ::android::hardware::hidl_vec<uint8_t>& event) override {
parent_.event_cb_count++;
parent_.event_queue.push(event);
parent_.notify_event_received();
ALOGV("Event received (length = %d)", static_cast<int>(event.size()));
return Void();
};
Return<void> aclDataReceived(
const ::android::hardware::hidl_vec<uint8_t>& data) override {
parent_.acl_cb_count++;
parent_.acl_queue.push(data);
parent_.notify_acl_data_received();
return Void();
};
Return<void> scoDataReceived(
const ::android::hardware::hidl_vec<uint8_t>& data) override {
parent_.sco_cb_count++;
parent_.sco_queue.push(data);
parent_.notify_sco_data_received();
return Void();
};
};
sp<IBluetoothHci> bluetooth;
sp<IBluetoothHciCallbacks> bluetooth_cb;
std::queue<hidl_vec<uint8_t>> event_queue;
std::queue<hidl_vec<uint8_t>> acl_queue;
std::queue<hidl_vec<uint8_t>> sco_queue;
bool initialized;
int event_cb_count;
int sco_cb_count;
int acl_cb_count;
int max_acl_data_packet_length;
int max_sco_data_packet_length;
int max_acl_data_packets;
int max_sco_data_packets;
private:
std::mutex initialized_mutex;
std::mutex event_mutex;
std::mutex sco_mutex;
std::mutex acl_mutex;
std::condition_variable initialized_condition;
std::condition_variable event_condition;
std::condition_variable sco_condition;
std::condition_variable acl_condition;
int initialized_count;
int event_count;
int sco_count;
int acl_count;
};
// A class for test environment setup (kept since this file is a template).
class BluetoothHidlEnvironment : public ::testing::Environment {
public:
virtual void SetUp() {}
virtual void TearDown() {}
private:
};
// Receive and check status events until a COMMAND_COMPLETE is received.
void BluetoothHidlTest::wait_for_command_complete_event(hidl_vec<uint8_t> cmd) {
// Allow intermediate COMMAND_STATUS events
int status_event_count = 0;
hidl_vec<uint8_t> event;
do {
wait_for_event();
EXPECT_LT(static_cast<size_t>(0), event_queue.size());
if (event_queue.size() == 0) {
event.resize(0);
break;
}
event = event_queue.front();
event_queue.pop();
EXPECT_GT(event.size(),
static_cast<size_t>(EVENT_COMMAND_STATUS_OPCODE_LSBYTE + 1));
if (event[EVENT_CODE_BYTE] == EVENT_COMMAND_STATUS) {
EXPECT_EQ(EVENT_COMMAND_STATUS_LENGTH, event[EVENT_LENGTH_BYTE]);
EXPECT_EQ(cmd[0], event[EVENT_COMMAND_STATUS_OPCODE_LSBYTE]);
EXPECT_EQ(cmd[1], event[EVENT_COMMAND_STATUS_OPCODE_LSBYTE + 1]);
EXPECT_EQ(event[EVENT_COMMAND_STATUS_STATUS_BYTE], HCI_STATUS_SUCCESS);
status_event_count++;
}
} while (event.size() > 0 && event[EVENT_CODE_BYTE] == EVENT_COMMAND_STATUS);
EXPECT_GT(event.size(),
static_cast<size_t>(EVENT_COMMAND_COMPLETE_STATUS_BYTE));
EXPECT_EQ(EVENT_COMMAND_COMPLETE, event[EVENT_CODE_BYTE]);
EXPECT_EQ(cmd[0], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE]);
EXPECT_EQ(cmd[1], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE + 1]);
EXPECT_EQ(HCI_STATUS_SUCCESS, event[EVENT_COMMAND_COMPLETE_STATUS_BYTE]);
}
// Send the command to read the controller's buffer sizes.
void BluetoothHidlTest::setBufferSizes() {
hidl_vec<uint8_t> cmd = COMMAND_HCI_READ_BUFFER_SIZE;
bluetooth->sendHciCommand(cmd);
wait_for_event();
EXPECT_LT(static_cast<size_t>(0), event_queue.size());
if (event_queue.size() == 0) return;
hidl_vec<uint8_t> event = event_queue.front();
event_queue.pop();
EXPECT_EQ(EVENT_COMMAND_COMPLETE, event[EVENT_CODE_BYTE]);
EXPECT_EQ(cmd[0], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE]);
EXPECT_EQ(cmd[1], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE + 1]);
EXPECT_EQ(HCI_STATUS_SUCCESS, event[EVENT_COMMAND_COMPLETE_STATUS_BYTE]);
max_acl_data_packet_length =
event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 1] +
(event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 2] << 8);
max_sco_data_packet_length = event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 3];
max_acl_data_packets = event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 4] +
(event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 5] << 8);
max_sco_data_packets = event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 6] +
(event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 7] << 8);
ALOGD("%s: ACL max %d num %d SCO max %d num %d", __func__,
static_cast<int>(max_acl_data_packet_length),
static_cast<int>(max_acl_data_packets),
static_cast<int>(max_sco_data_packet_length),
static_cast<int>(max_sco_data_packets));
}
// Send an HCI command (in Loopback mode) and check the response.
void BluetoothHidlTest::sendAndCheckHCI(int num_packets) {
ThroughputLogger logger = {__func__};
for (int n = 0; n < num_packets; n++) {
// Send an HCI packet
std::vector<uint8_t> write_name = COMMAND_HCI_WRITE_LOCAL_NAME;
// With a name
char new_name[] = "John Jacob Jingleheimer Schmidt ___________________0";
size_t new_name_length = strlen(new_name);
for (size_t i = 0; i < new_name_length; i++)
write_name.push_back(static_cast<uint8_t>(new_name[i]));
// And the packet number
{
size_t i = new_name_length - 1;
for (int digits = n; digits > 0; digits = digits / 10, i--)
write_name[i] = static_cast<uint8_t>('0' + digits % 10);
}
// And padding
for (size_t i = 0; i < 248 - new_name_length; i++)
write_name.push_back(static_cast<uint8_t>(0));
hidl_vec<uint8_t> cmd = write_name;
bluetooth->sendHciCommand(cmd);
// Check the loopback of the HCI packet
wait_for_event();
hidl_vec<uint8_t> event = event_queue.front();
event_queue.pop();
size_t compare_length =
(cmd.size() > static_cast<size_t>(0xff) ? static_cast<size_t>(0xff)
: cmd.size());
EXPECT_GT(event.size(), compare_length + EVENT_FIRST_PAYLOAD_BYTE - 1);
EXPECT_EQ(EVENT_LOOPBACK_COMMAND, event[EVENT_CODE_BYTE]);
EXPECT_EQ(compare_length, event[EVENT_LENGTH_BYTE]);
if (n == 0) logger.setTotalBytes(cmd.size() * num_packets * 2);
for (size_t i = 0; i < compare_length; i++)
EXPECT_EQ(cmd[i], event[EVENT_FIRST_PAYLOAD_BYTE + i]);
}
}
// Send a SCO data packet (in Loopback mode) and check the response.
void BluetoothHidlTest::sendAndCheckSCO(int num_packets, size_t size,
uint16_t handle) {
ThroughputLogger logger = {__func__};
for (int n = 0; n < num_packets; n++) {
// Send a SCO packet
hidl_vec<uint8_t> sco_packet;
std::vector<uint8_t> sco_vector;
sco_vector.push_back(static_cast<uint8_t>(handle & 0xff));
sco_vector.push_back(static_cast<uint8_t>((handle & 0x0f00) >> 8));
sco_vector.push_back(static_cast<uint8_t>(size & 0xff));
sco_vector.push_back(static_cast<uint8_t>((size & 0xff00) >> 8));
for (size_t i = 0; i < size; i++) {
sco_vector.push_back(static_cast<uint8_t>(i + n));
}
sco_packet = sco_vector;
bluetooth->sendScoData(sco_vector);
// Check the loopback of the SCO packet
wait_for_sco();
hidl_vec<uint8_t> sco_loopback = sco_queue.front();
sco_queue.pop();
EXPECT_EQ(sco_packet.size(), sco_loopback.size());
size_t successful_bytes = 0;
if (n == 0) logger.setTotalBytes(num_packets * size * 2);
for (size_t i = 0; i < sco_packet.size(); i++) {
if (sco_packet[i] == sco_loopback[i]) {
successful_bytes = i;
} else {
ALOGE("Miscompare at %d (expected %x, got %x)", static_cast<int>(i),
sco_packet[i], sco_loopback[i]);
ALOGE("At %d (expected %x, got %x)", static_cast<int>(i + 1),
sco_packet[i + 1], sco_loopback[i + 1]);
break;
}
}
EXPECT_EQ(sco_packet.size(), successful_bytes + 1);
}
}
// Send an ACL data packet (in Loopback mode) and check the response.
void BluetoothHidlTest::sendAndCheckACL(int num_packets, size_t size,
uint16_t handle) {
ThroughputLogger logger = {__func__};
for (int n = 0; n < num_packets; n++) {
// Send an ACL packet
hidl_vec<uint8_t> acl_packet;
std::vector<uint8_t> acl_vector;
acl_vector.push_back(static_cast<uint8_t>(handle & 0xff));
acl_vector.push_back(static_cast<uint8_t>((handle & 0x0f00) >> 8) |
ACL_BROADCAST_ACTIVE_SLAVE |
ACL_PACKET_BOUNDARY_COMPLETE);
acl_vector.push_back(static_cast<uint8_t>(size & 0xff));
acl_vector.push_back(static_cast<uint8_t>((size & 0xff00) >> 8));
for (size_t i = 0; i < size; i++) {
acl_vector.push_back(static_cast<uint8_t>(i + n));
}
acl_packet = acl_vector;
bluetooth->sendAclData(acl_vector);
// Check the loopback of the ACL packet
wait_for_acl();
hidl_vec<uint8_t> acl_loopback = acl_queue.front();
acl_queue.pop();
EXPECT_EQ(acl_packet.size(), acl_loopback.size());
size_t successful_bytes = 0;
if (n == 0) logger.setTotalBytes(num_packets * size * 2);
for (size_t i = 0; i < acl_packet.size(); i++) {
if (acl_packet[i] == acl_loopback[i]) {
successful_bytes = i;
} else {
ALOGE("Miscompare at %d (expected %x, got %x)", static_cast<int>(i),
acl_packet[i], acl_loopback[i]);
ALOGE("At %d (expected %x, got %x)", static_cast<int>(i + 1),
acl_packet[i + 1], acl_loopback[i + 1]);
break;
}
}
EXPECT_EQ(acl_packet.size(), successful_bytes + 1);
}
}
// Return the number of completed packets reported by the controller.
int BluetoothHidlTest::wait_for_completed_packets_event(uint16_t handle) {
wait_for_event();
int packets_processed = 0;
while (event_queue.size() > 0) {
hidl_vec<uint8_t> event = event_queue.front();
event_queue.pop();
EXPECT_EQ(EVENT_NUMBER_OF_COMPLETED_PACKETS, event[EVENT_CODE_BYTE]);
EXPECT_EQ(1, event[EVENT_NUMBER_OF_COMPLETED_PACKETS_NUM_HANDLES]);
uint16_t event_handle = event[3] + (event[4] << 8);
EXPECT_EQ(handle, event_handle);
packets_processed += event[5] + (event[6] << 8);
}
return packets_processed;
}
// Send local loopback command and initialize SCO and ACL handles.
void BluetoothHidlTest::enterLoopbackMode(std::vector<uint16_t>& sco_handles,
std::vector<uint16_t>& acl_handles) {
hidl_vec<uint8_t> cmd = COMMAND_HCI_WRITE_LOOPBACK_MODE_LOCAL;
bluetooth->sendHciCommand(cmd);
// Receive connection complete events with data channels
int connection_event_count = 0;
hidl_vec<uint8_t> event;
do {
wait_for_event();
event = event_queue.front();
event_queue.pop();
EXPECT_GT(event.size(),
static_cast<size_t>(EVENT_COMMAND_COMPLETE_STATUS_BYTE));
if (event[EVENT_CODE_BYTE] == EVENT_CONNECTION_COMPLETE) {
EXPECT_GT(event.size(),
static_cast<size_t>(EVENT_CONNECTION_COMPLETE_TYPE));
EXPECT_EQ(event[EVENT_LENGTH_BYTE],
EVENT_CONNECTION_COMPLETE_PARAM_LENGTH);
uint8_t connection_type = event[EVENT_CONNECTION_COMPLETE_TYPE];
EXPECT_TRUE(connection_type == EVENT_CONNECTION_COMPLETE_TYPE_SCO ||
connection_type == EVENT_CONNECTION_COMPLETE_TYPE_ACL);
// Save handles
uint16_t handle = event[EVENT_CONNECTION_COMPLETE_HANDLE_LSBYTE] |
event[EVENT_CONNECTION_COMPLETE_HANDLE_LSBYTE + 1] << 8;
if (connection_type == EVENT_CONNECTION_COMPLETE_TYPE_SCO)
sco_handles.push_back(handle);
else
acl_handles.push_back(handle);
ALOGD("Connect complete type = %d handle = %d",
event[EVENT_CONNECTION_COMPLETE_TYPE], handle);
connection_event_count++;
}
} while (event[EVENT_CODE_BYTE] == EVENT_CONNECTION_COMPLETE);
EXPECT_GT(connection_event_count, 0);
EXPECT_EQ(EVENT_COMMAND_COMPLETE, event[EVENT_CODE_BYTE]);
EXPECT_EQ(cmd[0], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE]);
EXPECT_EQ(cmd[1], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE + 1]);
EXPECT_EQ(HCI_STATUS_SUCCESS, event[EVENT_COMMAND_COMPLETE_STATUS_BYTE]);
}
// Empty test: Initialize()/Close() are called in SetUp()/TearDown().
TEST_F(BluetoothHidlTest, InitializeAndClose) { }
// Send an HCI Reset with sendHciCommand and wait for a command complete event.
TEST_F(BluetoothHidlTest, HciReset) {
hidl_vec<uint8_t> cmd = COMMAND_HCI_RESET;
bluetooth->sendHciCommand(cmd);
wait_for_command_complete_event(cmd);
}
// Read and check the HCI version of the controller.
TEST_F(BluetoothHidlTest, HciVersionTest) {
hidl_vec<uint8_t> cmd = COMMAND_HCI_READ_LOCAL_VERSION_INFORMATION;
bluetooth->sendHciCommand(cmd);
wait_for_event();
hidl_vec<uint8_t> event = event_queue.front();
event_queue.pop();
EXPECT_GT(event.size(), static_cast<size_t>(EVENT_LOCAL_LMP_VERSION_BYTE));
EXPECT_EQ(EVENT_COMMAND_COMPLETE, event[EVENT_CODE_BYTE]);
EXPECT_EQ(cmd[0], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE]);
EXPECT_EQ(cmd[1], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE + 1]);
EXPECT_EQ(HCI_STATUS_SUCCESS, event[EVENT_COMMAND_COMPLETE_STATUS_BYTE]);
EXPECT_LE(HCI_MINIMUM_HCI_VERSION, event[EVENT_LOCAL_HCI_VERSION_BYTE]);
EXPECT_LE(HCI_MINIMUM_LMP_VERSION, event[EVENT_LOCAL_LMP_VERSION_BYTE]);
}
// Send an unknown HCI command and wait for the error message.
TEST_F(BluetoothHidlTest, HciUnknownCommand) {
hidl_vec<uint8_t> cmd = COMMAND_HCI_SHOULD_BE_UNKNOWN;
bluetooth->sendHciCommand(cmd);
wait_for_event();
hidl_vec<uint8_t> event = event_queue.front();
event_queue.pop();
EXPECT_GT(event.size(),
static_cast<size_t>(EVENT_COMMAND_STATUS_OPCODE_LSBYTE + 1));
EXPECT_EQ(EVENT_COMMAND_COMPLETE, event[EVENT_CODE_BYTE]);
EXPECT_EQ(cmd[0], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE]);
EXPECT_EQ(cmd[1], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE + 1]);
EXPECT_EQ(HCI_STATUS_UNKNOWN_HCI_COMMAND,
event[EVENT_COMMAND_COMPLETE_STATUS_BYTE]);
}
// Enter loopback mode, but don't send any packets.
TEST_F(BluetoothHidlTest, WriteLoopbackMode) {
std::vector<uint16_t> sco_connection_handles;
std::vector<uint16_t> acl_connection_handles;
enterLoopbackMode(sco_connection_handles, acl_connection_handles);
}
// Enter loopback mode and send single packets.
TEST_F(BluetoothHidlTest, LoopbackModeSinglePackets) {
setBufferSizes();
EXPECT_LT(0, max_sco_data_packet_length);
EXPECT_LT(0, max_acl_data_packet_length);
std::vector<uint16_t> sco_connection_handles;
std::vector<uint16_t> acl_connection_handles;
enterLoopbackMode(sco_connection_handles, acl_connection_handles);
sendAndCheckHCI(1);
// This should work, but breaks on some current platforms. Figure out how to
// grandfather older devices but test new ones.
int sco_packets_sent = 0;
if (0 && sco_connection_handles.size() > 0) {
sendAndCheckSCO(1, max_sco_data_packet_length, sco_connection_handles[0]);
sco_packets_sent = 1;
EXPECT_EQ(sco_packets_sent,
wait_for_completed_packets_event(sco_connection_handles[0]));
}
int acl_packets_sent = 0;
if (acl_connection_handles.size() > 0) {
sendAndCheckACL(1, max_acl_data_packet_length, acl_connection_handles[0]);
acl_packets_sent = 1;
EXPECT_EQ(acl_packets_sent,
wait_for_completed_packets_event(acl_connection_handles[0]));
}
}
// Enter loopback mode and send packets for bandwidth measurements.
TEST_F(BluetoothHidlTest, LoopbackModeBandwidth) {
setBufferSizes();
std::vector<uint16_t> sco_connection_handles;
std::vector<uint16_t> acl_connection_handles;
enterLoopbackMode(sco_connection_handles, acl_connection_handles);
sendAndCheckHCI(NUM_HCI_COMMANDS_BANDWIDTH);
// This should work, but breaks on some current platforms. Figure out how to
// grandfather older devices but test new ones.
int sco_packets_sent = 0;
if (0 && sco_connection_handles.size() > 0) {
sendAndCheckSCO(NUM_SCO_PACKETS_BANDWIDTH, max_sco_data_packet_length,
sco_connection_handles[0]);
sco_packets_sent = NUM_SCO_PACKETS_BANDWIDTH;
EXPECT_EQ(sco_packets_sent,
wait_for_completed_packets_event(sco_connection_handles[0]));
}
int acl_packets_sent = 0;
if (acl_connection_handles.size() > 0) {
sendAndCheckACL(NUM_ACL_PACKETS_BANDWIDTH, max_acl_data_packet_length,
acl_connection_handles[0]);
acl_packets_sent = NUM_ACL_PACKETS_BANDWIDTH;
EXPECT_EQ(acl_packets_sent,
wait_for_completed_packets_event(acl_connection_handles[0]));
}
}
int main(int argc, char** argv) {
::testing::AddGlobalTestEnvironment(new BluetoothHidlEnvironment);
::testing::InitGoogleTest(&argc, argv);
int status = RUN_ALL_TESTS();
ALOGI("Test result = %d", status);
return status;
}