Merge "Camera tests: Add variable burst test"

This commit is contained in:
Eino-Ville Talvala 2013-07-13 00:10:41 +00:00 committed by Android (Google) Code Review
commit 007c86da6b
2 changed files with 506 additions and 1 deletions

View file

@ -19,13 +19,14 @@
#define LOG_TAG "CameraBurstTest"
//#define LOG_NDEBUG 0
#include <utils/Log.h>
#include <utils/Timers.h>
#include <cmath>
#include "CameraStreamFixture.h"
#include "TestExtensions.h"
#define CAMERA_FRAME_TIMEOUT 1000000000 //nsecs (1 secs)
#define CAMERA_FRAME_TIMEOUT 1000000000LL //nsecs (1 secs)
#define CAMERA_HEAP_COUNT 2 //HALBUG: 1 means registerBuffers fails
#define CAMERA_BURST_DEBUGGING 0
#define CAMERA_FRAME_BURST_COUNT 10
@ -37,6 +38,10 @@
#define CAMERA_EXPOSURE_FORMAT CAMERA_STREAM_AUTO_CPU_FORMAT
#define CAMERA_EXPOSURE_STARTING 100000 // 1/10ms, up to 51.2ms with 10 steps
#define USEC 1000LL // in ns
#define MSEC 1000000LL // in ns
#define SEC 1000000000LL // in ns
#if CAMERA_BURST_DEBUGGING
#define dout std::cout
#else
@ -122,6 +127,23 @@ public:
return acc;
}
// Parses a comma-separated string list into a Vector
template<typename T>
void ParseList(const char *src, Vector<T> &list) {
std::istringstream s(src);
while (!s.eof()) {
char c = s.peek();
if (c == ',' || c == ' ') {
s.ignore(1, EOF);
continue;
}
T val;
s >> val;
list.push_back(val);
}
}
};
TEST_F(CameraBurstTest, ManualExposureControl) {
@ -257,6 +279,412 @@ TEST_F(CameraBurstTest, ManualExposureControl) {
<< " times over each consecutive frame as the exposure is doubled";
}
/**
* This test varies exposure time, frame duration, and sensitivity for a
* burst of captures. It picks values by default, but the selection can be
* overridden with the environment variables
* CAMERA2_TEST_VARIABLE_BURST_EXPOSURE_TIMES
* CAMERA2_TEST_VARIABLE_BURST_FRAME_DURATIONS
* CAMERA2_TEST_VARIABLE_BURST_SENSITIVITIES
* which must all be a list of comma-separated values, and each list must be
* the same length. In addition, if the environment variable
* CAMERA2_TEST_VARIABLE_BURST_DUMP_FRAMES
* is set to 1, then the YUV buffers are dumped into files named
* "camera2_test_variable_burst_frame_NNN.yuv"
*
* For example:
* $ setenv CAMERA2_TEST_VARIABLE_BURST_EXPOSURE_TIMES 10000000,20000000
* $ setenv CAMERA2_TEST_VARIABLE_BURST_FRAME_DURATIONS 40000000,40000000
* $ setenv CAMERA2_TEST_VARIABLE_BURST_SENSITIVITIES 200,100
* $ setenv CAMERA2_TEST_VARIABLE_BURST_DUMP_FRAMES 1
* $ /data/nativetest/camera2_test/camera2_test --gtest_filter="*VariableBurst"
*/
TEST_F(CameraBurstTest, VariableBurst) {
TEST_EXTENSION_FORKING_INIT;
// Bounds for checking frame duration is within range
const nsecs_t DURATION_UPPER_BOUND = 10 * MSEC;
const nsecs_t DURATION_LOWER_BOUND = 20 * MSEC;
// Threshold for considering two captures to have equivalent exposure value,
// as a ratio of the smaller EV to the larger EV.
const float EV_MATCH_BOUND = 0.95;
// Bound for two captures with equivalent exp values to have the same
// measured brightness, in 0-255 luminance.
const float BRIGHTNESS_MATCH_BOUND = 5;
// Environment variables to look for to override test settings
const char *expEnv = "CAMERA2_TEST_VARIABLE_BURST_EXPOSURE_TIMES";
const char *durationEnv = "CAMERA2_TEST_VARIABLE_BURST_FRAME_DURATIONS";
const char *sensitivityEnv = "CAMERA2_TEST_VARIABLE_BURST_SENSITIVITIES";
const char *dumpFrameEnv = "CAMERA2_TEST_VARIABLE_BURST_DUMP_FRAMES";
// Range of valid exposure times, in nanoseconds
int64_t minExp = 0, maxExp = 0;
// List of valid sensor sensitivities
Vector<int32_t> sensitivities;
// Range of valid frame durations, in nanoseconds
int64_t minDuration = 0, maxDuration = 0;
{
camera_metadata_ro_entry exposureTimeRange =
GetStaticEntry(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE);
EXPECT_EQ(2u, exposureTimeRange.count) << "Bad exposure time range tag."
"Using default values";
if (exposureTimeRange.count == 2) {
minExp = exposureTimeRange.data.i64[0];
maxExp = exposureTimeRange.data.i64[1];
}
EXPECT_LT(0, minExp) << "Minimum exposure time is 0";
EXPECT_LT(0, maxExp) << "Maximum exposure time is 0";
EXPECT_LE(minExp, maxExp) << "Minimum exposure is greater than maximum";
if (minExp == 0) {
minExp = 1 * MSEC; // Fallback minimum exposure time
}
if (maxExp == 0) {
maxExp = 10 * SEC; // Fallback maximum exposure time
}
}
dout << "Stream size is " << mWidth << " x " << mHeight << std::endl;
dout << "Valid exposure range is: " <<
minExp << " - " << maxExp << " ns " << std::endl;
{
camera_metadata_ro_entry availableSensitivities =
GetStaticEntry(ANDROID_SENSOR_INFO_AVAILABLE_SENSITIVITIES);
EXPECT_LT(0u, availableSensitivities.count) << "No sensitivities listed."
"Falling back to default set.";
sensitivities.appendArray(availableSensitivities.data.i32,
availableSensitivities.count);
if (availableSensitivities.count == 0) {
sensitivities.push_back(100);
sensitivities.push_back(200);
sensitivities.push_back(400);
sensitivities.push_back(800);
}
}
dout << "Available sensitivities: ";
for (size_t i = 0; i < sensitivities.size(); i++) {
dout << sensitivities[i] << " ";
}
dout << std::endl;
{
camera_metadata_ro_entry availableProcessedSizes =
GetStaticEntry(ANDROID_SCALER_AVAILABLE_PROCESSED_SIZES);
camera_metadata_ro_entry availableProcessedMinFrameDurations =
GetStaticEntry(ANDROID_SCALER_AVAILABLE_PROCESSED_MIN_DURATIONS);
EXPECT_EQ(availableProcessedSizes.count,
availableProcessedMinFrameDurations.count * 2) <<
"The number of minimum frame durations doesn't match the number of "
"available sizes. Using fallback values";
if (availableProcessedSizes.count ==
availableProcessedMinFrameDurations.count * 2) {
bool gotSize = false;
for (size_t i = 0; i < availableProcessedSizes.count; i += 2) {
if (availableProcessedSizes.data.i32[i] == mWidth &&
availableProcessedSizes.data.i32[i+1] == mHeight) {
gotSize = true;
minDuration = availableProcessedMinFrameDurations.data.i64[i/2];
}
}
EXPECT_TRUE(gotSize) << "Can't find stream size in list of "
"available sizes: " << mWidth << ", " << mHeight;
}
if (minDuration == 0) {
minDuration = 1 * SEC / 30; // Fall back to 30 fps as minimum duration
}
ASSERT_LT(0, minDuration);
camera_metadata_ro_entry maxFrameDuration =
GetStaticEntry(ANDROID_SENSOR_INFO_MAX_FRAME_DURATION);
EXPECT_EQ(1u, maxFrameDuration.count) << "No valid maximum frame duration";
if (maxFrameDuration.count == 1) {
maxDuration = maxFrameDuration.data.i64[0];
}
EXPECT_GT(0, maxDuration) << "Max duration is 0 or not given, using fallback";
if (maxDuration == 0) {
maxDuration = 10 * SEC; // Fall back to 10 seconds as max duration
}
}
dout << "Available frame duration range for configured stream size: "
<< minDuration << " - " << maxDuration << " ns" << std::endl;
// Get environment variables if set
const char *expVal = getenv(expEnv);
const char *durationVal = getenv(durationEnv);
const char *sensitivityVal = getenv(sensitivityEnv);
bool gotExp = (expVal != NULL);
bool gotDuration = (durationVal != NULL);
bool gotSensitivity = (sensitivityVal != NULL);
// All or none must be provided if using override envs
ASSERT_TRUE( (gotDuration && gotExp && gotSensitivity) ||
(!gotDuration && !gotExp && !gotSensitivity) ) <<
"Incomplete set of environment variable overrides provided";
Vector<int64_t> expList, durationList;
Vector<int32_t> sensitivityList;
if (gotExp) {
ParseList(expVal, expList);
ParseList(durationVal, durationList);
ParseList(sensitivityVal, sensitivityList);
ASSERT_TRUE(
(expList.size() == durationList.size()) &&
(durationList.size() == sensitivityList.size())) <<
"Mismatched sizes in env lists, or parse error";
dout << "Using burst list from environment with " << expList.size() <<
" captures" << std::endl;
} else {
// Create a default set of controls based on the available ranges
int64_t e;
int64_t d;
int32_t s;
// Exposure ramp
e = minExp;
d = minDuration;
s = sensitivities[0];
while (e < maxExp) {
expList.push_back(e);
durationList.push_back(d);
sensitivityList.push_back(s);
e = e * 2;
}
e = maxExp;
expList.push_back(e);
durationList.push_back(d);
sensitivityList.push_back(s);
// Duration ramp
e = 30 * MSEC;
d = minDuration;
s = sensitivities[0];
while (d < maxDuration) {
// make sure exposure <= frame duration
expList.push_back(e > d ? d : e);
durationList.push_back(d);
sensitivityList.push_back(s);
d = d * 2;
}
// Sensitivity ramp
e = 30 * MSEC;
d = 30 * MSEC;
d = d > minDuration ? d : minDuration;
for (size_t i = 0; i < sensitivities.size(); i++) {
expList.push_back(e);
durationList.push_back(d);
sensitivityList.push_back(sensitivities[i]);
}
// Constant-EV ramp, duration == exposure
e = 30 * MSEC; // at ISO 100
for (size_t i = 0; i < sensitivities.size(); i++) {
int64_t e_adj = e * 100 / sensitivities[i];
expList.push_back(e_adj);
durationList.push_back(e_adj > minDuration ? e_adj : minDuration);
sensitivityList.push_back(sensitivities[i]);
}
dout << "Default burst sequence created with " << expList.size() <<
" entries" << std::endl;
}
// Validate the list, but warn only
for (size_t i = 0; i < expList.size(); i++) {
EXPECT_GE(maxExp, expList[i])
<< "Capture " << i << " exposure too long: " << expList[i];
EXPECT_LE(minExp, expList[i])
<< "Capture " << i << " exposure too short: " << expList[i];
EXPECT_GE(maxDuration, durationList[i])
<< "Capture " << i << " duration too long: " << durationList[i];
EXPECT_LE(minDuration, durationList[i])
<< "Capture " << i << " duration too short: " << durationList[i];
bool validSensitivity = false;
for (size_t j = 0; j < sensitivities.size(); j++) {
if (sensitivityList[i] == sensitivities[j]) {
validSensitivity = true;
break;
}
}
EXPECT_TRUE(validSensitivity)
<< "Capture " << i << " sensitivity not in list: " << sensitivityList[i];
}
// Check if debug yuv dumps are requested
bool dumpFrames = false;
{
const char *frameDumpVal = getenv(dumpFrameEnv);
if (frameDumpVal != NULL) {
if (frameDumpVal[0] == '1') dumpFrames = true;
}
}
dout << "Dumping YUV frames " <<
(dumpFrames ? "enabled, not checking timing" : "disabled") << std::endl;
// Create a base preview request, turning off all 3A
CameraMetadata previewRequest;
ASSERT_EQ(OK, mDevice->createDefaultRequest(CAMERA2_TEMPLATE_PREVIEW,
&previewRequest));
{
Vector<uint8_t> outputStreamIds;
outputStreamIds.push(mStreamId);
ASSERT_EQ(OK, previewRequest.update(ANDROID_REQUEST_OUTPUT_STREAMS,
outputStreamIds));
// Disable all 3A routines
uint8_t cmOff = static_cast<uint8_t>(ANDROID_CONTROL_MODE_OFF);
ASSERT_EQ(OK, previewRequest.update(ANDROID_CONTROL_MODE,
&cmOff, 1));
int requestId = 1;
ASSERT_EQ(OK, previewRequest.update(ANDROID_REQUEST_ID,
&requestId, 1));
}
// Submit capture requests
for (size_t i = 0; i < expList.size(); ++i) {
CameraMetadata tmpRequest = previewRequest;
ASSERT_EQ(OK, tmpRequest.update(ANDROID_SENSOR_EXPOSURE_TIME,
&expList[i], 1));
ASSERT_EQ(OK, tmpRequest.update(ANDROID_SENSOR_FRAME_DURATION,
&durationList[i], 1));
ASSERT_EQ(OK, tmpRequest.update(ANDROID_SENSOR_SENSITIVITY,
&sensitivityList[i], 1));
ALOGV("Submitting capture %d with exposure %lld, frame duration %lld, sensitivity %d",
i, expList[i], durationList[i], sensitivityList[i]);
dout << "Capture request " << i <<
": exposure is " << (expList[i]/1e6f) << " ms" <<
", frame duration is " << (durationList[i]/1e6f) << " ms" <<
", sensitivity is " << sensitivityList[i] <<
std::endl;
ASSERT_EQ(OK, mDevice->capture(tmpRequest));
}
Vector<float> brightnesses;
Vector<nsecs_t> captureTimes;
brightnesses.setCapacity(expList.size());
captureTimes.setCapacity(expList.size());
// Get each frame (metadata) and then the buffer. Calculate brightness.
for (size_t i = 0; i < expList.size(); ++i) {
ALOGV("Reading request %d", i);
dout << "Waiting for capture " << i << ": " <<
" exposure " << (expList[i]/1e6f) << " ms," <<
" frame duration " << (durationList[i]/1e6f) << " ms," <<
" sensitivity " << sensitivityList[i] <<
std::endl;
// Set wait limit based on expected frame duration, or minimum timeout
int64_t waitLimit = CAMERA_FRAME_TIMEOUT;
if (expList[i] * 2 > waitLimit) waitLimit = expList[i] * 2;
if (durationList[i] * 2 > waitLimit) waitLimit = durationList[i] * 2;
ASSERT_EQ(OK, mDevice->waitForNextFrame(waitLimit));
ALOGV("Reading capture request-1 %d", i);
CameraMetadata frameMetadata;
ASSERT_EQ(OK, mDevice->getNextFrame(&frameMetadata));
ALOGV("Reading capture request-2 %d", i);
ASSERT_EQ(OK, mFrameListener->waitForFrame(CAMERA_FRAME_TIMEOUT));
ALOGV("We got the frame now");
captureTimes.push_back(systemTime());
CpuConsumer::LockedBuffer imgBuffer;
ASSERT_EQ(OK, mCpuConsumer->lockNextBuffer(&imgBuffer));
int underexposed, overexposed;
float avgBrightness = 0;
long long brightness = TotalBrightness(imgBuffer, &underexposed,
&overexposed);
int numValidPixels = mWidth * mHeight - (underexposed + overexposed);
if (numValidPixels != 0) {
avgBrightness = brightness * 1.0f / numValidPixels;
} else if (underexposed < overexposed) {
avgBrightness = 255;
}
ALOGV("Total brightness for frame %d was %lld (underexposed %d, "
"overexposed %d), avg %f", i, brightness, underexposed,
overexposed, avgBrightness);
dout << "Average brightness (frame " << i << ") was " << avgBrightness
<< " (underexposed " << underexposed << ", overexposed "
<< overexposed << ")" << std::endl;
brightnesses.push_back(avgBrightness);
if (i != 0) {
float prevEv = static_cast<float>(expList[i - 1]) * sensitivityList[i - 1];
float currentEv = static_cast<float>(expList[i]) * sensitivityList[i];
float evRatio = (prevEv > currentEv) ? (currentEv / prevEv) :
(prevEv / currentEv);
if ( evRatio > EV_MATCH_BOUND ) {
EXPECT_LT( fabs(brightnesses[i] - brightnesses[i - 1]),
BRIGHTNESS_MATCH_BOUND) <<
"Capture brightness different from previous, even though "
"they have the same EV value. Ev now: " << currentEv <<
", previous: " << prevEv << ". Brightness now: " <<
brightnesses[i] << ", previous: " << brightnesses[i-1];
}
// Only check timing if not saving to disk, since that slows things
// down substantially
if (!dumpFrames) {
nsecs_t timeDelta = captureTimes[i] - captureTimes[i-1];
nsecs_t expectedDelta = expList[i] > durationList[i] ?
expList[i] : durationList[i];
EXPECT_LT(timeDelta, expectedDelta + DURATION_UPPER_BOUND) <<
"Capture took " << timeDelta << " ns to receive, but expected"
" frame duration was " << expectedDelta << " ns.";
EXPECT_GT(timeDelta, expectedDelta - DURATION_LOWER_BOUND) <<
"Capture took " << timeDelta << " ns to receive, but expected"
" frame duration was " << expectedDelta << " ns.";
dout << "Time delta from previous frame: " << timeDelta / 1e6 <<
" ms. Expected " << expectedDelta / 1e6 << " ms" << std::endl;
}
}
if (dumpFrames) {
String8 dumpName =
String8::format("/data/local/tmp/camera2_test_variable_burst_frame_%03d.yuv", i);
dout << " Writing YUV dump to " << dumpName << std::endl;
DumpYuvToFile(dumpName, imgBuffer);
}
ASSERT_EQ(OK, mCpuConsumer->unlockBuffer(imgBuffer));
}
}
}
}
}

View file

@ -19,6 +19,7 @@
#include <gtest/gtest.h>
#include <iostream>
#include <fstream>
#include <gui/CpuConsumer.h>
#include <gui/Surface.h>
@ -29,6 +30,8 @@
#include "CameraModuleFixture.h"
#include "TestExtensions.h"
#define ALIGN(x, mask) ( ((x) + (mask) - 1) & ~((mask) - 1) )
namespace android {
namespace camera2 {
namespace tests {
@ -194,6 +197,80 @@ protected:
return format;
}
void DumpYuvToFile(const String8 &fileName, const CpuConsumer::LockedBuffer &img) {
uint8_t *dataCb, *dataCr;
uint32_t stride;
uint32_t chromaStride;
uint32_t chromaStep;
switch (img.format) {
case HAL_PIXEL_FORMAT_YCbCr_420_888:
stride = img.stride;
chromaStride = img.chromaStride;
chromaStep = img.chromaStep;
dataCb = img.dataCb;
dataCr = img.dataCr;
break;
case HAL_PIXEL_FORMAT_YCrCb_420_SP:
stride = img.width;
chromaStride = img.width;
chromaStep = 2;
dataCr = img.data + img.width * img.height;
dataCb = dataCr + 1;
break;
case HAL_PIXEL_FORMAT_YV12:
stride = img.stride;
chromaStride = ALIGN(img.width / 2, 16);
chromaStep = 1;
dataCr = img.data + img.stride * img.height;
dataCb = dataCr + chromaStride * img.height/2;
break;
default:
ALOGE("Unknown format %d, not dumping", img.format);
return;
}
// Write Y
FILE *yuvFile = fopen(fileName.string(), "w");
size_t bytes;
for (size_t y = 0; y < img.height; ++y) {
bytes = fwrite(
reinterpret_cast<const char*>(img.data + stride * y),
1, img.width, yuvFile);
if (bytes != img.width) {
ALOGE("Unable to write to file %s", fileName.string());
fclose(yuvFile);
return;
}
}
// Write Cb/Cr
uint8_t *src = dataCb;
for (int c = 0; c < 2; ++c) {
for (size_t y = 0; y < img.height / 2; ++y) {
uint8_t *px = src + y * chromaStride;
if (chromaStep != 1) {
for (size_t x = 0; x < img.width / 2; ++x) {
fputc(*px, yuvFile);
px += chromaStep;
}
} else {
bytes = fwrite(reinterpret_cast<const char*>(px),
1, img.width / 2, yuvFile);
if (bytes != img.width / 2) {
ALOGE("Unable to write to file %s", fileName.string());
fclose(yuvFile);
return;
}
}
}
src = dataCr;
}
fclose(yuvFile);
}
int mWidth;
int mHeight;