platform_hardware_interfaces/keymaster/3.0/default/KeymasterDevice.cpp

751 lines
27 KiB
C++

/*
**
** Copyright 2016, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#define LOG_TAG "android.hardware.keymaster@3.0-impl"
#include "KeymasterDevice.h"
#include <cutils/log.h>
#include <hardware/keymaster_defs.h>
#include <keymaster/keymaster_configuration.h>
#include <keymaster/soft_keymaster_device.h>
namespace android {
namespace hardware {
namespace keymaster {
namespace V3_0 {
namespace implementation {
using ::keymaster::SoftKeymasterDevice;
class SoftwareOnlyHidlKeymasterEnforcement : public ::keymaster::KeymasterEnforcement {
public:
SoftwareOnlyHidlKeymasterEnforcement() : KeymasterEnforcement(64, 64) {}
uint32_t get_current_time() const override {
struct timespec tp;
int err = clock_gettime(CLOCK_MONOTONIC, &tp);
if (err || tp.tv_sec < 0) return 0;
return static_cast<uint32_t>(tp.tv_sec);
}
bool activation_date_valid(uint64_t) const override { return true; }
bool expiration_date_passed(uint64_t) const override { return false; }
bool auth_token_timed_out(const hw_auth_token_t&, uint32_t) const override { return false; }
bool ValidateTokenSignature(const hw_auth_token_t&) const override { return true; }
};
class SoftwareOnlyHidlKeymasterContext : public ::keymaster::SoftKeymasterContext {
public:
SoftwareOnlyHidlKeymasterContext() : enforcement_(new SoftwareOnlyHidlKeymasterEnforcement) {}
::keymaster::KeymasterEnforcement* enforcement_policy() override { return enforcement_.get(); }
private:
std::unique_ptr<::keymaster::KeymasterEnforcement> enforcement_;
};
static int keymaster0_device_initialize(const hw_module_t* mod, keymaster2_device_t** dev) {
assert(mod->module_api_version < KEYMASTER_MODULE_API_VERSION_1_0);
ALOGI("Found keymaster0 module %s, version %x", mod->name, mod->module_api_version);
std::unique_ptr<SoftKeymasterDevice> soft_keymaster(new SoftKeymasterDevice);
keymaster0_device_t* km0_device = NULL;
keymaster_error_t error = KM_ERROR_OK;
int rc = keymaster0_open(mod, &km0_device);
if (rc) {
ALOGE("Error opening keystore keymaster0 device.");
goto err;
}
if (km0_device->flags & KEYMASTER_SOFTWARE_ONLY) {
ALOGI("Keymaster0 module is software-only. Using SoftKeymasterDevice instead.");
km0_device->common.close(&km0_device->common);
km0_device = NULL;
// SoftKeymasterDevice will be deleted by keymaster_device_release()
*dev = soft_keymaster.release()->keymaster2_device();
return 0;
}
ALOGD("Wrapping keymaster0 module %s with SoftKeymasterDevice", mod->name);
error = soft_keymaster->SetHardwareDevice(km0_device);
km0_device = NULL; // SoftKeymasterDevice has taken ownership.
if (error != KM_ERROR_OK) {
ALOGE("Got error %d from SetHardwareDevice", error);
rc = error;
goto err;
}
// SoftKeymasterDevice will be deleted by keymaster_device_release()
*dev = soft_keymaster.release()->keymaster2_device();
return 0;
err:
if (km0_device) km0_device->common.close(&km0_device->common);
*dev = NULL;
return rc;
}
static int keymaster1_device_initialize(const hw_module_t* mod, keymaster2_device_t** dev,
bool* supports_all_digests) {
assert(mod->module_api_version >= KEYMASTER_MODULE_API_VERSION_1_0);
ALOGI("Found keymaster1 module %s, version %x", mod->name, mod->module_api_version);
std::unique_ptr<SoftKeymasterDevice> soft_keymaster(new SoftKeymasterDevice);
keymaster1_device_t* km1_device = nullptr;
keymaster_error_t error = KM_ERROR_OK;
int rc = keymaster1_open(mod, &km1_device);
if (rc) {
ALOGE("Error %d opening keystore keymaster1 device", rc);
goto err;
}
ALOGD("Wrapping keymaster1 module %s with SofKeymasterDevice", mod->name);
error = soft_keymaster->SetHardwareDevice(km1_device);
km1_device = nullptr; // SoftKeymasterDevice has taken ownership.
if (error != KM_ERROR_OK) {
ALOGE("Got error %d from SetHardwareDevice", error);
rc = error;
goto err;
}
// SoftKeymasterDevice will be deleted by keymaster_device_release()
*supports_all_digests = soft_keymaster->supports_all_digests();
*dev = soft_keymaster.release()->keymaster2_device();
return 0;
err:
if (km1_device) km1_device->common.close(&km1_device->common);
*dev = NULL;
return rc;
}
static int keymaster2_device_initialize(const hw_module_t* mod, keymaster2_device_t** dev) {
assert(mod->module_api_version >= KEYMASTER_MODULE_API_VERSION_2_0);
ALOGI("Found keymaster2 module %s, version %x", mod->name, mod->module_api_version);
keymaster2_device_t* km2_device = nullptr;
int rc = keymaster2_open(mod, &km2_device);
if (rc) {
ALOGE("Error %d opening keystore keymaster2 device", rc);
goto err;
}
*dev = km2_device;
return 0;
err:
if (km2_device) km2_device->common.close(&km2_device->common);
*dev = nullptr;
return rc;
}
static int keymaster_device_initialize(keymaster2_device_t** dev, uint32_t* version,
bool* supports_ec, bool* supports_all_digests) {
const hw_module_t* mod;
*supports_ec = true;
int rc = hw_get_module_by_class(KEYSTORE_HARDWARE_MODULE_ID, NULL, &mod);
if (rc) {
ALOGI("Could not find any keystore module, using software-only implementation.");
// SoftKeymasterDevice will be deleted by keymaster_device_release()
*dev = (new SoftKeymasterDevice(new SoftwareOnlyHidlKeymasterContext))->keymaster2_device();
*version = -1;
return 0;
}
if (mod->module_api_version < KEYMASTER_MODULE_API_VERSION_1_0) {
*version = 0;
*supports_all_digests = false;
int rc = keymaster0_device_initialize(mod, dev);
if (rc == 0 && ((*dev)->flags & KEYMASTER_SUPPORTS_EC) == 0) {
*supports_ec = false;
}
return rc;
} else if (mod->module_api_version == KEYMASTER_MODULE_API_VERSION_1_0) {
*version = 1;
return keymaster1_device_initialize(mod, dev, supports_all_digests);
} else {
*version = 2;
*supports_all_digests = true;
return keymaster2_device_initialize(mod, dev);
}
}
KeymasterDevice::~KeymasterDevice() {
if (keymaster_device_) keymaster_device_->common.close(&keymaster_device_->common);
}
static inline keymaster_tag_type_t typeFromTag(const keymaster_tag_t tag) {
return keymaster_tag_get_type(tag);
}
/**
* legacy_enum_conversion converts enums from hidl to keymaster and back. Currently, this is just a
* cast to make the compiler happy. One of two thigs should happen though:
* TODO The keymaster enums should become aliases for the hidl generated enums so that we have a
* single point of truth. Then this cast function can go away.
*/
inline static keymaster_tag_t legacy_enum_conversion(const Tag value) {
return keymaster_tag_t(value);
}
inline static Tag legacy_enum_conversion(const keymaster_tag_t value) {
return Tag(value);
}
inline static keymaster_purpose_t legacy_enum_conversion(const KeyPurpose value) {
return keymaster_purpose_t(value);
}
inline static keymaster_key_format_t legacy_enum_conversion(const KeyFormat value) {
return keymaster_key_format_t(value);
}
inline static ErrorCode legacy_enum_conversion(const keymaster_error_t value) {
return ErrorCode(value);
}
class KmParamSet : public keymaster_key_param_set_t {
public:
KmParamSet(const hidl_vec<KeyParameter>& keyParams) {
params = new keymaster_key_param_t[keyParams.size()];
length = keyParams.size();
for (size_t i = 0; i < keyParams.size(); ++i) {
auto tag = legacy_enum_conversion(keyParams[i].tag);
switch (typeFromTag(tag)) {
case KM_ENUM:
case KM_ENUM_REP:
params[i] = keymaster_param_enum(tag, keyParams[i].f.integer);
break;
case KM_UINT:
case KM_UINT_REP:
params[i] = keymaster_param_int(tag, keyParams[i].f.integer);
break;
case KM_ULONG:
case KM_ULONG_REP:
params[i] = keymaster_param_long(tag, keyParams[i].f.longInteger);
break;
case KM_DATE:
params[i] = keymaster_param_date(tag, keyParams[i].f.dateTime);
break;
case KM_BOOL:
if (keyParams[i].f.boolValue)
params[i] = keymaster_param_bool(tag);
else
params[i].tag = KM_TAG_INVALID;
break;
case KM_BIGNUM:
case KM_BYTES:
params[i] =
keymaster_param_blob(tag, &keyParams[i].blob[0], keyParams[i].blob.size());
break;
case KM_INVALID:
default:
params[i].tag = KM_TAG_INVALID;
/* just skip */
break;
}
}
}
KmParamSet(KmParamSet&& other) : keymaster_key_param_set_t{other.params, other.length} {
other.length = 0;
other.params = nullptr;
}
KmParamSet(const KmParamSet&) = delete;
~KmParamSet() { delete[] params; }
};
inline static KmParamSet hidlParams2KmParamSet(const hidl_vec<KeyParameter>& params) {
return KmParamSet(params);
}
inline static keymaster_blob_t hidlVec2KmBlob(const hidl_vec<uint8_t>& blob) {
/* hidl unmarshals funny pointers if the the blob is empty */
if (blob.size()) return {&blob[0], blob.size()};
return {nullptr, 0};
}
inline static keymaster_key_blob_t hidlVec2KmKeyBlob(const hidl_vec<uint8_t>& blob) {
/* hidl unmarshals funny pointers if the the blob is empty */
if (blob.size()) return {&blob[0], blob.size()};
return {nullptr, 0};
}
inline static hidl_vec<uint8_t> kmBlob2hidlVec(const keymaster_key_blob_t& blob) {
hidl_vec<uint8_t> result;
result.setToExternal(const_cast<unsigned char*>(blob.key_material), blob.key_material_size);
return result;
}
inline static hidl_vec<uint8_t> kmBlob2hidlVec(const keymaster_blob_t& blob) {
hidl_vec<uint8_t> result;
result.setToExternal(const_cast<unsigned char*>(blob.data), blob.data_length);
return result;
}
inline static hidl_vec<hidl_vec<uint8_t>>
kmCertChain2Hidl(const keymaster_cert_chain_t* cert_chain) {
hidl_vec<hidl_vec<uint8_t>> result;
if (!cert_chain || cert_chain->entry_count == 0 || !cert_chain->entries) return result;
result.resize(cert_chain->entry_count);
for (size_t i = 0; i < cert_chain->entry_count; ++i) {
auto& entry = cert_chain->entries[i];
result[i] = kmBlob2hidlVec(entry);
}
return result;
}
static inline hidl_vec<KeyParameter> kmParamSet2Hidl(const keymaster_key_param_set_t& set) {
hidl_vec<KeyParameter> result;
if (set.length == 0 || set.params == nullptr) return result;
result.resize(set.length);
keymaster_key_param_t* params = set.params;
for (size_t i = 0; i < set.length; ++i) {
auto tag = params[i].tag;
result[i].tag = legacy_enum_conversion(tag);
switch (typeFromTag(tag)) {
case KM_ENUM:
case KM_ENUM_REP:
result[i].f.integer = params[i].enumerated;
break;
case KM_UINT:
case KM_UINT_REP:
result[i].f.integer = params[i].integer;
break;
case KM_ULONG:
case KM_ULONG_REP:
result[i].f.longInteger = params[i].long_integer;
break;
case KM_DATE:
result[i].f.dateTime = params[i].date_time;
break;
case KM_BOOL:
result[i].f.boolValue = params[i].boolean;
break;
case KM_BIGNUM:
case KM_BYTES:
result[i].blob.setToExternal(const_cast<unsigned char*>(params[i].blob.data),
params[i].blob.data_length);
break;
case KM_INVALID:
default:
params[i].tag = KM_TAG_INVALID;
/* just skip */
break;
}
}
return result;
}
// Methods from ::android::hardware::keymaster::V3_0::IKeymasterDevice follow.
Return<void> KeymasterDevice::getHardwareFeatures(getHardwareFeatures_cb _hidl_cb) {
bool is_secure = !(keymaster_device_->flags & KEYMASTER_SOFTWARE_ONLY);
bool supports_symmetric_cryptography = false;
bool supports_attestation = false;
switch (hardware_version_) {
case 2:
supports_attestation = true;
/* Falls through */
case 1:
supports_symmetric_cryptography = true;
break;
};
_hidl_cb(is_secure, hardware_supports_ec_, supports_symmetric_cryptography,
supports_attestation, hardware_supports_all_digests_,
keymaster_device_->common.module->name, keymaster_device_->common.module->author);
return Void();
}
Return<ErrorCode> KeymasterDevice::addRngEntropy(const hidl_vec<uint8_t>& data) {
if (!data.size()) return ErrorCode::OK;
return legacy_enum_conversion(
keymaster_device_->add_rng_entropy(keymaster_device_, &data[0], data.size()));
}
Return<void> KeymasterDevice::generateKey(const hidl_vec<KeyParameter>& keyParams,
generateKey_cb _hidl_cb) {
// result variables for the wire
KeyCharacteristics resultCharacteristics;
hidl_vec<uint8_t> resultKeyBlob;
// result variables the backend understands
keymaster_key_blob_t key_blob{nullptr, 0};
keymaster_key_characteristics_t key_characteristics{{nullptr, 0}, {nullptr, 0}};
// convert the parameter set to something our backend understands
auto kmParams = hidlParams2KmParamSet(keyParams);
auto rc = keymaster_device_->generate_key(keymaster_device_, &kmParams, &key_blob,
&key_characteristics);
if (rc == KM_ERROR_OK) {
// on success convert the result to wire format
resultKeyBlob = kmBlob2hidlVec(key_blob);
resultCharacteristics.softwareEnforced = kmParamSet2Hidl(key_characteristics.sw_enforced);
resultCharacteristics.teeEnforced = kmParamSet2Hidl(key_characteristics.hw_enforced);
}
// send results off to the client
_hidl_cb(legacy_enum_conversion(rc), resultKeyBlob, resultCharacteristics);
// free buffers that we are responsible for
if (key_blob.key_material) free(const_cast<uint8_t*>(key_blob.key_material));
keymaster_free_characteristics(&key_characteristics);
return Void();
}
Return<void> KeymasterDevice::getKeyCharacteristics(const hidl_vec<uint8_t>& keyBlob,
const hidl_vec<uint8_t>& clientId,
const hidl_vec<uint8_t>& appData,
getKeyCharacteristics_cb _hidl_cb) {
// result variables for the wire
KeyCharacteristics resultCharacteristics;
// result variables the backend understands
keymaster_key_characteristics_t key_characteristics{{nullptr, 0}, {nullptr, 0}};
auto kmKeyBlob = hidlVec2KmKeyBlob(keyBlob);
auto kmClientId = hidlVec2KmBlob(clientId);
auto kmAppData = hidlVec2KmBlob(appData);
auto rc = keymaster_device_->get_key_characteristics(
keymaster_device_, keyBlob.size() ? &kmKeyBlob : nullptr,
clientId.size() ? &kmClientId : nullptr, appData.size() ? &kmAppData : nullptr,
&key_characteristics);
if (rc == KM_ERROR_OK) {
resultCharacteristics.softwareEnforced = kmParamSet2Hidl(key_characteristics.sw_enforced);
resultCharacteristics.teeEnforced = kmParamSet2Hidl(key_characteristics.hw_enforced);
}
_hidl_cb(legacy_enum_conversion(rc), resultCharacteristics);
keymaster_free_characteristics(&key_characteristics);
return Void();
}
Return<void> KeymasterDevice::importKey(const hidl_vec<KeyParameter>& params, KeyFormat keyFormat,
const hidl_vec<uint8_t>& keyData, importKey_cb _hidl_cb) {
// result variables for the wire
KeyCharacteristics resultCharacteristics;
hidl_vec<uint8_t> resultKeyBlob;
// result variables the backend understands
keymaster_key_blob_t key_blob{nullptr, 0};
keymaster_key_characteristics_t key_characteristics{{nullptr, 0}, {nullptr, 0}};
auto kmParams = hidlParams2KmParamSet(params);
auto kmKeyData = hidlVec2KmBlob(keyData);
auto rc = keymaster_device_->import_key(keymaster_device_, &kmParams,
legacy_enum_conversion(keyFormat), &kmKeyData,
&key_blob, &key_characteristics);
if (rc == KM_ERROR_OK) {
// on success convert the result to wire format
// (Can we assume that key_blob is {nullptr, 0} or a valid buffer description?)
resultKeyBlob = kmBlob2hidlVec(key_blob);
resultCharacteristics.softwareEnforced = kmParamSet2Hidl(key_characteristics.sw_enforced);
resultCharacteristics.teeEnforced = kmParamSet2Hidl(key_characteristics.hw_enforced);
}
_hidl_cb(legacy_enum_conversion(rc), resultKeyBlob, resultCharacteristics);
// free buffers that we are responsible for
if (key_blob.key_material) free(const_cast<uint8_t*>(key_blob.key_material));
keymaster_free_characteristics(&key_characteristics);
return Void();
}
Return<void> KeymasterDevice::exportKey(KeyFormat exportFormat, const hidl_vec<uint8_t>& keyBlob,
const hidl_vec<uint8_t>& clientId,
const hidl_vec<uint8_t>& appData, exportKey_cb _hidl_cb) {
// result variables for the wire
hidl_vec<uint8_t> resultKeyBlob;
// result variables the backend understands
keymaster_blob_t out_blob{nullptr, 0};
auto kmKeyBlob = hidlVec2KmKeyBlob(keyBlob);
auto kmClientId = hidlVec2KmBlob(clientId);
auto kmAppData = hidlVec2KmBlob(appData);
auto rc = keymaster_device_->export_key(keymaster_device_, legacy_enum_conversion(exportFormat),
keyBlob.size() ? &kmKeyBlob : nullptr,
clientId.size() ? &kmClientId : nullptr,
appData.size() ? &kmAppData : nullptr, &out_blob);
if (rc == KM_ERROR_OK) {
// on success convert the result to wire format
// (Can we assume that key_blob is {nullptr, 0} or a valid buffer description?)
resultKeyBlob = kmBlob2hidlVec(out_blob);
}
_hidl_cb(legacy_enum_conversion(rc), resultKeyBlob);
// free buffers that we are responsible for
if (out_blob.data) free(const_cast<uint8_t*>(out_blob.data));
return Void();
}
Return<void> KeymasterDevice::attestKey(const hidl_vec<uint8_t>& keyToAttest,
const hidl_vec<KeyParameter>& attestParams,
attestKey_cb _hidl_cb) {
hidl_vec<hidl_vec<uint8_t>> resultCertChain;
bool foundAttestationApplicationId = false;
for (size_t i = 0; i < attestParams.size(); ++i) {
switch (attestParams[i].tag) {
case Tag::ATTESTATION_ID_BRAND:
case Tag::ATTESTATION_ID_DEVICE:
case Tag::ATTESTATION_ID_PRODUCT:
case Tag::ATTESTATION_ID_SERIAL:
case Tag::ATTESTATION_ID_IMEI:
case Tag::ATTESTATION_ID_MEID:
case Tag::ATTESTATION_ID_MANUFACTURER:
case Tag::ATTESTATION_ID_MODEL:
// Device id attestation may only be supported if the device is able to permanently
// destroy its knowledge of the ids. This device is unable to do this, so it must
// never perform any device id attestation.
_hidl_cb(ErrorCode::CANNOT_ATTEST_IDS, resultCertChain);
return Void();
case Tag::ATTESTATION_APPLICATION_ID:
foundAttestationApplicationId = true;
break;
default:
break;
}
}
// KM3 devices reject missing attest application IDs. KM2 devices do not.
if (!foundAttestationApplicationId) {
_hidl_cb(ErrorCode::ATTESTATION_APPLICATION_ID_MISSING,
resultCertChain);
return Void();
}
keymaster_cert_chain_t cert_chain{nullptr, 0};
auto kmKeyToAttest = hidlVec2KmKeyBlob(keyToAttest);
auto kmAttestParams = hidlParams2KmParamSet(attestParams);
auto rc = keymaster_device_->attest_key(keymaster_device_, &kmKeyToAttest, &kmAttestParams,
&cert_chain);
if (rc == KM_ERROR_OK) {
resultCertChain = kmCertChain2Hidl(&cert_chain);
}
_hidl_cb(legacy_enum_conversion(rc), resultCertChain);
keymaster_free_cert_chain(&cert_chain);
return Void();
}
Return<void> KeymasterDevice::upgradeKey(const hidl_vec<uint8_t>& keyBlobToUpgrade,
const hidl_vec<KeyParameter>& upgradeParams,
upgradeKey_cb _hidl_cb) {
// result variables for the wire
hidl_vec<uint8_t> resultKeyBlob;
// result variables the backend understands
keymaster_key_blob_t key_blob{nullptr, 0};
auto kmKeyBlobToUpgrade = hidlVec2KmKeyBlob(keyBlobToUpgrade);
auto kmUpgradeParams = hidlParams2KmParamSet(upgradeParams);
auto rc = keymaster_device_->upgrade_key(keymaster_device_, &kmKeyBlobToUpgrade,
&kmUpgradeParams, &key_blob);
if (rc == KM_ERROR_OK) {
// on success convert the result to wire format
resultKeyBlob = kmBlob2hidlVec(key_blob);
}
_hidl_cb(legacy_enum_conversion(rc), resultKeyBlob);
if (key_blob.key_material) free(const_cast<uint8_t*>(key_blob.key_material));
return Void();
}
Return<ErrorCode> KeymasterDevice::deleteKey(const hidl_vec<uint8_t>& keyBlob) {
if (keymaster_device_->delete_key == nullptr) {
return ErrorCode::UNIMPLEMENTED;
}
auto kmKeyBlob = hidlVec2KmKeyBlob(keyBlob);
auto rc = legacy_enum_conversion(
keymaster_device_->delete_key(keymaster_device_, &kmKeyBlob));
// Keymaster 3.0 requires deleteKey to return ErrorCode::OK if the key
// blob is unusable after the call. This is equally true if the key blob was
// unusable before.
if (rc == ErrorCode::INVALID_KEY_BLOB) return ErrorCode::OK;
return rc;
}
Return<ErrorCode> KeymasterDevice::deleteAllKeys() {
if (keymaster_device_->delete_all_keys == nullptr) {
return ErrorCode::UNIMPLEMENTED;
}
return legacy_enum_conversion(keymaster_device_->delete_all_keys(keymaster_device_));
}
Return<ErrorCode> KeymasterDevice::destroyAttestationIds() {
return ErrorCode::UNIMPLEMENTED;
}
Return<void> KeymasterDevice::begin(KeyPurpose purpose, const hidl_vec<uint8_t>& key,
const hidl_vec<KeyParameter>& inParams, begin_cb _hidl_cb) {
// result variables for the wire
hidl_vec<KeyParameter> resultParams;
uint64_t resultOpHandle = 0;
// result variables the backend understands
keymaster_key_param_set_t out_params{nullptr, 0};
keymaster_operation_handle_t& operation_handle = resultOpHandle;
auto kmKey = hidlVec2KmKeyBlob(key);
auto kmInParams = hidlParams2KmParamSet(inParams);
auto rc = keymaster_device_->begin(keymaster_device_, legacy_enum_conversion(purpose), &kmKey,
&kmInParams, &out_params, &operation_handle);
if (rc == KM_ERROR_OK) resultParams = kmParamSet2Hidl(out_params);
_hidl_cb(legacy_enum_conversion(rc), resultParams, resultOpHandle);
keymaster_free_param_set(&out_params);
return Void();
}
Return<void> KeymasterDevice::update(uint64_t operationHandle,
const hidl_vec<KeyParameter>& inParams,
const hidl_vec<uint8_t>& input, update_cb _hidl_cb) {
// result variables for the wire
uint32_t resultConsumed = 0;
hidl_vec<KeyParameter> resultParams;
hidl_vec<uint8_t> resultBlob;
// result variables the backend understands
size_t consumed = 0;
keymaster_key_param_set_t out_params{nullptr, 0};
keymaster_blob_t out_blob{nullptr, 0};
auto kmInParams = hidlParams2KmParamSet(inParams);
auto kmInput = hidlVec2KmBlob(input);
auto rc = keymaster_device_->update(keymaster_device_, operationHandle, &kmInParams, &kmInput,
&consumed, &out_params, &out_blob);
if (rc == KM_ERROR_OK) {
resultConsumed = consumed;
resultParams = kmParamSet2Hidl(out_params);
resultBlob = kmBlob2hidlVec(out_blob);
}
_hidl_cb(legacy_enum_conversion(rc), resultConsumed, resultParams, resultBlob);
keymaster_free_param_set(&out_params);
if (out_blob.data) free(const_cast<uint8_t*>(out_blob.data));
return Void();
}
Return<void> KeymasterDevice::finish(uint64_t operationHandle,
const hidl_vec<KeyParameter>& inParams,
const hidl_vec<uint8_t>& input,
const hidl_vec<uint8_t>& signature, finish_cb _hidl_cb) {
// result variables for the wire
hidl_vec<KeyParameter> resultParams;
hidl_vec<uint8_t> resultBlob;
// result variables the backend understands
keymaster_key_param_set_t out_params{nullptr, 0};
keymaster_blob_t out_blob{nullptr, 0};
auto kmInParams = hidlParams2KmParamSet(inParams);
auto kmInput = hidlVec2KmBlob(input);
auto kmSignature = hidlVec2KmBlob(signature);
auto rc = keymaster_device_->finish(keymaster_device_, operationHandle, &kmInParams, &kmInput,
&kmSignature, &out_params, &out_blob);
if (rc == KM_ERROR_OK) {
resultParams = kmParamSet2Hidl(out_params);
resultBlob = kmBlob2hidlVec(out_blob);
}
_hidl_cb(legacy_enum_conversion(rc), resultParams, resultBlob);
keymaster_free_param_set(&out_params);
if (out_blob.data) free(const_cast<uint8_t*>(out_blob.data));
return Void();
}
Return<ErrorCode> KeymasterDevice::abort(uint64_t operationHandle) {
return legacy_enum_conversion(keymaster_device_->abort(keymaster_device_, operationHandle));
}
IKeymasterDevice* HIDL_FETCH_IKeymasterDevice(const char* name) {
keymaster2_device_t* dev = nullptr;
ALOGI("Fetching keymaster device name %s", name);
uint32_t version = -1;
bool supports_ec = false;
bool supports_all_digests = false;
if (name && strcmp(name, "softwareonly") == 0) {
dev = (new SoftKeymasterDevice(new SoftwareOnlyHidlKeymasterContext))->keymaster2_device();
} else if (name && strcmp(name, "default") == 0) {
auto rc = keymaster_device_initialize(&dev, &version, &supports_ec, &supports_all_digests);
if (rc) return nullptr;
}
auto kmrc = ::keymaster::ConfigureDevice(dev);
if (kmrc != KM_ERROR_OK) {
dev->common.close(&dev->common);
return nullptr;
}
return new KeymasterDevice(dev, version, supports_ec, supports_all_digests);
}
} // namespace implementation
} // namespace V3_0
} // namespace keymaster
} // namespace hardware
} // namespace android