platform_hardware_interfaces/neuralnetworks/1.0/vts/functional/Utils.cpp
David Gross 6174f00cc6 More tests for graph validation.
- detect cycle (CycleTest)
- detect bad execution order (mutateExecutionOrderTest)
- detect lifetime inconsistent with whether operand is written (mutateOperandLifeTimeTest)
- detect lifetime inconsistent with Model inputIndexes/outputIndexes (mutateOperandInputOutputTest)
- detect incorrect number of consumers (mutateOperandNumberOfConsumersTest)
- detect operand written multiple times (mutateOperandAddWriterTest)
- detect operand never written (mutateOperationRemoveWriteTest)

Bug: 66478689
Test: VtsHalNeuralnetworksV1_*TargetTest

Change-Id: Id4ba19660bbd31a16f8a675f7b6437f4d779e8da
Merged-In: Id4ba19660bbd31a16f8a675f7b6437f4d779e8da
(cherry picked from commit af51663e99)
2020-05-04 17:29:52 -07:00

237 lines
8.6 KiB
C++

/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "1.0/Utils.h"
#include "MemoryUtils.h"
#include "TestHarness.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware_buffer.h>
#include <android/hidl/allocator/1.0/IAllocator.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <hidlmemory/mapping.h>
#include <vndk/hardware_buffer.h>
#include <gtest/gtest.h>
#include <algorithm>
#include <cstring>
#include <functional>
#include <iostream>
#include <map>
#include <numeric>
#include <vector>
namespace android::hardware::neuralnetworks {
using namespace test_helper;
using hidl::memory::V1_0::IMemory;
using V1_0::DataLocation;
using V1_0::Request;
using V1_0::RequestArgument;
std::unique_ptr<TestAshmem> TestAshmem::create(uint32_t size) {
auto ashmem = std::make_unique<TestAshmem>(size);
return ashmem->mIsValid ? std::move(ashmem) : nullptr;
}
void TestAshmem::initialize(uint32_t size) {
mIsValid = false;
ASSERT_GT(size, 0);
mHidlMemory = nn::allocateSharedMemory(size);
ASSERT_TRUE(mHidlMemory.valid());
mMappedMemory = mapMemory(mHidlMemory);
ASSERT_NE(mMappedMemory, nullptr);
mPtr = static_cast<uint8_t*>(static_cast<void*>(mMappedMemory->getPointer()));
ASSERT_NE(mPtr, nullptr);
mIsValid = true;
}
std::unique_ptr<TestBlobAHWB> TestBlobAHWB::create(uint32_t size) {
auto ahwb = std::make_unique<TestBlobAHWB>(size);
return ahwb->mIsValid ? std::move(ahwb) : nullptr;
}
void TestBlobAHWB::initialize(uint32_t size) {
mIsValid = false;
ASSERT_GT(size, 0);
const auto usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN;
const AHardwareBuffer_Desc desc = {
.width = size,
.height = 1,
.layers = 1,
.format = AHARDWAREBUFFER_FORMAT_BLOB,
.usage = usage,
.stride = size,
};
ASSERT_EQ(AHardwareBuffer_allocate(&desc, &mAhwb), 0);
ASSERT_NE(mAhwb, nullptr);
void* buffer = nullptr;
ASSERT_EQ(AHardwareBuffer_lock(mAhwb, usage, -1, nullptr, &buffer), 0);
ASSERT_NE(buffer, nullptr);
mPtr = static_cast<uint8_t*>(buffer);
const native_handle_t* handle = AHardwareBuffer_getNativeHandle(mAhwb);
ASSERT_NE(handle, nullptr);
mHidlMemory = hidl_memory("hardware_buffer_blob", handle, desc.width);
mIsValid = true;
}
TestBlobAHWB::~TestBlobAHWB() {
if (mAhwb) {
AHardwareBuffer_unlock(mAhwb, nullptr);
AHardwareBuffer_release(mAhwb);
}
}
Request ExecutionContext::createRequest(const TestModel& testModel, MemoryType memoryType) {
CHECK(memoryType == MemoryType::ASHMEM || memoryType == MemoryType::BLOB_AHWB);
// Model inputs.
hidl_vec<RequestArgument> inputs(testModel.main.inputIndexes.size());
size_t inputSize = 0;
for (uint32_t i = 0; i < testModel.main.inputIndexes.size(); i++) {
const auto& op = testModel.main.operands[testModel.main.inputIndexes[i]];
if (op.data.size() == 0) {
// Omitted input.
inputs[i] = {.hasNoValue = true};
} else {
DataLocation loc = {.poolIndex = kInputPoolIndex,
.offset = static_cast<uint32_t>(inputSize),
.length = static_cast<uint32_t>(op.data.size())};
inputSize += op.data.alignedSize();
inputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
}
}
// Model outputs.
hidl_vec<RequestArgument> outputs(testModel.main.outputIndexes.size());
size_t outputSize = 0;
for (uint32_t i = 0; i < testModel.main.outputIndexes.size(); i++) {
const auto& op = testModel.main.operands[testModel.main.outputIndexes[i]];
// In the case of zero-sized output, we should at least provide a one-byte buffer.
// This is because zero-sized tensors are only supported internally to the driver, or
// reported in output shapes. It is illegal for the client to pre-specify a zero-sized
// tensor as model output. Otherwise, we will have two semantic conflicts:
// - "Zero dimension" conflicts with "unspecified dimension".
// - "Omitted operand buffer" conflicts with "zero-sized operand buffer".
size_t bufferSize = std::max<size_t>(op.data.size(), 1);
DataLocation loc = {.poolIndex = kOutputPoolIndex,
.offset = static_cast<uint32_t>(outputSize),
.length = static_cast<uint32_t>(bufferSize)};
outputSize += op.data.size() == 0 ? TestBuffer::kAlignment : op.data.alignedSize();
outputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
}
// Allocate memory pools.
if (memoryType == MemoryType::ASHMEM) {
mInputMemory = TestAshmem::create(inputSize);
mOutputMemory = TestAshmem::create(outputSize);
} else {
mInputMemory = TestBlobAHWB::create(inputSize);
mOutputMemory = TestBlobAHWB::create(outputSize);
}
EXPECT_NE(mInputMemory, nullptr);
EXPECT_NE(mOutputMemory, nullptr);
hidl_vec<hidl_memory> pools = {mInputMemory->getHidlMemory(), mOutputMemory->getHidlMemory()};
// Copy input data to the memory pool.
uint8_t* inputPtr = mInputMemory->getPointer();
for (uint32_t i = 0; i < testModel.main.inputIndexes.size(); i++) {
const auto& op = testModel.main.operands[testModel.main.inputIndexes[i]];
if (op.data.size() > 0) {
const uint8_t* begin = op.data.get<uint8_t>();
const uint8_t* end = begin + op.data.size();
std::copy(begin, end, inputPtr + inputs[i].location.offset);
}
}
return {.inputs = std::move(inputs), .outputs = std::move(outputs), .pools = std::move(pools)};
}
std::vector<TestBuffer> ExecutionContext::getOutputBuffers(const Request& request) const {
// Copy out output results.
uint8_t* outputPtr = mOutputMemory->getPointer();
std::vector<TestBuffer> outputBuffers;
for (const auto& output : request.outputs) {
outputBuffers.emplace_back(output.location.length, outputPtr + output.location.offset);
}
return outputBuffers;
}
uint32_t sizeOfData(V1_0::OperandType type) {
switch (type) {
case V1_0::OperandType::FLOAT32:
case V1_0::OperandType::INT32:
case V1_0::OperandType::UINT32:
case V1_0::OperandType::TENSOR_FLOAT32:
case V1_0::OperandType::TENSOR_INT32:
return 4;
case V1_0::OperandType::TENSOR_QUANT8_ASYMM:
return 1;
default:
CHECK(false) << "Invalid OperandType " << static_cast<uint32_t>(type);
return 0;
}
}
static bool isTensor(V1_0::OperandType type) {
switch (type) {
case V1_0::OperandType::FLOAT32:
case V1_0::OperandType::INT32:
case V1_0::OperandType::UINT32:
return false;
case V1_0::OperandType::TENSOR_FLOAT32:
case V1_0::OperandType::TENSOR_INT32:
case V1_0::OperandType::TENSOR_QUANT8_ASYMM:
return true;
default:
CHECK(false) << "Invalid OperandType " << static_cast<uint32_t>(type);
return false;
}
}
uint32_t sizeOfData(const V1_0::Operand& operand) {
const uint32_t dataSize = sizeOfData(operand.type);
if (isTensor(operand.type) && operand.dimensions.size() == 0) return 0;
return std::accumulate(operand.dimensions.begin(), operand.dimensions.end(), dataSize,
std::multiplies<>{});
}
std::string gtestCompliantName(std::string name) {
// gtest test names must only contain alphanumeric characters
std::replace_if(
name.begin(), name.end(), [](char c) { return !std::isalnum(c); }, '_');
return name;
}
} // namespace android::hardware::neuralnetworks
namespace android::hardware::neuralnetworks::V1_0 {
::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus) {
return os << toString(errorStatus);
}
::std::ostream& operator<<(::std::ostream& os, DeviceStatus deviceStatus) {
return os << toString(deviceStatus);
}
} // namespace android::hardware::neuralnetworks::V1_0