DO NOT MERGE: Sensor multi HAL

Squashed commit of:

Move sensors multi HAL to libhardware

Added a SensorEventQueue, a circular buffer meant for reading with one thread
and polling a subhal with another. The writing thread gets access to pointers
in the internal buffer. This design avoids a memcpy on write when the multihal
fetches subhal events using poll().

Unit-tests include multithreaded reading and writing lots of events, in
random-sized chunks.

This is not used by the multihal yet. That will be a different CL.

MultiHal multithreaded polling

Tests SensorEventQueue I/O when the queue is full.
Reduced debug logging in multihal.

deactivated multihal logspam, made warnings warnings, left critical startup info

Removed unneeded linux/input.h includes, to fix Mac SDK build
This commit is contained in:
Mike Lockwood 2013-10-17 08:05:00 -07:00
parent 7ccf148f50
commit 0bae43dc59
7 changed files with 1022 additions and 1 deletions

View file

@ -1,3 +1,3 @@
hardware_modules := gralloc hwcomposer audio nfc nfc-nci local_time \
power usbaudio audio_remote_submix camera consumerir
power usbaudio audio_remote_submix camera consumerir sensors
include $(call all-named-subdir-makefiles,$(hardware_modules))

View file

@ -0,0 +1,52 @@
#
# Copyright (C) 2013 The Android Open-Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
LOCAL_PATH := $(call my-dir)
ifeq ($(USE_SENSOR_MULTI_HAL),true)
include $(CLEAR_VARS)
LOCAL_MODULE := sensors.$(TARGET_DEVICE)
LOCAL_MODULE_PATH := $(TARGET_OUT_SHARED_LIBRARIES)/hw
LOCAL_CFLAGS := -DLOG_TAG=\"MultiHal\"
LOCAL_SRC_FILES := \
multihal.cpp \
SensorEventQueue.h \
SensorEventQueue.cpp \
LOCAL_SHARED_LIBRARIES := \
libcutils \
libdl \
liblog \
libstlport \
libutils \
LOCAL_PRELINK_MODULE := false
LOCAL_STRIP_MODULE := false
LOCAL_C_INCLUDES := \
external/stlport/stlport \
bionic \
include $(BUILD_SHARED_LIBRARY)
endif # USE_SENSOR_MULTI_HAL
include $(call all-subdir-makefiles)

View file

@ -0,0 +1,91 @@
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <hardware/sensors.h>
#include <algorithm>
#include <pthread.h>
#include <cutils/log.h>
#include "SensorEventQueue.h"
SensorEventQueue::SensorEventQueue(int capacity) {
mCapacity = capacity;
mStart = 0;
mSize = 0;
mData = new sensors_event_t[mCapacity];
pthread_cond_init(&mSpaceAvailableCondition, NULL);
}
SensorEventQueue::~SensorEventQueue() {
delete[] mData;
mData = NULL;
pthread_cond_destroy(&mSpaceAvailableCondition);
}
int SensorEventQueue::getWritableRegion(int requestedLength, sensors_event_t** out) {
if (mSize == mCapacity || requestedLength <= 0) {
*out = NULL;
return 0;
}
// Start writing after the last readable record.
int firstWritable = (mStart + mSize) % mCapacity;
int lastWritable = firstWritable + requestedLength - 1;
// Don't go past the end of the data array.
if (lastWritable > mCapacity - 1) {
lastWritable = mCapacity - 1;
}
// Don't go into the readable region.
if (firstWritable < mStart && lastWritable >= mStart) {
lastWritable = mStart - 1;
}
*out = &mData[firstWritable];
return lastWritable - firstWritable + 1;
}
void SensorEventQueue::markAsWritten(int count) {
mSize += count;
}
int SensorEventQueue::getSize() {
return mSize;
}
sensors_event_t* SensorEventQueue::peek() {
if (mSize == 0) return NULL;
return &mData[mStart];
}
void SensorEventQueue::dequeue() {
if (mSize == 0) return;
if (mSize == mCapacity) {
pthread_cond_broadcast(&mSpaceAvailableCondition);
}
mSize--;
mStart = (mStart + 1) % mCapacity;
}
// returns true if it waited, or false if it was a no-op.
bool SensorEventQueue::waitForSpace(pthread_mutex_t* mutex) {
bool waited = false;
while (mSize == mCapacity) {
waited = true;
pthread_cond_wait(&mSpaceAvailableCondition, mutex);
}
return waited;
}

View file

@ -0,0 +1,76 @@
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SENSOREVENTQUEUE_H_
#define SENSOREVENTQUEUE_H_
#include <hardware/sensors.h>
#include <pthread.h>
/*
* Fixed-size circular queue, with an API developed around the sensor HAL poll() method.
* Poll() takes a pointer to a buffer, which is written by poll() before it returns.
* This class can provide a pointer to a spot in its internal buffer for poll() to
* write to, instead of using an intermediate buffer and a memcpy.
*
* Thread safety:
* Reading can be done safely after grabbing the mutex lock, while poll() writing in a separate
* thread without a mutex lock. But there can only be one writer at a time.
*/
class SensorEventQueue {
int mCapacity;
int mStart; // start of readable region
int mSize; // number of readable items
sensors_event_t* mData;
pthread_cond_t mSpaceAvailableCondition;
public:
SensorEventQueue(int capacity);
~SensorEventQueue();
// Returns length of region, between zero and min(capacity, requestedLength). If there is any
// writable space, it will return a region of at least one. Because it must return
// a pointer to a contiguous region, it may return smaller regions as we approach the end of
// the data array.
// Only call while holding the lock.
// The region is not marked internally in any way. Subsequent calls may return overlapping
// regions. This class expects there to be exactly one writer at a time.
int getWritableRegion(int requestedLength, sensors_event_t** out);
// After writing to the region returned by getWritableRegion(), call this to indicate how
// many records were actually written.
// This increases size() by count.
// Only call while holding the lock.
void markAsWritten(int count);
// Gets the number of readable records.
// Only call while holding the lock.
int getSize();
// Returns pointer to the first readable record, or NULL if size() is zero.
// Only call this while holding the lock.
sensors_event_t* peek();
// This will decrease the size by one, freeing up the oldest readable event's slot for writing.
// Only call while holding the lock.
void dequeue();
// Blocks until space is available. No-op if there is already space.
// Returns true if it had to wait.
bool waitForSpace(pthread_mutex_t* mutex);
};
#endif // SENSOREVENTQUEUE_H_

View file

@ -0,0 +1,586 @@
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <hardware/sensors.h>
#include <fcntl.h>
#include <errno.h>
#include <dirent.h>
#include <math.h>
#include <poll.h>
#include <pthread.h>
#include <cutils/atomic.h>
#define LOG_NDEBUG 1
#include <cutils/log.h>
#include <vector>
#include <map>
#include <stdio.h>
#include <dlfcn.h>
#include <SensorEventQueue.h>
static const char* CONFIG_FILENAME = "/system/etc/sensors/hals.conf";
static const char* LEGAL_SUBHAL_PATH_PREFIX = "/system/lib/hw/";
static const int MAX_CONF_LINE_LENGTH = 1024;
static pthread_mutex_t init_modules_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t init_sensors_mutex = PTHREAD_MUTEX_INITIALIZER;
// This mutex is shared by all queues
static pthread_mutex_t queue_mutex = PTHREAD_MUTEX_INITIALIZER;
// Used to pause the multihal poll(). Broadcasted by sub-polling tasks if waiting_for_data.
static pthread_cond_t data_available_cond = PTHREAD_COND_INITIALIZER;
bool waiting_for_data = false;
/*
* Vector of sub modules, whose indexes are referred to ni this file as module_index.
*/
static std::vector<hw_module_t *> *sub_hw_modules = NULL;
/*
* Comparable class that globally identifies a sensor, by module index and local handle.
* A module index is the module's index in sub_hw_modules.
* A local handle is the handle the sub-module assigns to a sensor.
*/
struct FullHandle {
int moduleIndex;
int localHandle;
bool operator<(const FullHandle &that) const {
if (moduleIndex < that.moduleIndex) {
return true;
}
if (moduleIndex > that.moduleIndex) {
return false;
}
return localHandle < that.localHandle;
}
bool operator==(const FullHandle &that) const {
return moduleIndex == that.moduleIndex && localHandle == that.localHandle;
}
};
std::map<int, FullHandle> global_to_full;
std::map<FullHandle, int> full_to_global;
int next_global_handle = 1;
static int assign_global_handle(int module_index, int local_handle) {
int global_handle = next_global_handle++;
FullHandle full_handle;
full_handle.moduleIndex = module_index;
full_handle.localHandle = local_handle;
full_to_global[full_handle] = global_handle;
global_to_full[global_handle] = full_handle;
return global_handle;
}
static int get_local_handle(int global_handle) {
return global_to_full[global_handle].localHandle;
}
static int get_module_index(int global_handle) {
FullHandle f = global_to_full[global_handle];
ALOGV("FullHandle for global_handle %d: moduleIndex %d, localHandle %d",
global_handle, f.moduleIndex, f.localHandle);
return f.moduleIndex;
}
static const int SENSOR_EVENT_QUEUE_CAPACITY = 20;
struct TaskContext {
sensors_poll_device_t* device;
SensorEventQueue* queue;
};
void *writerTask(void* ptr) {
ALOGV("writerTask STARTS");
TaskContext* ctx = (TaskContext*)ptr;
sensors_poll_device_t* device = ctx->device;
SensorEventQueue* queue = ctx->queue;
sensors_event_t* buffer;
int eventsPolled;
while (1) {
pthread_mutex_lock(&queue_mutex);
if (queue->waitForSpace(&queue_mutex)) {
ALOGV("writerTask waited for space");
}
int bufferSize = queue->getWritableRegion(SENSOR_EVENT_QUEUE_CAPACITY, &buffer);
// Do blocking poll outside of lock
pthread_mutex_unlock(&queue_mutex);
ALOGV("writerTask before poll() - bufferSize = %d", bufferSize);
eventsPolled = device->poll(device, buffer, bufferSize);
ALOGV("writerTask poll() got %d events.", eventsPolled);
if (eventsPolled == 0) {
continue;
}
pthread_mutex_lock(&queue_mutex);
queue->markAsWritten(eventsPolled);
ALOGV("writerTask wrote %d events", eventsPolled);
if (waiting_for_data) {
ALOGV("writerTask - broadcast data_available_cond");
pthread_cond_broadcast(&data_available_cond);
}
pthread_mutex_unlock(&queue_mutex);
}
// never actually returns
return NULL;
}
/*
* Cache of all sensors, with original handles replaced by global handles.
* This will be handled to get_sensors_list() callers.
*/
static struct sensor_t const* global_sensors_list = NULL;
static int global_sensors_count = -1;
/*
* Extends a sensors_poll_device_1 by including all the sub-module's devices.
*/
struct sensors_poll_context_t {
/*
* This is the device that SensorDevice.cpp uses to make API calls
* to the multihal, which fans them out to sub-HALs.
*/
sensors_poll_device_1 proxy_device; // must be first
void addSubHwDevice(struct hw_device_t*);
int activate(int handle, int enabled);
int setDelay(int handle, int64_t ns);
int poll(sensors_event_t* data, int count);
int batch(int handle, int flags, int64_t period_ns, int64_t timeout);
int flush(int handle);
int close();
std::vector<hw_device_t*> sub_hw_devices;
std::vector<SensorEventQueue*> queues;
std::vector<pthread_t> threads;
int nextReadIndex;
sensors_poll_device_t* get_v0_device_by_handle(int global_handle);
sensors_poll_device_1_t* get_v1_device_by_handle(int global_handle);
int get_device_version_by_handle(int global_handle);
void copy_event_remap_handle(sensors_event_t* src, sensors_event_t* dest, int sub_index);
};
void sensors_poll_context_t::addSubHwDevice(struct hw_device_t* sub_hw_device) {
ALOGV("addSubHwDevice");
this->sub_hw_devices.push_back(sub_hw_device);
SensorEventQueue *queue = new SensorEventQueue(SENSOR_EVENT_QUEUE_CAPACITY);
this->queues.push_back(queue);
TaskContext* taskContext = new TaskContext();
taskContext->device = (sensors_poll_device_t*) sub_hw_device;
taskContext->queue = queue;
pthread_t writerThread;
pthread_create(&writerThread, NULL, writerTask, taskContext);
this->threads.push_back(writerThread);
}
sensors_poll_device_t* sensors_poll_context_t::get_v0_device_by_handle(int handle) {
int sub_index = get_module_index(handle);
return (sensors_poll_device_t*) this->sub_hw_devices[sub_index];
}
sensors_poll_device_1_t* sensors_poll_context_t::get_v1_device_by_handle(int handle) {
int sub_index = get_module_index(handle);
return (sensors_poll_device_1_t*) this->sub_hw_devices[sub_index];
}
int sensors_poll_context_t::get_device_version_by_handle(int handle) {
sensors_poll_device_t* v0 = this->get_v0_device_by_handle(handle);
return v0->common.version;
}
int sensors_poll_context_t::activate(int handle, int enabled) {
ALOGV("activate");
sensors_poll_device_t* v0 = this->get_v0_device_by_handle(handle);
int retval = v0->activate(v0, get_local_handle(handle), enabled);
ALOGV("retval %d", retval);
return retval;
}
int sensors_poll_context_t::setDelay(int handle, int64_t ns) {
ALOGV("setDelay");
sensors_poll_device_t* v0 = this->get_v0_device_by_handle(handle);
int retval = v0->setDelay(v0, get_local_handle(handle), ns);
ALOGV("retval %d", retval);
return retval;
}
void sensors_poll_context_t::copy_event_remap_handle(sensors_event_t* dest, sensors_event_t* src,
int sub_index) {
memcpy(dest, src, sizeof(struct sensors_event_t));
// A normal event's "sensor" field is a local handle. Convert it to a global handle.
// A meta-data event must have its sensor set to 0, but it has a nested event
// with a local handle that needs to be converted to a global handle.
FullHandle full_handle;
full_handle.moduleIndex = sub_index;
// If it's a metadata event, rewrite the inner payload, not the sensor field.
if (dest->type == SENSOR_TYPE_META_DATA) {
full_handle.localHandle = dest->meta_data.sensor;
dest->meta_data.sensor = full_to_global[full_handle];
} else {
full_handle.localHandle = dest->sensor;
dest->sensor = full_to_global[full_handle];
}
}
int sensors_poll_context_t::poll(sensors_event_t *data, int maxReads) {
ALOGV("poll");
int empties = 0;
int queueCount = (int)this->queues.size();
int eventsRead = 0;
pthread_mutex_lock(&queue_mutex);
while (eventsRead == 0) {
while (empties < queueCount && eventsRead < maxReads) {
SensorEventQueue* queue = this->queues.at(this->nextReadIndex);
sensors_event_t* event = queue->peek();
if (event == NULL) {
empties++;
} else {
empties = 0;
this->copy_event_remap_handle(&data[eventsRead++], event, nextReadIndex);
queue->dequeue();
}
this->nextReadIndex = (this->nextReadIndex + 1) % queueCount;
}
if (eventsRead == 0) {
// The queues have been scanned and none contain data, so wait.
ALOGV("poll stopping to wait for data");
waiting_for_data = true;
pthread_cond_wait(&data_available_cond, &queue_mutex);
waiting_for_data = false;
empties = 0;
}
}
pthread_mutex_unlock(&queue_mutex);
ALOGV("poll returning %d events.", eventsRead);
return eventsRead;
}
int sensors_poll_context_t::batch(int handle, int flags, int64_t period_ns, int64_t timeout) {
ALOGV("batch");
int retval = -EINVAL;
int version = this->get_device_version_by_handle(handle);
if (version >= SENSORS_DEVICE_API_VERSION_1_0) {
sensors_poll_device_1_t* v1 = this->get_v1_device_by_handle(handle);
retval = v1->batch(v1, get_local_handle(handle), flags, period_ns, timeout);
}
ALOGV("retval %d", retval);
return retval;
}
int sensors_poll_context_t::flush(int handle) {
ALOGV("flush");
int retval = -EINVAL;
int version = this->get_device_version_by_handle(handle);
if (version >= SENSORS_DEVICE_API_VERSION_1_0) {
sensors_poll_device_1_t* v1 = this->get_v1_device_by_handle(handle);
retval = v1->flush(v1, get_local_handle(handle));
}
ALOGV("retval %d", retval);
return retval;
}
int sensors_poll_context_t::close() {
ALOGV("close");
for (std::vector<hw_device_t*>::iterator it = this->sub_hw_devices.begin();
it != this->sub_hw_devices.end(); it++) {
hw_device_t* dev = *it;
int retval = dev->close(dev);
ALOGV("retval %d", retval);
}
return 0;
}
static int device__close(struct hw_device_t *dev) {
sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev;
if (ctx != NULL) {
int retval = ctx->close();
delete ctx;
}
return 0;
}
static int device__activate(struct sensors_poll_device_t *dev, int handle,
int enabled) {
sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev;
return ctx->activate(handle, enabled);
}
static int device__setDelay(struct sensors_poll_device_t *dev, int handle,
int64_t ns) {
sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev;
return ctx->setDelay(handle, ns);
}
static int device__poll(struct sensors_poll_device_t *dev, sensors_event_t* data,
int count) {
sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev;
return ctx->poll(data, count);
}
static int device__batch(struct sensors_poll_device_1 *dev, int handle,
int flags, int64_t period_ns, int64_t timeout) {
sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev;
return ctx->batch(handle, flags, period_ns, timeout);
}
static int device__flush(struct sensors_poll_device_1 *dev, int handle) {
sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev;
return ctx->flush(handle);
}
static int open_sensors(const struct hw_module_t* module, const char* name,
struct hw_device_t** device);
static bool starts_with(const char* s, const char* prefix) {
if (s == NULL || prefix == NULL) {
return false;
}
size_t s_size = strlen(s);
size_t prefix_size = strlen(prefix);
return s_size >= prefix_size && strncmp(s, prefix, prefix_size) == 0;
}
/*
* Adds valid paths from the config file to the vector passed in.
* The vector must not be null.
*/
static void get_so_paths(std::vector<char*> *so_paths) {
FILE *conf_file = fopen(CONFIG_FILENAME, "r");
if (conf_file == NULL) {
ALOGW("No multihal config file found at %s", CONFIG_FILENAME);
return;
}
ALOGI("Multihal config file found at %s", CONFIG_FILENAME);
char *line = NULL;
size_t len = 0;
int line_count = 0;
while (getline(&line, &len, conf_file) != -1) {
// overwrite trailing eoln with null char
char* pch = strchr(line, '\n');
if (pch != NULL) {
*pch = '\0';
}
ALOGV("config file line #%d: '%s'", ++line_count, line);
char *real_path = realpath(line, NULL);
if (starts_with(real_path, LEGAL_SUBHAL_PATH_PREFIX)) {
ALOGI("accepting valid path '%s'", real_path);
char* compact_line = new char[strlen(real_path) + 1];
strcpy(compact_line, real_path);
so_paths->push_back(compact_line);
} else {
ALOGW("rejecting path '%s' because it does not start with '%s'",
real_path, LEGAL_SUBHAL_PATH_PREFIX);
}
free(real_path);
}
free(line);
fclose(conf_file);
ALOGV("hals.conf contained %d lines", line_count);
}
/*
* Ensures that the sub-module array is initialized.
* This can be first called from get_sensors_list or from open_sensors.
*/
static void lazy_init_modules() {
pthread_mutex_lock(&init_modules_mutex);
if (sub_hw_modules != NULL) {
pthread_mutex_unlock(&init_modules_mutex);
return;
}
std::vector<char*> *so_paths = new std::vector<char*>();
get_so_paths(so_paths);
// dlopen the module files and cache their module symbols in sub_hw_modules
sub_hw_modules = new std::vector<hw_module_t *>();
dlerror(); // clear any old errors
const char* sym = HAL_MODULE_INFO_SYM_AS_STR;
for (std::vector<char*>::iterator it = so_paths->begin(); it != so_paths->end(); it++) {
char* path = *it;
void* lib_handle = dlopen(path, RTLD_LAZY);
if (lib_handle == NULL) {
ALOGW("dlerror(): %s", dlerror());
} else {
ALOGI("hal lib was loaded: %s", path);
ALOGV("Opening symbol \"%s\"", sym);
// clear old errors
dlerror();
struct hw_module_t* module = (hw_module_t*) dlsym(lib_handle, sym);
const char* error;
if ((error = dlerror()) != NULL) {
ALOGW("Error calling dlsym: %s", error);
} else if (module == NULL) {
ALOGW("module == NULL");
} else {
ALOGI("OK, dlsym()'ed \"%s\"", sym);
sub_hw_modules->push_back(module);
}
}
}
pthread_mutex_unlock(&init_modules_mutex);
}
/*
* Lazy-initializes global_sensors_count, global_sensors_list, and module_sensor_handles.
*/
static void lazy_init_sensors_list() {
ALOGV("lazy_init_sensors_list");
pthread_mutex_lock(&init_sensors_mutex);
if (global_sensors_list != NULL) {
// already initialized
pthread_mutex_unlock(&init_sensors_mutex);
ALOGV("lazy_init_sensors_list - early return");
return;
}
ALOGV("lazy_init_sensors_list needs to do work");
lazy_init_modules();
// Count all the sensors, then allocate an array of blanks.
global_sensors_count = 0;
const struct sensor_t *subhal_sensors_list;
for (std::vector<hw_module_t*>::iterator it = sub_hw_modules->begin();
it != sub_hw_modules->end(); it++) {
struct sensors_module_t *module = (struct sensors_module_t*) *it;
global_sensors_count += module->get_sensors_list(module, &subhal_sensors_list);
ALOGV("increased global_sensors_count to %d", global_sensors_count);
}
// The global_sensors_list is full of consts.
// Manipulate this non-const list, and point the const one to it when we're done.
sensor_t* mutable_sensor_list = new sensor_t[global_sensors_count];
// index of the next sensor to set in mutable_sensor_list
int mutable_sensor_index = 0;
int module_index = 0;
for (std::vector<hw_module_t*>::iterator it = sub_hw_modules->begin();
it != sub_hw_modules->end(); it++) {
hw_module_t *hw_module = *it;
ALOGV("examine one module");
// Read the sub-module's sensor list.
struct sensors_module_t *module = (struct sensors_module_t*) hw_module;
int module_sensor_count = module->get_sensors_list(module, &subhal_sensors_list);
ALOGV("the module has %d sensors", module_sensor_count);
// Copy the HAL's sensor list into global_sensors_list,
// with the handle changed to be a global handle.
for (int i = 0; i < module_sensor_count; i++) {
ALOGV("examining one sensor");
const struct sensor_t *local_sensor = &subhal_sensors_list[i];
int local_handle = local_sensor->handle;
memcpy(&mutable_sensor_list[mutable_sensor_index], local_sensor,
sizeof(struct sensor_t));
// Overwrite the global version's handle with a global handle.
int global_handle = assign_global_handle(module_index, local_handle);
mutable_sensor_list[mutable_sensor_index].handle = global_handle;
ALOGI("module_index %d, local_handle %d, global_handle %d",
module_index, local_handle, global_handle);
mutable_sensor_index++;
}
module_index++;
}
// Set the const static global_sensors_list to the mutable one allocated by this function.
global_sensors_list = mutable_sensor_list;
pthread_mutex_unlock(&init_sensors_mutex);
ALOGV("end lazy_init_sensors_list");
}
static int module__get_sensors_list(struct sensors_module_t* module,
struct sensor_t const** list) {
ALOGV("module__get_sensors_list start");
lazy_init_sensors_list();
*list = global_sensors_list;
ALOGV("global_sensors_count: %d", global_sensors_count);
for (int i = 0; i < global_sensors_count; i++) {
ALOGV("sensor type: %d", global_sensors_list[i].type);
}
return global_sensors_count;
}
static struct hw_module_methods_t sensors_module_methods = {
open : open_sensors
};
struct sensors_module_t HAL_MODULE_INFO_SYM = {
common :{
tag : HARDWARE_MODULE_TAG,
version_major : 1,
version_minor : 0,
id : SENSORS_HARDWARE_MODULE_ID,
name : "MultiHal Sensor Module",
author : "Google, Inc",
methods : &sensors_module_methods,
dso : NULL,
reserved : {0},
},
get_sensors_list : module__get_sensors_list
};
static int open_sensors(const struct hw_module_t* hw_module, const char* name,
struct hw_device_t** hw_device_out) {
ALOGI("open_sensors begin...");
lazy_init_modules();
// Create proxy device, to return later.
sensors_poll_context_t *dev = new sensors_poll_context_t();
memset(dev, 0, sizeof(sensors_poll_device_1_t));
dev->proxy_device.common.tag = HARDWARE_DEVICE_TAG;
dev->proxy_device.common.version = SENSORS_DEVICE_API_VERSION_1_0;
dev->proxy_device.common.module = const_cast<hw_module_t*>(hw_module);
dev->proxy_device.common.close = device__close;
dev->proxy_device.activate = device__activate;
dev->proxy_device.setDelay = device__setDelay;
dev->proxy_device.poll = device__poll;
dev->proxy_device.batch = device__batch;
dev->proxy_device.flush = device__flush;
dev->nextReadIndex = 0;
// Open() the subhal modules. Remember their devices in a vector parallel to sub_hw_modules.
for (std::vector<hw_module_t*>::iterator it = sub_hw_modules->begin();
it != sub_hw_modules->end(); it++) {
sensors_module_t *sensors_module = (sensors_module_t*) *it;
struct hw_device_t* sub_hw_device;
int sub_open_result = sensors_module->common.methods->open(*it, name, &sub_hw_device);
dev->addSubHwDevice(sub_hw_device);
}
// Prepare the output param and return
*hw_device_out = &dev->proxy_device.common;
ALOGI("...open_sensors end");
return 0;
}

View file

@ -0,0 +1,17 @@
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_SRC_FILES := \
SensorEventQueue_test.cpp
#LOCAL_CFLAGS := -g
LOCAL_MODULE := sensorstests
LOCAL_STATIC_LIBRARIES := libcutils libutils
LOCAL_C_INCLUDES := $(LOCAL_PATH)/.. bionic
LOCAL_LDLIBS += -lpthread
include $(BUILD_HOST_EXECUTABLE)

View file

@ -0,0 +1,199 @@
#include <stdio.h>
#include <stdlib.h>
#include <hardware/sensors.h>
#include <pthread.h>
#include <cutils/atomic.h>
#include "SensorEventQueue.cpp"
// Unit tests for the SensorEventQueue.
// Run it like this:
//
// make sensorstests -j32 && \
// out/host/linux-x86/obj/EXECUTABLES/sensorstests_intermediates/sensorstests
bool checkWritableBufferSize(SensorEventQueue* queue, int requested, int expected) {
sensors_event_t* buffer;
int actual = queue->getWritableRegion(requested, &buffer);
if (actual != expected) {
printf("Expected buffer size was %d; actual was %d\n", expected, actual);
return false;
}
return true;
}
bool checkSize(SensorEventQueue* queue, int expected) {
int actual = queue->getSize();
if (actual != expected) {
printf("Expected queue size was %d; actual was %d\n", expected, actual);
return false;
}
return true;
}
bool checkInt(char* msg, int expected, int actual) {
if (actual != expected) {
printf("%s; expected %d; actual was %d\n", msg, expected, actual);
return false;
}
return true;
}
bool testSimpleWriteSizeCounts() {
printf("testSimpleWriteSizeCounts\n");
SensorEventQueue* queue = new SensorEventQueue(10);
if (!checkSize(queue, 0)) return false;
if (!checkWritableBufferSize(queue, 11, 10)) return false;
if (!checkWritableBufferSize(queue, 10, 10)) return false;
if (!checkWritableBufferSize(queue, 9, 9)) return false;
queue->markAsWritten(7);
if (!checkSize(queue, 7)) return false;
if (!checkWritableBufferSize(queue, 4, 3)) return false;
if (!checkWritableBufferSize(queue, 3, 3)) return false;
if (!checkWritableBufferSize(queue, 2, 2)) return false;
queue->markAsWritten(3);
if (!checkSize(queue, 10)) return false;
if (!checkWritableBufferSize(queue, 1, 0)) return false;
printf("passed\n");
return true;
}
bool testWrappingWriteSizeCounts() {
printf("testWrappingWriteSizeCounts\n");
SensorEventQueue* queue = new SensorEventQueue(10);
queue->markAsWritten(9);
if (!checkSize(queue, 9)) return false;
// dequeue from the front
queue->dequeue();
queue->dequeue();
if (!checkSize(queue, 7)) return false;
if (!checkWritableBufferSize(queue, 100, 1)) return false;
// Write all the way to the end.
queue->markAsWritten(1);
if (!checkSize(queue, 8)) return false;
// Now the two free spots in the front are available.
if (!checkWritableBufferSize(queue, 100, 2)) return false;
// Fill the queue again
queue->markAsWritten(2);
if (!checkSize(queue, 10)) return false;
printf("passed\n");
return true;
}
struct TaskContext {
bool success;
SensorEventQueue* queue;
};
static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t dataAvailableCond = PTHREAD_COND_INITIALIZER;
int FULL_QUEUE_CAPACITY = 5;
int FULL_QUEUE_EVENT_COUNT = 31;
void *fullQueueWriterTask(void* ptr) {
TaskContext* ctx = (TaskContext*)ptr;
SensorEventQueue* queue = ctx->queue;
ctx->success = true;
int totalWaits = 0;
int totalWrites = 0;
sensors_event_t* buffer;
while (totalWrites < FULL_QUEUE_EVENT_COUNT) {
pthread_mutex_lock(&mutex);
if (queue->waitForSpace(&mutex)) {
totalWaits++;
printf(".");
}
int writableSize = queue->getWritableRegion(FULL_QUEUE_CAPACITY, &buffer);
queue->markAsWritten(writableSize);
totalWrites += writableSize;
for (int i = 0; i < writableSize; i++) {
printf("w");
}
pthread_cond_broadcast(&dataAvailableCond);
pthread_mutex_unlock(&mutex);
}
printf("\n");
ctx->success =
checkInt("totalWrites", FULL_QUEUE_EVENT_COUNT, totalWrites) &&
checkInt("totalWaits", FULL_QUEUE_EVENT_COUNT - FULL_QUEUE_CAPACITY, totalWaits);
return NULL;
}
bool fullQueueReaderShouldRead(int queueSize, int totalReads) {
if (queueSize == 0) {
return false;
}
int totalWrites = totalReads + queueSize;
return queueSize == FULL_QUEUE_CAPACITY || totalWrites == FULL_QUEUE_EVENT_COUNT;
}
void* fullQueueReaderTask(void* ptr) {
TaskContext* ctx = (TaskContext*)ptr;
SensorEventQueue* queue = ctx->queue;
int totalReads = 0;
while (totalReads < FULL_QUEUE_EVENT_COUNT) {
pthread_mutex_lock(&mutex);
// Only read if there are events,
// and either the queue is full, or if we're reading the last few events.
while (!fullQueueReaderShouldRead(queue->getSize(), totalReads)) {
pthread_cond_wait(&dataAvailableCond, &mutex);
}
queue->dequeue();
totalReads++;
printf("r");
pthread_mutex_unlock(&mutex);
}
printf("\n");
ctx->success = ctx->success && checkInt("totalreads", FULL_QUEUE_EVENT_COUNT, totalReads);
return NULL;
}
// Test internal queue-full waiting and broadcasting.
bool testFullQueueIo() {
printf("testFullQueueIo\n");
SensorEventQueue* queue = new SensorEventQueue(FULL_QUEUE_CAPACITY);
TaskContext readerCtx;
readerCtx.success = true;
readerCtx.queue = queue;
TaskContext writerCtx;
writerCtx.success = true;
writerCtx.queue = queue;
pthread_t writer, reader;
pthread_create(&reader, NULL, fullQueueReaderTask, &readerCtx);
pthread_create(&writer, NULL, fullQueueWriterTask, &writerCtx);
pthread_join(writer, NULL);
pthread_join(reader, NULL);
if (!readerCtx.success || !writerCtx.success) return false;
printf("passed\n");
return true;
}
int main(int argc, char **argv) {
if (testSimpleWriteSizeCounts() &&
testWrappingWriteSizeCounts() &&
testFullQueueIo()) {
printf("ALL PASSED\n");
} else {
printf("SOMETHING FAILED\n");
}
return EXIT_SUCCESS;
}