platform_hardware_interfaces/neuralnetworks/1.2/vts/functional/Utils.cpp
David Gross 6174f00cc6 More tests for graph validation.
- detect cycle (CycleTest)
- detect bad execution order (mutateExecutionOrderTest)
- detect lifetime inconsistent with whether operand is written (mutateOperandLifeTimeTest)
- detect lifetime inconsistent with Model inputIndexes/outputIndexes (mutateOperandInputOutputTest)
- detect incorrect number of consumers (mutateOperandNumberOfConsumersTest)
- detect operand written multiple times (mutateOperandAddWriterTest)
- detect operand never written (mutateOperationRemoveWriteTest)

Bug: 66478689
Test: VtsHalNeuralnetworksV1_*TargetTest

Change-Id: Id4ba19660bbd31a16f8a675f7b6437f4d779e8da
Merged-In: Id4ba19660bbd31a16f8a675f7b6437f4d779e8da
(cherry picked from commit af51663e99)
2020-05-04 17:29:52 -07:00

85 lines
3 KiB
C++

/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.2/types.h>
#include <functional>
#include <numeric>
namespace android {
namespace hardware {
namespace neuralnetworks {
uint32_t sizeOfData(V1_2::OperandType type) {
switch (type) {
case V1_2::OperandType::FLOAT32:
case V1_2::OperandType::INT32:
case V1_2::OperandType::UINT32:
case V1_2::OperandType::TENSOR_FLOAT32:
case V1_2::OperandType::TENSOR_INT32:
return 4;
case V1_2::OperandType::TENSOR_QUANT16_SYMM:
case V1_2::OperandType::TENSOR_FLOAT16:
case V1_2::OperandType::FLOAT16:
case V1_2::OperandType::TENSOR_QUANT16_ASYMM:
return 2;
case V1_2::OperandType::TENSOR_QUANT8_ASYMM:
case V1_2::OperandType::BOOL:
case V1_2::OperandType::TENSOR_BOOL8:
case V1_2::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
case V1_2::OperandType::TENSOR_QUANT8_SYMM:
return 1;
default:
CHECK(false) << "Invalid OperandType " << static_cast<uint32_t>(type);
return 0;
}
}
static bool isTensor(V1_2::OperandType type) {
switch (type) {
case V1_2::OperandType::FLOAT32:
case V1_2::OperandType::INT32:
case V1_2::OperandType::UINT32:
case V1_2::OperandType::FLOAT16:
case V1_2::OperandType::BOOL:
return false;
case V1_2::OperandType::TENSOR_FLOAT32:
case V1_2::OperandType::TENSOR_INT32:
case V1_2::OperandType::TENSOR_QUANT16_SYMM:
case V1_2::OperandType::TENSOR_FLOAT16:
case V1_2::OperandType::TENSOR_QUANT16_ASYMM:
case V1_2::OperandType::TENSOR_QUANT8_ASYMM:
case V1_2::OperandType::TENSOR_BOOL8:
case V1_2::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
case V1_2::OperandType::TENSOR_QUANT8_SYMM:
return true;
default:
CHECK(false) << "Invalid OperandType " << static_cast<uint32_t>(type);
return false;
}
}
uint32_t sizeOfData(const V1_2::Operand& operand) {
const uint32_t dataSize = sizeOfData(operand.type);
if (isTensor(operand.type) && operand.dimensions.size() == 0) return 0;
return std::accumulate(operand.dimensions.begin(), operand.dimensions.end(), dataSize,
std::multiplies<>{});
}
} // namespace neuralnetworks
} // namespace hardware
} // namespace android