platform_hardware_interfaces/sensors/1.0/default/convert.cpp
Arthur Ishiguro fa2fcddb09 Adds conversion for quaternion data with accuracy
Also applies formatter.

Bug: 116874058
Test: Compile and verify apps can receive the accuracy
      field

Change-Id: I2535a5a9315ac3d343dcdf6010d3ae74288dfcd4
2018-11-01 17:33:22 -07:00

395 lines
13 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "convert.h"
#include <android-base/logging.h>
namespace android {
namespace hardware {
namespace sensors {
namespace V1_0 {
namespace implementation {
void convertFromSensor(const sensor_t &src, SensorInfo *dst) {
dst->name = src.name;
dst->vendor = src.vendor;
dst->version = src.version;
dst->sensorHandle = src.handle;
dst->type = (SensorType)src.type;
dst->maxRange = src.maxRange;
dst->resolution = src.resolution;
dst->power = src.power;
dst->minDelay = src.minDelay;
dst->fifoReservedEventCount = src.fifoReservedEventCount;
dst->fifoMaxEventCount = src.fifoMaxEventCount;
dst->typeAsString = src.stringType;
dst->requiredPermission = src.requiredPermission;
dst->maxDelay = src.maxDelay;
dst->flags = src.flags;
}
void convertToSensor(
const ::android::hardware::sensors::V1_0::SensorInfo &src,
sensor_t *dst) {
dst->name = strdup(src.name.c_str());
dst->vendor = strdup(src.vendor.c_str());
dst->version = src.version;
dst->handle = src.sensorHandle;
dst->type = (int)src.type;
dst->maxRange = src.maxRange;
dst->resolution = src.resolution;
dst->power = src.power;
dst->minDelay = src.minDelay;
dst->fifoReservedEventCount = src.fifoReservedEventCount;
dst->fifoMaxEventCount = src.fifoMaxEventCount;
dst->stringType = strdup(src.typeAsString.c_str());
dst->requiredPermission = strdup(src.requiredPermission.c_str());
dst->maxDelay = src.maxDelay;
dst->flags = src.flags;
dst->reserved[0] = dst->reserved[1] = 0;
}
void convertFromSensorEvent(const sensors_event_t &src, Event *dst) {
typedef ::android::hardware::sensors::V1_0::SensorType SensorType;
typedef ::android::hardware::sensors::V1_0::MetaDataEventType MetaDataEventType;
*dst = {
.sensorHandle = src.sensor,
.sensorType = (SensorType)src.type,
.timestamp = src.timestamp
};
switch (dst->sensorType) {
case SensorType::META_DATA: {
dst->u.meta.what = (MetaDataEventType)src.meta_data.what;
// Legacy HALs contain the handle reference in the meta data field.
// Copy that over to the handle of the event. In legacy HALs this
// field was expected to be 0.
dst->sensorHandle = src.meta_data.sensor;
break;
}
case SensorType::ACCELEROMETER:
case SensorType::MAGNETIC_FIELD:
case SensorType::ORIENTATION:
case SensorType::GYROSCOPE:
case SensorType::GRAVITY:
case SensorType::LINEAR_ACCELERATION: {
dst->u.vec3.x = src.acceleration.x;
dst->u.vec3.y = src.acceleration.y;
dst->u.vec3.z = src.acceleration.z;
dst->u.vec3.status = (SensorStatus)src.acceleration.status;
break;
}
case SensorType::GAME_ROTATION_VECTOR: {
dst->u.vec4.x = src.data[0];
dst->u.vec4.y = src.data[1];
dst->u.vec4.z = src.data[2];
dst->u.vec4.w = src.data[3];
break;
}
case SensorType::ROTATION_VECTOR:
case SensorType::GEOMAGNETIC_ROTATION_VECTOR: {
dst->u.data[0] = src.data[0];
dst->u.data[1] = src.data[1];
dst->u.data[2] = src.data[2];
dst->u.data[3] = src.data[3];
dst->u.data[4] = src.data[4];
break;
}
case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
case SensorType::GYROSCOPE_UNCALIBRATED:
case SensorType::ACCELEROMETER_UNCALIBRATED: {
dst->u.uncal.x = src.uncalibrated_gyro.x_uncalib;
dst->u.uncal.y = src.uncalibrated_gyro.y_uncalib;
dst->u.uncal.z = src.uncalibrated_gyro.z_uncalib;
dst->u.uncal.x_bias = src.uncalibrated_gyro.x_bias;
dst->u.uncal.y_bias = src.uncalibrated_gyro.y_bias;
dst->u.uncal.z_bias = src.uncalibrated_gyro.z_bias;
break;
}
case SensorType::DEVICE_ORIENTATION:
case SensorType::LIGHT:
case SensorType::PRESSURE:
case SensorType::TEMPERATURE:
case SensorType::PROXIMITY:
case SensorType::RELATIVE_HUMIDITY:
case SensorType::AMBIENT_TEMPERATURE:
case SensorType::SIGNIFICANT_MOTION:
case SensorType::STEP_DETECTOR:
case SensorType::TILT_DETECTOR:
case SensorType::WAKE_GESTURE:
case SensorType::GLANCE_GESTURE:
case SensorType::PICK_UP_GESTURE:
case SensorType::WRIST_TILT_GESTURE:
case SensorType::STATIONARY_DETECT:
case SensorType::MOTION_DETECT:
case SensorType::HEART_BEAT:
case SensorType::LOW_LATENCY_OFFBODY_DETECT: {
dst->u.scalar = src.data[0];
break;
}
case SensorType::STEP_COUNTER: {
dst->u.stepCount = src.u64.step_counter;
break;
}
case SensorType::HEART_RATE: {
dst->u.heartRate.bpm = src.heart_rate.bpm;
dst->u.heartRate.status = (SensorStatus)src.heart_rate.status;
break;
}
case SensorType::POSE_6DOF: { // 15 floats
for (size_t i = 0; i < 15; ++i) {
dst->u.pose6DOF[i] = src.data[i];
}
break;
}
case SensorType::DYNAMIC_SENSOR_META: {
dst->u.dynamic.connected = src.dynamic_sensor_meta.connected;
dst->u.dynamic.sensorHandle = src.dynamic_sensor_meta.handle;
memcpy(dst->u.dynamic.uuid.data(), src.dynamic_sensor_meta.uuid, 16);
break;
}
case SensorType::ADDITIONAL_INFO: {
::android::hardware::sensors::V1_0::AdditionalInfo* dstInfo = &dst->u.additional;
const additional_info_event_t& srcInfo = src.additional_info;
dstInfo->type = (::android::hardware::sensors::V1_0::AdditionalInfoType)srcInfo.type;
dstInfo->serial = srcInfo.serial;
CHECK_EQ(sizeof(dstInfo->u), sizeof(srcInfo.data_int32));
memcpy(&dstInfo->u, srcInfo.data_int32, sizeof(srcInfo.data_int32));
break;
}
default: {
CHECK_GE((int32_t)dst->sensorType, (int32_t)SensorType::DEVICE_PRIVATE_BASE);
memcpy(dst->u.data.data(), src.data, 16 * sizeof(float));
break;
}
}
}
void convertToSensorEvent(const Event &src, sensors_event_t *dst) {
*dst = {.version = sizeof(sensors_event_t),
.sensor = src.sensorHandle,
.type = (int32_t)src.sensorType,
.reserved0 = 0,
.timestamp = src.timestamp};
switch (src.sensorType) {
case SensorType::META_DATA: {
// Legacy HALs expect the handle reference in the meta data field.
// Copy it over from the handle of the event.
dst->meta_data.what = (int32_t)src.u.meta.what;
dst->meta_data.sensor = src.sensorHandle;
// Set the sensor handle to 0 to maintain compatibility.
dst->sensor = 0;
break;
}
case SensorType::ACCELEROMETER:
case SensorType::MAGNETIC_FIELD:
case SensorType::ORIENTATION:
case SensorType::GYROSCOPE:
case SensorType::GRAVITY:
case SensorType::LINEAR_ACCELERATION: {
dst->acceleration.x = src.u.vec3.x;
dst->acceleration.y = src.u.vec3.y;
dst->acceleration.z = src.u.vec3.z;
dst->acceleration.status = (int8_t)src.u.vec3.status;
break;
}
case SensorType::GAME_ROTATION_VECTOR: {
dst->data[0] = src.u.vec4.x;
dst->data[1] = src.u.vec4.y;
dst->data[2] = src.u.vec4.z;
dst->data[3] = src.u.vec4.w;
break;
}
case SensorType::ROTATION_VECTOR:
case SensorType::GEOMAGNETIC_ROTATION_VECTOR: {
dst->data[0] = src.u.data[0];
dst->data[1] = src.u.data[1];
dst->data[2] = src.u.data[2];
dst->data[3] = src.u.data[3];
dst->data[4] = src.u.data[4];
break;
}
case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
case SensorType::GYROSCOPE_UNCALIBRATED:
case SensorType::ACCELEROMETER_UNCALIBRATED:
{
dst->uncalibrated_gyro.x_uncalib = src.u.uncal.x;
dst->uncalibrated_gyro.y_uncalib = src.u.uncal.y;
dst->uncalibrated_gyro.z_uncalib = src.u.uncal.z;
dst->uncalibrated_gyro.x_bias = src.u.uncal.x_bias;
dst->uncalibrated_gyro.y_bias = src.u.uncal.y_bias;
dst->uncalibrated_gyro.z_bias = src.u.uncal.z_bias;
break;
}
case SensorType::DEVICE_ORIENTATION:
case SensorType::LIGHT:
case SensorType::PRESSURE:
case SensorType::TEMPERATURE:
case SensorType::PROXIMITY:
case SensorType::RELATIVE_HUMIDITY:
case SensorType::AMBIENT_TEMPERATURE:
case SensorType::SIGNIFICANT_MOTION:
case SensorType::STEP_DETECTOR:
case SensorType::TILT_DETECTOR:
case SensorType::WAKE_GESTURE:
case SensorType::GLANCE_GESTURE:
case SensorType::PICK_UP_GESTURE:
case SensorType::WRIST_TILT_GESTURE:
case SensorType::STATIONARY_DETECT:
case SensorType::MOTION_DETECT:
case SensorType::HEART_BEAT:
case SensorType::LOW_LATENCY_OFFBODY_DETECT: {
dst->data[0] = src.u.scalar;
break;
}
case SensorType::STEP_COUNTER: {
dst->u64.step_counter = src.u.stepCount;
break;
}
case SensorType::HEART_RATE: {
dst->heart_rate.bpm = src.u.heartRate.bpm;
dst->heart_rate.status = (int8_t)src.u.heartRate.status;
break;
}
case SensorType::POSE_6DOF: { // 15 floats
for (size_t i = 0; i < 15; ++i) {
dst->data[i] = src.u.pose6DOF[i];
}
break;
}
case SensorType::DYNAMIC_SENSOR_META: {
dst->dynamic_sensor_meta.connected = src.u.dynamic.connected;
dst->dynamic_sensor_meta.handle = src.u.dynamic.sensorHandle;
dst->dynamic_sensor_meta.sensor = NULL; // to be filled in later
memcpy(dst->dynamic_sensor_meta.uuid,
src.u.dynamic.uuid.data(),
16);
break;
}
case SensorType::ADDITIONAL_INFO: {
const ::android::hardware::sensors::V1_0::AdditionalInfo &srcInfo =
src.u.additional;
additional_info_event_t *dstInfo = &dst->additional_info;
dstInfo->type = (int32_t)srcInfo.type;
dstInfo->serial = srcInfo.serial;
CHECK_EQ(sizeof(srcInfo.u), sizeof(dstInfo->data_int32));
memcpy(dstInfo->data_int32,
&srcInfo.u,
sizeof(dstInfo->data_int32));
break;
}
default: {
CHECK_GE((int32_t)src.sensorType,
(int32_t)SensorType::DEVICE_PRIVATE_BASE);
memcpy(dst->data, src.u.data.data(), 16 * sizeof(float));
break;
}
}
}
bool convertFromSharedMemInfo(const SharedMemInfo& memIn, sensors_direct_mem_t *memOut) {
if (memOut == nullptr) {
return false;
}
switch(memIn.type) {
case SharedMemType::ASHMEM:
memOut->type = SENSOR_DIRECT_MEM_TYPE_ASHMEM;
break;
case SharedMemType::GRALLOC:
memOut->type = SENSOR_DIRECT_MEM_TYPE_GRALLOC;
break;
default:
return false;
}
switch(memIn.format) {
case SharedMemFormat::SENSORS_EVENT:
memOut->format = SENSOR_DIRECT_FMT_SENSORS_EVENT;
break;
default:
return false;
}
if (memIn.memoryHandle == nullptr) {
return false;
}
memOut->size = memIn.size;
memOut->handle = memIn.memoryHandle;
return true;
}
int convertFromRateLevel(RateLevel rate) {
switch(rate) {
case RateLevel::STOP:
return SENSOR_DIRECT_RATE_STOP;
case RateLevel::NORMAL:
return SENSOR_DIRECT_RATE_NORMAL;
case RateLevel::FAST:
return SENSOR_DIRECT_RATE_FAST;
case RateLevel::VERY_FAST:
return SENSOR_DIRECT_RATE_VERY_FAST;
default:
return -1;
}
}
} // namespace implementation
} // namespace V1_0
} // namespace sensors
} // namespace hardware
} // namespace android