6174f00cc6
- detect cycle (CycleTest)
- detect bad execution order (mutateExecutionOrderTest)
- detect lifetime inconsistent with whether operand is written (mutateOperandLifeTimeTest)
- detect lifetime inconsistent with Model inputIndexes/outputIndexes (mutateOperandInputOutputTest)
- detect incorrect number of consumers (mutateOperandNumberOfConsumersTest)
- detect operand written multiple times (mutateOperandAddWriterTest)
- detect operand never written (mutateOperationRemoveWriteTest)
Bug: 66478689
Test: VtsHalNeuralnetworksV1_*TargetTest
Change-Id: Id4ba19660bbd31a16f8a675f7b6437f4d779e8da
Merged-In: Id4ba19660bbd31a16f8a675f7b6437f4d779e8da
(cherry picked from commit af51663e99
)
237 lines
8.6 KiB
C++
237 lines
8.6 KiB
C++
/*
|
|
* Copyright (C) 2019 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "1.0/Utils.h"
|
|
|
|
#include "MemoryUtils.h"
|
|
#include "TestHarness.h"
|
|
|
|
#include <android-base/logging.h>
|
|
#include <android/hardware/neuralnetworks/1.0/types.h>
|
|
#include <android/hardware_buffer.h>
|
|
#include <android/hidl/allocator/1.0/IAllocator.h>
|
|
#include <android/hidl/memory/1.0/IMemory.h>
|
|
#include <hidlmemory/mapping.h>
|
|
#include <vndk/hardware_buffer.h>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <functional>
|
|
#include <iostream>
|
|
#include <map>
|
|
#include <numeric>
|
|
#include <vector>
|
|
|
|
namespace android::hardware::neuralnetworks {
|
|
|
|
using namespace test_helper;
|
|
using hidl::memory::V1_0::IMemory;
|
|
using V1_0::DataLocation;
|
|
using V1_0::Request;
|
|
using V1_0::RequestArgument;
|
|
|
|
std::unique_ptr<TestAshmem> TestAshmem::create(uint32_t size) {
|
|
auto ashmem = std::make_unique<TestAshmem>(size);
|
|
return ashmem->mIsValid ? std::move(ashmem) : nullptr;
|
|
}
|
|
|
|
void TestAshmem::initialize(uint32_t size) {
|
|
mIsValid = false;
|
|
ASSERT_GT(size, 0);
|
|
mHidlMemory = nn::allocateSharedMemory(size);
|
|
ASSERT_TRUE(mHidlMemory.valid());
|
|
mMappedMemory = mapMemory(mHidlMemory);
|
|
ASSERT_NE(mMappedMemory, nullptr);
|
|
mPtr = static_cast<uint8_t*>(static_cast<void*>(mMappedMemory->getPointer()));
|
|
ASSERT_NE(mPtr, nullptr);
|
|
mIsValid = true;
|
|
}
|
|
|
|
std::unique_ptr<TestBlobAHWB> TestBlobAHWB::create(uint32_t size) {
|
|
auto ahwb = std::make_unique<TestBlobAHWB>(size);
|
|
return ahwb->mIsValid ? std::move(ahwb) : nullptr;
|
|
}
|
|
|
|
void TestBlobAHWB::initialize(uint32_t size) {
|
|
mIsValid = false;
|
|
ASSERT_GT(size, 0);
|
|
const auto usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN;
|
|
const AHardwareBuffer_Desc desc = {
|
|
.width = size,
|
|
.height = 1,
|
|
.layers = 1,
|
|
.format = AHARDWAREBUFFER_FORMAT_BLOB,
|
|
.usage = usage,
|
|
.stride = size,
|
|
};
|
|
ASSERT_EQ(AHardwareBuffer_allocate(&desc, &mAhwb), 0);
|
|
ASSERT_NE(mAhwb, nullptr);
|
|
|
|
void* buffer = nullptr;
|
|
ASSERT_EQ(AHardwareBuffer_lock(mAhwb, usage, -1, nullptr, &buffer), 0);
|
|
ASSERT_NE(buffer, nullptr);
|
|
mPtr = static_cast<uint8_t*>(buffer);
|
|
|
|
const native_handle_t* handle = AHardwareBuffer_getNativeHandle(mAhwb);
|
|
ASSERT_NE(handle, nullptr);
|
|
mHidlMemory = hidl_memory("hardware_buffer_blob", handle, desc.width);
|
|
mIsValid = true;
|
|
}
|
|
|
|
TestBlobAHWB::~TestBlobAHWB() {
|
|
if (mAhwb) {
|
|
AHardwareBuffer_unlock(mAhwb, nullptr);
|
|
AHardwareBuffer_release(mAhwb);
|
|
}
|
|
}
|
|
|
|
Request ExecutionContext::createRequest(const TestModel& testModel, MemoryType memoryType) {
|
|
CHECK(memoryType == MemoryType::ASHMEM || memoryType == MemoryType::BLOB_AHWB);
|
|
|
|
// Model inputs.
|
|
hidl_vec<RequestArgument> inputs(testModel.main.inputIndexes.size());
|
|
size_t inputSize = 0;
|
|
for (uint32_t i = 0; i < testModel.main.inputIndexes.size(); i++) {
|
|
const auto& op = testModel.main.operands[testModel.main.inputIndexes[i]];
|
|
if (op.data.size() == 0) {
|
|
// Omitted input.
|
|
inputs[i] = {.hasNoValue = true};
|
|
} else {
|
|
DataLocation loc = {.poolIndex = kInputPoolIndex,
|
|
.offset = static_cast<uint32_t>(inputSize),
|
|
.length = static_cast<uint32_t>(op.data.size())};
|
|
inputSize += op.data.alignedSize();
|
|
inputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
|
|
}
|
|
}
|
|
|
|
// Model outputs.
|
|
hidl_vec<RequestArgument> outputs(testModel.main.outputIndexes.size());
|
|
size_t outputSize = 0;
|
|
for (uint32_t i = 0; i < testModel.main.outputIndexes.size(); i++) {
|
|
const auto& op = testModel.main.operands[testModel.main.outputIndexes[i]];
|
|
|
|
// In the case of zero-sized output, we should at least provide a one-byte buffer.
|
|
// This is because zero-sized tensors are only supported internally to the driver, or
|
|
// reported in output shapes. It is illegal for the client to pre-specify a zero-sized
|
|
// tensor as model output. Otherwise, we will have two semantic conflicts:
|
|
// - "Zero dimension" conflicts with "unspecified dimension".
|
|
// - "Omitted operand buffer" conflicts with "zero-sized operand buffer".
|
|
size_t bufferSize = std::max<size_t>(op.data.size(), 1);
|
|
|
|
DataLocation loc = {.poolIndex = kOutputPoolIndex,
|
|
.offset = static_cast<uint32_t>(outputSize),
|
|
.length = static_cast<uint32_t>(bufferSize)};
|
|
outputSize += op.data.size() == 0 ? TestBuffer::kAlignment : op.data.alignedSize();
|
|
outputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
|
|
}
|
|
|
|
// Allocate memory pools.
|
|
if (memoryType == MemoryType::ASHMEM) {
|
|
mInputMemory = TestAshmem::create(inputSize);
|
|
mOutputMemory = TestAshmem::create(outputSize);
|
|
} else {
|
|
mInputMemory = TestBlobAHWB::create(inputSize);
|
|
mOutputMemory = TestBlobAHWB::create(outputSize);
|
|
}
|
|
EXPECT_NE(mInputMemory, nullptr);
|
|
EXPECT_NE(mOutputMemory, nullptr);
|
|
hidl_vec<hidl_memory> pools = {mInputMemory->getHidlMemory(), mOutputMemory->getHidlMemory()};
|
|
|
|
// Copy input data to the memory pool.
|
|
uint8_t* inputPtr = mInputMemory->getPointer();
|
|
for (uint32_t i = 0; i < testModel.main.inputIndexes.size(); i++) {
|
|
const auto& op = testModel.main.operands[testModel.main.inputIndexes[i]];
|
|
if (op.data.size() > 0) {
|
|
const uint8_t* begin = op.data.get<uint8_t>();
|
|
const uint8_t* end = begin + op.data.size();
|
|
std::copy(begin, end, inputPtr + inputs[i].location.offset);
|
|
}
|
|
}
|
|
|
|
return {.inputs = std::move(inputs), .outputs = std::move(outputs), .pools = std::move(pools)};
|
|
}
|
|
|
|
std::vector<TestBuffer> ExecutionContext::getOutputBuffers(const Request& request) const {
|
|
// Copy out output results.
|
|
uint8_t* outputPtr = mOutputMemory->getPointer();
|
|
std::vector<TestBuffer> outputBuffers;
|
|
for (const auto& output : request.outputs) {
|
|
outputBuffers.emplace_back(output.location.length, outputPtr + output.location.offset);
|
|
}
|
|
return outputBuffers;
|
|
}
|
|
|
|
uint32_t sizeOfData(V1_0::OperandType type) {
|
|
switch (type) {
|
|
case V1_0::OperandType::FLOAT32:
|
|
case V1_0::OperandType::INT32:
|
|
case V1_0::OperandType::UINT32:
|
|
case V1_0::OperandType::TENSOR_FLOAT32:
|
|
case V1_0::OperandType::TENSOR_INT32:
|
|
return 4;
|
|
case V1_0::OperandType::TENSOR_QUANT8_ASYMM:
|
|
return 1;
|
|
default:
|
|
CHECK(false) << "Invalid OperandType " << static_cast<uint32_t>(type);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static bool isTensor(V1_0::OperandType type) {
|
|
switch (type) {
|
|
case V1_0::OperandType::FLOAT32:
|
|
case V1_0::OperandType::INT32:
|
|
case V1_0::OperandType::UINT32:
|
|
return false;
|
|
case V1_0::OperandType::TENSOR_FLOAT32:
|
|
case V1_0::OperandType::TENSOR_INT32:
|
|
case V1_0::OperandType::TENSOR_QUANT8_ASYMM:
|
|
return true;
|
|
default:
|
|
CHECK(false) << "Invalid OperandType " << static_cast<uint32_t>(type);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
uint32_t sizeOfData(const V1_0::Operand& operand) {
|
|
const uint32_t dataSize = sizeOfData(operand.type);
|
|
if (isTensor(operand.type) && operand.dimensions.size() == 0) return 0;
|
|
return std::accumulate(operand.dimensions.begin(), operand.dimensions.end(), dataSize,
|
|
std::multiplies<>{});
|
|
}
|
|
|
|
std::string gtestCompliantName(std::string name) {
|
|
// gtest test names must only contain alphanumeric characters
|
|
std::replace_if(
|
|
name.begin(), name.end(), [](char c) { return !std::isalnum(c); }, '_');
|
|
return name;
|
|
}
|
|
|
|
} // namespace android::hardware::neuralnetworks
|
|
|
|
namespace android::hardware::neuralnetworks::V1_0 {
|
|
|
|
::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus) {
|
|
return os << toString(errorStatus);
|
|
}
|
|
|
|
::std::ostream& operator<<(::std::ostream& os, DeviceStatus deviceStatus) {
|
|
return os << toString(deviceStatus);
|
|
}
|
|
|
|
} // namespace android::hardware::neuralnetworks::V1_0
|