platform_hardware_interfaces/wifi/1.0/IWifiChip.hal
Roshan Pius 5c3a0d9666 wifi(interface): Use the "bitfield" type for masks
Change all the variables representing masks to the new bitfield type
in all the Wifi HIDL interfaces.
The generated code will still produce the underlying type of enum as
param. So, no changes are needed in the implementation.

Bug: 33358724
Test: Compiles
Change-Id: Id2e5dee2ce1f1ec8e744aa1c81d3cb9c66e7fc39
2017-01-18 09:49:17 -08:00

665 lines
25 KiB
Text

/*
* Copyright 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.hardware.wifi@1.0;
import IWifiChipEventCallback;
import IWifiIface;
import IWifiApIface;
import IWifiNanIface;
import IWifiP2pIface;
import IWifiStaIface;
import IWifiRttController;
/**
* Interface that represents a chip that must be configured as a single unit.
* The HAL/driver/firmware will be responsible for determining which phy is used
* to perform operations like NAN, RTT, etc.
*/
interface IWifiChip {
/**
* Set of interface types with the maximum number of interfaces that can have
* one of the specified type for a given ChipIfaceCombination. See
* ChipIfaceCombination for examples.
*/
struct ChipIfaceCombinationLimit {
vec<IfaceType> types; // Each IfaceType must occur at most once.
uint32_t maxIfaces;
};
/**
* Set of interfaces that can operate concurrently when in a given mode. See
* ChipMode below.
*
* For example:
* [{STA} <= 2]
* At most two STA interfaces are supported
* [], [STA], [STA+STA]
*
* [{STA} <= 1, {NAN} <= 1, {AP} <= 1]
* Any combination of STA, NAN, AP
* [], [STA], [NAN], [AP], [STA+NAN], [STA+AP], [NAN+AP], [STA+NAN+AP]
*
* [{STA} <= 1, {NAN,P2P} <= 1]
* Optionally a STA and either NAN or P2P
* [], [STA], [STA+NAN], [STA+P2P], [NAN], [P2P]
* Not included [NAN+P2P], [STA+NAN+P2P]
*
* [{STA} <= 1, {STA,NAN} <= 1]
* Optionally a STA and either a second STA or a NAN
* [], [STA], [STA+NAN], [STA+STA], [NAN]
* Not included [STA+STA+NAN]
*/
struct ChipIfaceCombination {
vec<ChipIfaceCombinationLimit> limits;
};
/**
* A mode that the chip can be put in. A mode defines a set of constraints on
* the interfaces that can exist while in that mode. Modes define a unit of
* configuration where all interfaces must be torn down to switch to a
* different mode. Some HALs may only have a single mode, but an example where
* multiple modes would be required is if a chip has different firmwares with
* different capabilities.
*
* When in a mode, it must be possible to perform any combination of creating
* and removing interfaces as long as at least one of the
* ChipIfaceCombinations is satisfied. This means that if a chip has two
* available combinations, [{STA} <= 1] and [{AP} <= 1] then it is expected
* that exactly one STA interface or one AP interface can be created, but it
* is not expected that both a STA and AP interface could be created. If it
* was then there would be a single available combination
* [{STA} <=1, {AP} <= 1].
*
* When switching between two available combinations it is expected that
* interfaces only supported by the initial combination must be removed until
* the target combination is also satisfied. At that point new interfaces
* satisfying only the target combination can be added (meaning the initial
* combination limits will no longer satisfied). The addition of these new
* interfaces must not impact the existence of interfaces that satisfy both
* combinations.
*
* For example, a chip with available combinations:
* [{STA} <= 2, {NAN} <=1] and [{STA} <=1, {NAN} <= 1, {AP} <= 1}]
* If the chip currently has 3 interfaces STA, STA and NAN and wants to add an
* AP interface in place of one of the STAs then first one of the STA
* interfaces must be removed and then the AP interface can be created after
* the STA had been torn down. During this process the remaining STA and NAN
* interfaces must not be removed/recreated.
*
* If a chip does not support this kind of reconfiguration in this mode then
* the combinations must be separated into two separate modes. Before
* switching modes all interfaces must be torn down, the mode switch must be
* enacted and when it completes the new interfaces must be brought up.
*/
struct ChipMode {
/**
* Id that can be used to put the chip in this mode.
*/
ChipModeId id;
/**
* A list of the possible interface combinations that the chip can have
* while in this mode.
*/
vec<ChipIfaceCombination> availableCombinations;
};
/**
* Information about the version of the driver and firmware running this chip.
*
* The information in these ASCII strings are vendor specific and does not
* need to follow any particular format. It may be dumped as part of the bug
* report.
*/
struct ChipDebugInfo {
string driverDescription;
string firmwareDescription;
};
/**
* Capabilities exposed by this chip.
*/
enum ChipCapabilityMask : uint32_t {
/**
* Memory dump of Firmware.
*/
DEBUG_MEMORY_FIRMWARE_DUMP = 1 << 0,
/**
* Memory dump of Driver.
*/
DEBUG_MEMORY_DRIVER_DUMP = 1 << 1,
/**
* Connectivity events reported via debug ring buffer.
*/
DEBUG_RING_BUFFER_CONNECT_EVENT = 1 << 2,
/**
* Power events reported via debug ring buffer.
*/
DEBUG_RING_BUFFER_POWER_EVENT = 1 << 3,
/**
* Wakelock events reported via debug ring buffer.
*/
DEBUG_RING_BUFFER_WAKELOCK_EVENT = 1 << 4,
/**
* Vendor data reported via debug ring buffer.
* This mostly contains firmware event logs.
*/
DEBUG_RING_BUFFER_VENDOR_DATA = 1 << 5,
/**
* Host wake reasons stats collection.
*/
DEBUG_HOST_WAKE_REASON_STATS = 1 << 6,
/**
* Error alerts.
*/
DEBUG_ERROR_ALERTS = 1 << 7
};
/**
* Get the id assigned to this chip.
*
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|
* @return id Assigned chip Id.
*/
getId() generates (WifiStatus status, ChipId id);
/**
* Requests notifications of significant events on this chip. Multiple calls
* to this must register multiple callbacks each of which must receive all
* events.
*
* @param callback An instance of the |IWifiChipEventCallback| HIDL interface
* object.
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|
*/
registerEventCallback(IWifiChipEventCallback callback) generates (WifiStatus status);
/**
* Get the capabilities supported by this chip.
*
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_NOT_AVAILABLE|,
* |WifiStatusCode.ERROR_UNKNOWN|
* @return capabilities Bitset of |ChipCapabilityMask| values.
*/
getCapabilities()
generates (WifiStatus status, bitfield<ChipCapabilityMask> capabilities);
/**
* Get the set of operation modes that the chip supports.
*
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|
* @return modes List of modes supported by the device.
*/
getAvailableModes() generates (WifiStatus status, vec<ChipMode> modes);
/**
* Reconfigure the Chip.
* Any existing |IWifiIface| objects must be marked invalid after this call.
* If this fails then the chips is now in an undefined state and
* configureChip must be called again.
* Must trigger |IWifiChipEventCallback.onChipReconfigured| on success.
* Must trigger |IWifiEventCallback.onFailure| on failure.
*
* @param modeId The mode that the chip must switch to, corresponding to the
* id property of the target ChipMode.
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_NOT_AVAILABLE|,
* |WifiStatusCode.ERROR_UNKNOWN|
*/
configureChip(ChipModeId modeId) generates (WifiStatus status);
/**
* Get the current mode that the chip is in.
*
* @return modeId The mode that the chip is currently configured to,
* corresponding to the id property of the target ChipMode.
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|
*/
getMode() generates (WifiStatus status, ChipModeId modeId);
/**
* Request information about the chip.
*
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_NOT_AVAILABLE|,
* |WifiStatusCode.ERROR_UNKNOWN|
* @return chipDebugInfo Instance of |ChipDebugInfo|.
*/
requestChipDebugInfo() generates (WifiStatus status, ChipDebugInfo chipDebugInfo);
/**
* Request vendor debug info from the driver.
*
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_NOT_AVAILABLE|,
* |WifiStatusCode.ERROR_UNKNOWN|
* @param blob Vector of bytes retrieved from the driver.
*/
requestDriverDebugDump() generates (WifiStatus status, vec<uint8_t> blob);
/**
* Request vendor debug info from the firmware.
*
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_NOT_AVAILABLE|,
* |WifiStatusCode.ERROR_UNKNOWN|
* @param blob Vector of bytes retrieved from the driver.
*/
requestFirmwareDebugDump() generates (WifiStatus status, vec<uint8_t> blob);
/**
* Create an AP iface on the chip.
*
* Depending on the mode the chip is configured in, the interface creation
* may fail (code: |ERROR_NOT_AVAILABLE|) if we've already reached the maximum
* allowed (specified in |ChipIfaceCombination|) number of ifaces of the AP
* type.
*
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_NOT_SUPPORTED|
* @return iface HIDL interface object representing the iface if
* successful, null otherwise.
*/
createApIface() generates (WifiStatus status, IWifiApIface iface);
/**
* List all the AP iface names configured on the chip.
* The corresponding |IWifiApIface| object for any iface are
* retrieved using |getApIface| method.
*
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|
* @return ifnames List of all AP iface names on the chip.
*/
getApIfaceNames() generates (WifiStatus status, vec<string> ifnames);
/**
* Gets a HIDL interface object for the AP Iface corresponding
* to the provided ifname.
*
* @param ifname Name of the iface.
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_INVALID_ARGS|
* @return iface HIDL interface object representing the iface if
* it exists, null otherwise.
*/
getApIface(string ifname) generates (WifiStatus status, IWifiApIface iface);
/**
* Removes the AP Iface with the provided ifname.
* Any further calls on the corresponding |IWifiApIface| HIDL interface
* object must fail.
*
* @param ifname Name of the iface.
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_INVALID_ARGS|
*/
removeApIface(string ifname) generates (WifiStatus status);
/**
* Create a NAN iface on the chip.
*
* Depending on the mode the chip is configured in, the interface creation
* may fail (code: |ERROR_NOT_AVAILABLE|) if we've already reached the maximum
* allowed (specified in |ChipIfaceCombination|) number of ifaces of the NAN
* type.
*
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_NOT_SUPPORTED|
* @return iface HIDL interface object representing the iface if
* successful, null otherwise.
*/
createNanIface() generates (WifiStatus status, IWifiNanIface iface);
/**
* List all the NAN iface names configured on the chip.
* The corresponding |IWifiNanIface| object for any iface are
* retrieved using |getNanIface| method.
*
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|
* @return ifnames List of all NAN iface names on the chip.
*/
getNanIfaceNames() generates (WifiStatus status, vec<string> ifnames);
/**
* Gets a HIDL interface object for the NAN Iface corresponding
* to the provided ifname.
*
* @param ifname Name of the iface.
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_INVALID_ARGS|
* @return iface HIDL interface object representing the iface if
* it exists, null otherwise.
*/
getNanIface(string ifname) generates (WifiStatus status, IWifiNanIface iface);
/**
* Removes the NAN Iface with the provided ifname.
* Any further calls on the corresponding |IWifiNanIface| HIDL interface
* object must fail.
*
* @param ifname Name of the iface.
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_INVALID_ARGS|
*/
removeNanIface(string ifname) generates (WifiStatus status);
/**
* Create a P2P iface on the chip.
*
* Depending on the mode the chip is configured in, the interface creation
* may fail (code: |ERROR_NOT_AVAILABLE|) if we've already reached the maximum
* allowed (specified in |ChipIfaceCombination|) number of ifaces of the P2P
* type.
*
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_NOT_SUPPORTED|
* @return iface HIDL interface object representing the iface if
* successful, null otherwise.
*/
createP2pIface() generates (WifiStatus status, IWifiP2pIface iface);
/**
* List all the P2P iface names configured on the chip.
* The corresponding |IWifiP2pIface| object for any iface are
* retrieved using |getP2pIface| method.
*
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|
* @return ifnames List of all P2P iface names on the chip.
*/
getP2pIfaceNames() generates (WifiStatus status, vec<string> ifnames);
/**
* Gets a HIDL interface object for the P2P Iface corresponding
* to the provided ifname.
*
* @param ifname Name of the iface.
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_INVALID_ARGS|
* @return iface HIDL interface object representing the iface if
* it exists, null otherwise.
*/
getP2pIface(string ifname) generates (WifiStatus status, IWifiP2pIface iface);
/**
* Removes the P2P Iface with the provided ifname.
* Any further calls on the corresponding |IWifiP2pIface| HIDL interface
* object must fail.
*
* @param ifname Name of the iface.
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_INVALID_ARGS|
*/
removeP2pIface(string ifname) generates (WifiStatus status);
/**
* Create an STA iface on the chip.
*
* Depending on the mode the chip is configured in, the interface creation
* may fail (code: |ERROR_NOT_AVAILABLE|) if we've already reached the maximum
* allowed (specified in |ChipIfaceCombination|) number of ifaces of the STA
* type.
*
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_NOT_SUPPORTED|
* @return iface HIDL interface object representing the iface if
* successful, null otherwise.
*/
createStaIface() generates (WifiStatus status, IWifiStaIface iface);
/**
* List all the STA iface names configured on the chip.
* The corresponding |IWifiStaIface| object for any iface are
* retrieved using |getStaIface| method.
*
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|
* @return ifnames List of all STA iface names on the chip.
*/
getStaIfaceNames() generates (WifiStatus status, vec<string> ifnames);
/**
* Gets a HIDL interface object for the STA Iface corresponding
* to the provided ifname.
*
* @param ifname Name of the iface.
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_INVALID_ARGS|
* @return iface HIDL interface object representing the iface if
* it exists, null otherwise.
*/
getStaIface(string ifname) generates (WifiStatus status, IWifiStaIface iface);
/**
* Removes the STA Iface with the provided ifname.
* Any further calls on the corresponding |IWifiStaIface| HIDL interface
* object must fail.
*
* @param ifname Name of the iface.
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_INVALID_ARGS|
*/
removeStaIface(string ifname) generates (WifiStatus status);
/**
* Create a RTTController instance.
*
* RTT controller can be either:
* a) Bound to a specific iface by passing in the corresponding |IWifiIface|
* object in |iface| param, OR
* b) Let the implementation decide the iface to use for RTT operations by
* passing null in |iface| param.
*
* @param boundIface HIDL interface object representing the iface if
* the responder must be bound to a specific iface, null otherwise.
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|
*/
createRttController(IWifiIface boundIface)
generates (WifiStatus status, IWifiRttController rtt);
/**
* WiFi debug ring buffer life cycle is as follow:
* - At initialization time, framework must call |getDebugRingBuffersStatus|.
* to obtain the names and list of supported ring buffers.
* The driver may expose several different rings each holding a different
* type of data (connection events, power events, etc).
* - When WiFi operations start framework must call
* |startLoggingToDebugRingBuffer| to trigger log collection for a specific
* ring. The vebose level for each ring buffer can be specified in this API.
* - During wifi operations, driver must periodically report per ring data to
* framework by invoking the
* |IWifiChipEventCallback.onDebugRingBufferDataAvailable| callback.
* - When capturing a bug report, framework must indicate to driver that all
* the data has to be uploaded urgently by calling
* |forceDumpToDebugRingBuffer|.
*
* The data uploaded by driver must be stored by framework in separate files,
* with one stream of file per ring. Framework must store the files in pcapng
* format, allowing for easy merging and parsing with network analyzer tools.
* TODO: Since we're not longer dumping out the raw data, storing in separate
* pcapng files for parsing later must not work anymore.
*/
/**
* API to get the status of all ring buffers supported by driver.
*
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_NOT_SUPPORTED|,
* |WifiStatusCode.NOT_AVAILABLE|,
* |WifiStatusCode.UNKNOWN|
* @return ringBuffers Vector of |WifiDebugRingBufferStatus| corresponding to the
* status of each ring bufffer on the device.
*/
getDebugRingBuffersStatus() generates (WifiStatus status,
vec<WifiDebugRingBufferStatus> ringBuffers);
/**
* API to trigger the debug data collection.
*
* @param ringName represent the name of the ring for which data collection
* shall start. This can be retrieved via the corresponding
* |WifiDebugRingBufferStatus|.
* @parm maxIntervalInSec Maximum interval in seconds for driver to invoke
* |onDebugRingBufferData|, ignore if zero.
* @parm minDataSizeInBytes: Minimum data size in buffer for driver to invoke
* |onDebugRingBufferData|, ignore if zero.
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_NOT_SUPPORTED|,
* |WifiStatusCode.NOT_AVAILABLE|,
* |WifiStatusCode.UNKNOWN|
*/
startLoggingToDebugRingBuffer(string ringName,
WifiDebugRingBufferVerboseLevel verboseLevel,
uint32_t maxIntervalInSec,
uint32_t minDataSizeInBytes)
generates (WifiStatus status);
/**
* API to force dump data into the corresponding ring buffer.
* This is to be invoked during bugreport collection.
*
* @param ringName represent the name of the ring for which data collection
* shall be forced. This can be retrieved via the corresponding
* |WifiDebugRingBufferStatus|.
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_NOT_SUPPORTED|,
* |WifiStatusCode.ERROR_NOT_STARTED|,
* |WifiStatusCode.NOT_AVAILABLE|,
* |WifiStatusCode.UNKNOWN|
*/
forceDumpToDebugRingBuffer(string ringName) generates (WifiStatus status);
/**
* API to retrieve the wifi wake up reason stats for debugging.
* The driver is expected to start maintaining these stats once the chip
* is configured using |configureChip|. These stats must be reset whenever
* the chip is reconfigured or the HAL is stopped.
*
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_NOT_SUPPORTED|,
* |WifiStatusCode.NOT_AVAILABLE|,
* |WifiStatusCode.UNKNOWN|
* @return stats Instance of |WifiDebugHostWakeReasonStats|.
*/
getDebugHostWakeReasonStats()
generates (WifiStatus status, WifiDebugHostWakeReasonStats stats);
/**
* API to enable/disable alert notifications from the chip.
* These alerts must be used to notify framework of any fatal error events
* that the chip encounters via |IWifiChipEventCallback.onDebugErrorAlert| method.
* Must fail if |ChipCapabilityMask.DEBUG_ERROR_ALERTS| is not set.
*
* @param enable true to enable, false to disable.
* @return status WifiStatus of the operation.
* Possible status codes:
* |WifiStatusCode.SUCCESS|,
* |WifiStatusCode.ERROR_WIFI_CHIP_INVALID|,
* |WifiStatusCode.ERROR_NOT_SUPPORTED|,
* |WifiStatusCode.NOT_AVAILABLE|,
* |WifiStatusCode.UNKNOWN|
*/
enableDebugErrorAlerts(bool enable) generates (WifiStatus status);
};