Merge "Substantial cleanup of camera2 HAL, and some initial unit tests"

This commit is contained in:
Eino-Ville Talvala 2012-05-14 18:03:27 -07:00 committed by Android (Google) Code Review
commit 3cc81fc180
5 changed files with 1804 additions and 168 deletions

View file

@ -18,6 +18,7 @@
#define ANDROID_INCLUDE_CAMERA2_H
#include "camera_common.h"
#include "system/camera_metadata.h"
/**
* Camera device HAL 2.0 [ CAMERA_DEVICE_API_VERSION_2_0 ]
@ -35,7 +36,7 @@
* version 2.0 of the camera module interface (as defined by
* camera_module_t.common.module_api_version).
*
* See camera_common.h for more details.
* See camera_common.h for more versioning details.
*
*/
@ -43,105 +44,219 @@ __BEGIN_DECLS
struct camera2_device;
/**
* Output image stream queue management
/**********************************************************************
*
* Input/output stream buffer queue interface definitions
*
*/
/**
* Output image stream queue interface. A set of these methods is provided to
* the HAL device in allocate_stream(), and are used to interact with the
* gralloc buffer queue for that stream. They may not be called until after
* allocate_stream returns.
*/
typedef struct camera2_stream_ops {
/**
* Get a buffer to fill from the queue. The size and format of the buffer
* are fixed for a given stream (defined in allocate_stream), and the stride
* should be queried from the platform gralloc module. The gralloc buffer
* will have been allocated based on the usage flags provided by
* allocate_stream, and will be locked for use.
*/
int (*dequeue_buffer)(struct camera2_stream_ops* w,
buffer_handle_t** buffer, int *stride);
buffer_handle_t** buffer);
/**
* Push a filled buffer to the stream to be used by the consumer.
*
* The timestamp represents the time at start of exposure of the first row
* of the image; it must be from a monotonic clock, and is measured in
* nanoseconds. The timestamps do not need to be comparable between
* different cameras, or consecutive instances of the same camera. However,
* they must be comparable between streams from the same camera. If one
* capture produces buffers for multiple streams, each stream must have the
* same timestamp for that buffer, and that timestamp must match the
* timestamp in the output frame metadata.
*/
int (*enqueue_buffer)(struct camera2_stream_ops* w,
buffer_handle_t* buffer);
int64_t timestamp,
buffer_handle_t* buffer);
/**
* Return a buffer to the queue without marking it as filled.
*/
int (*cancel_buffer)(struct camera2_stream_ops* w,
buffer_handle_t* buffer);
int (*set_buffer_count)(struct camera2_stream_ops* w, int count);
int (*set_buffers_geometry)(struct camera2_stream_ops* pw,
int w, int h, int format);
buffer_handle_t* buffer);
/**
* Set the crop window for subsequently enqueued buffers. The parameters are
* measured in pixels relative to the buffer width and height.
*/
int (*set_crop)(struct camera2_stream_ops *w,
int left, int top, int right, int bottom);
// Timestamps are measured in nanoseconds, and must be comparable
// and monotonically increasing between two frames in the same
// preview stream. They do not need to be comparable between
// consecutive or parallel preview streams, cameras, or app runs.
// The timestamp must be the time at the start of image exposure.
int (*set_timestamp)(struct camera2_stream_ops *w, int64_t timestamp);
int (*set_usage)(struct camera2_stream_ops* w, int usage);
int (*get_min_undequeued_buffer_count)(const struct camera2_stream_ops *w,
int *count);
int (*lock_buffer)(struct camera2_stream_ops* w,
buffer_handle_t* buffer);
int left, int top, int right, int bottom);
} camera2_stream_ops_t;
/**
* Special pixel format value used to indicate that the framework does not care
* what exact pixel format is to be used for an output stream. The device HAL is
* free to select any pixel format, platform-specific and otherwise, and this
* opaque value will be passed on to the platform gralloc module when buffers
* need to be allocated for the stream.
*/
enum {
CAMERA2_HAL_PIXEL_FORMAT_OPAQUE = -1
};
/**
* Input reprocess stream queue management. A set of these methods is provided
* to the HAL device in allocate_reprocess_stream(); they are used to interact with the
* reprocess stream's input gralloc buffer queue.
*/
typedef struct camera2_stream_in_ops {
/**
* Get the next buffer of image data to reprocess. The width, height, and
* format of the buffer is fixed in allocate_reprocess_stream(), and the
* stride and other details should be queried from the platform gralloc
* module as needed. The buffer will already be locked for use.
*/
int (*acquire_buffer)(struct camera2_stream_in_ops *w,
buffer_handle_t** buffer);
/**
* Return a used buffer to the buffer queue for reuse.
*/
int (*release_buffer)(struct camera2_stream_in_ops *w,
buffer_handle_t* buffer);
} camera2_stream_in_ops_t;
/**********************************************************************
*
* Metadata queue management, used for requests sent to HAL module, and for
* frames produced by the HAL.
*
* Queue protocol:
*
* The source holds the queue and its contents. At start, the queue is empty.
*
* 1. When the first metadata buffer is placed into the queue, the source must
* signal the destination by calling notify_queue_not_empty().
*
* 2. After receiving notify_queue_not_empty, the destination must call
* dequeue() once it's ready to handle the next buffer.
*
* 3. Once the destination has processed a buffer, it should try to dequeue
* another buffer. If there are no more buffers available, dequeue() will
* return NULL. In this case, when a buffer becomes available, the source
* must call notify_queue_not_empty() again. If the destination receives a
* NULL return from dequeue, it does not need to query the queue again until
* a notify_queue_not_empty() call is received from the source.
*
* 4. If the destination calls buffer_count() and receives 0, this does not mean
* that the source will provide a notify_queue_not_empty() call. The source
* must only provide such a call after the destination has received a NULL
* from dequeue, or on initial startup.
*
* 5. The dequeue() call in response to notify_queue_not_empty() may be on the
* same thread as the notify_queue_not_empty() call. The source must not
* deadlock in that case.
*/
typedef struct camera2_metadata_queue_src_ops {
enum {
CAMERA2_REQUEST_QUEUE_IS_BOTTOMLESS = -1
};
/**
* Request input queue protocol:
*
* The framework holds the queue and its contents. At start, the queue is empty.
*
* 1. When the first metadata buffer is placed into the queue, the framework
* signals the device by calling notify_request_queue_not_empty().
*
* 2. After receiving notify_request_queue_not_empty, the device must call
* dequeue() once it's ready to handle the next buffer.
*
* 3. Once the device has processed a buffer, and is ready for the next buffer,
* it must call dequeue() again instead of waiting for a notification. If
* there are no more buffers available, dequeue() will return NULL. After
* this point, when a buffer becomes available, the framework must call
* notify_request_queue_not_empty() again. If the device receives a NULL
* return from dequeue, it does not need to query the queue again until a
* notify_request_queue_not_empty() call is received from the source.
*
* 4. If the device calls buffer_count() and receives 0, this does not mean that
* the framework will provide a notify_request_queue_not_empty() call. The
* framework will only provide such a notification after the device has
* received a NULL from dequeue, or on initial startup.
*
* 5. The dequeue() call in response to notify_request_queue_not_empty() may be
* on the same thread as the notify_request_queue_not_empty() call, and may
* be performed from within the notify call.
*
* 6. All dequeued request buffers must be returned to the framework by calling
* free_request, including when errors occur, a device flush is requested, or
* when the device is shutting down.
*/
typedef struct camera2_request_queue_src_ops {
/**
* Get count of buffers in queue
* Get the count of request buffers pending in the queue. May return
* CAMERA2_REQUEST_QUEUE_IS_BOTTOMLESS if a repeating request (stream
* request) is currently configured. Calling this method has no effect on
* whether the notify_request_queue_not_empty() method will be called by the
* framework.
*/
int (*buffer_count)(camera2_metadata_queue_src_ops *q);
int (*request_count)(struct camera2_request_queue_src_ops *q);
/**
* Get a metadata buffer from the source. Returns OK if a request is
* available, placing a pointer to it in next_request.
* Get a metadata buffer from the framework. Returns OK if there is no
* error. If the queue is empty, returns NULL in buffer. In that case, the
* device must wait for a notify_request_queue_not_empty() message before
* attempting to dequeue again. Buffers obtained in this way must be
* returned to the framework with free_request().
*/
int (*dequeue)(camera2_metadata_queue_src_ops *q,
int (*dequeue_request)(struct camera2_request_queue_src_ops *q,
camera_metadata_t **buffer);
/**
* Return a metadata buffer to the source once it has been used
* Return a metadata buffer to the framework once it has been used, or if
* an error or shutdown occurs.
*/
int (*free)(camera2_metadata_queue_src_ops *q,
int (*free_request)(struct camera2_request_queue_src_ops *q,
camera_metadata_t *old_buffer);
} camera2_metadata_queue_src_ops_t;
} camera2_request_queue_src_ops_t;
typedef struct camera2_metadata_queue_dst_ops {
/**
* Frame output queue protocol:
*
* The framework holds the queue and its contents. At start, the queue is empty.
*
* 1. When the device is ready to fill an output metadata frame, it must dequeue
* a metadata buffer of the required size.
*
* 2. It should then fill the metadata buffer, and place it on the frame queue
* using enqueue_frame. The framework takes ownership of the frame.
*
* 3. In case of an error, a request to flush the pipeline, or shutdown, the
* device must return any affected dequeued frames to the framework by
* calling cancel_frame.
*/
typedef struct camera2_frame_queue_dst_ops {
/**
* Notify destination that the queue is no longer empty
* Get an empty metadata buffer to fill from the framework. The new metadata
* buffer will have room for entries number of metadata entries, plus
* data_bytes worth of extra storage. Frames dequeued here must be returned
* to the framework with either cancel_frame or enqueue_frame.
*/
int (*notify_queue_not_empty)(struct camera2_metadata_queue_dst_ops *);
int (*dequeue_frame)(struct camera2_frame_queue_dst_ops *q,
size_t entries, size_t data_bytes,
camera_metadata_t **buffer);
} camera2_metadata_queue_dst_ops_t;
/**
* Return a dequeued metadata buffer to the framework for reuse; do not mark it as
* filled. Use when encountering errors, or flushing the internal request queue.
*/
int (*cancel_frame)(struct camera2_frame_queue_dst_ops *q,
camera_metadata_t *buffer);
/* Defined in camera_metadata.h */
typedef struct vendor_tag_query_ops vendor_tag_query_ops_t;
/**
* Place a completed metadata frame on the frame output queue.
*/
int (*enqueue_frame)(struct camera2_frame_queue_dst_ops *q,
camera_metadata_t *buffer);
} camera2_frame_queue_dst_ops_t;
/**********************************************************************
*
* Notification callback and message definition, and trigger definitions
*
*/
/**
* Asynchronous notification callback from the HAL, fired for various
* reasons. Only for information independent of frame capture, or that require
* specific timing.
* specific timing. The user pointer must be the same one that was passed to the
* device in set_notify_callback().
*/
typedef void (*camera2_notify_callback)(int32_t msg_type,
int32_t ext1,
int32_t ext2,
int32_t ext3,
void *user);
/**
@ -149,15 +264,39 @@ typedef void (*camera2_notify_callback)(int32_t msg_type,
*/
enum {
/**
* A serious error has occurred. Argument ext1 contains the error code, and
* ext2 and user contain any error-specific information.
* An error has occurred. Argument ext1 contains the error code, and
* ext2 and ext3 contain any error-specific information.
*/
CAMERA2_MSG_ERROR = 0x0001,
/**
* The exposure of a given request has begun. Argument ext1 contains the
* request id.
* frame number, and ext2 and ext3 contain the low-order and high-order
* bytes of the timestamp for when exposure began.
* (timestamp = (ext3 << 32 | ext2))
*/
CAMERA2_MSG_SHUTTER = 0x0002
CAMERA2_MSG_SHUTTER = 0x0010,
/**
* The autofocus routine has changed state. Argument ext1 contains the new
* state; the values are the same as those for the metadata field
* android.control.afState. Ext2 contains the latest value passed to
* trigger_action(CAMERA2_TRIGGER_AUTOFOCUS), or 0 if that method has not
* been called.
*/
CAMERA2_MSG_AUTOFOCUS = 0x0020,
/**
* The autoexposure routine has changed state. Argument ext1 contains the
* new state; the values are the same as those for the metadata field
* android.control.aeState. Ext2 containst the latest value passed to
* trigger_action(CAMERA2_TRIGGER_PRECAPTURE_METERING), or 0 if that method
* has not been called.
*/
CAMERA2_MSG_AUTOEXPOSURE = 0x0021,
/**
* The auto-whitebalance routine has changed state. Argument ext1 contains
* the new state; the values are the same as those for the metadata field
* android.control.awbState.
*/
CAMERA2_MSG_AUTOWB = 0x0022
};
/**
@ -169,58 +308,137 @@ enum {
* no further frames or buffer streams will be produced by the
* device. Device should be treated as closed.
*/
CAMERA2_MSG_ERROR_HARDWARE_FAULT = 0x0001,
CAMERA2_MSG_ERROR_HARDWARE = 0x0001,
/**
* A serious failure occured. No further frames or buffer streams will be
* produced by the device. Device should be treated as closed. The client
* must reopen the device to use it again.
*/
CAMERA2_MSG_ERROR_DEVICE_FAULT = 0x0002,
CAMERA2_MSG_ERROR_DEVICE,
/**
* The camera service has failed. Device should be treated as released. The client
* must reopen the device to use it again.
* An error has occurred in processing a request. No output (metadata or
* buffers) will be produced for this request. ext2 contains the frame
* number of the request. Subsequent requests are unaffected, and the device
* remains operational.
*/
CAMERA2_MSG_ERROR_SERVER_FAULT = 0x0003
CAMERA2_MSG_ERROR_REQUEST,
/**
* An error has occurred in producing an output frame metadata buffer for a
* request, but image buffers for it will still be available. Subsequent
* requests are unaffected, and the device remains operational. ext2
* contains the frame number of the request.
*/
CAMERA2_MSG_ERROR_FRAME,
/**
* An error has occurred in placing an output buffer into a stream for a
* request. The frame metadata and other buffers may still be
* available. Subsequent requests are unaffected, and the device remains
* operational. ext2 contains the frame number of the request, and ext3
* contains the stream id.
*/
CAMERA2_MSG_ERROR_STREAM,
/**
* Number of error types
*/
CAMERA2_MSG_NUM_ERRORS
};
typedef struct camera2_device_ops {
/**
* Possible trigger ids for trigger_action()
*/
enum {
/**
* Input request queue methods
* Trigger an autofocus cycle. The effect of the trigger depends on the
* autofocus mode in effect when the trigger is received, which is the mode
* listed in the latest capture request to be dequeued. If the mode is off,
* the trigger has no effect. If autofocus is already scanning, the trigger
* has no effect. In AUTO, MACRO, or CONTINUOUS_* modes, the trigger
* otherwise begins an appropriate scan of the scene for focus. The state of
* the autofocus cycle can be tracked in android.control.afMode and the
* corresponding notification. Ext1 is an id that must be returned in
* subsequent auto-focus state change notifications.
*/
CAMERA2_TRIGGER_AUTOFOCUS = 0x0001,
/**
* Trigger a pre-capture metering cycle, which may include firing the flash
* to determine proper capture parameters. Typically, this trigger would be
* fired for a half-depress of a camera shutter key, or before a snapshot
* capture in general. The state of the metering cycle can be tracked in
* android.control.aeMode and the corresponding notification. If the
* auto-exposure mode is OFF, the trigger does nothing. Ext1 is an id that
* must be returned in subsequent auto-exposure state change notifications.
*/
CAMERA2_TRIGGER_PRECAPTURE_METERING
};
/**
* Possible template types for construct_default_request()
*/
enum {
/**
* Standard camera preview operation with 3A on auto.
*/
CAMERA2_TEMPLATE_PREVIEW = 1,
/**
* Standard camera high-quality still capture with 3A and flash on auto.
*/
CAMERA2_TEMPLATE_STILL_CAPTURE,
/**
* Standard video recording plus preview with 3A on auto, torch off.
*/
CAMERA2_TEMPLATE_VIDEO_RECORD,
/**
* High-quality still capture while recording video. Application will
* include preview, video record, and full-resolution YUV or JPEG streams in
* request. Must not cause stuttering on video stream. 3A on auto.
*/
CAMERA2_TEMPLATE_VIDEO_SNAPSHOT,
/**
* Zero-shutter-lag mode. Application will request preview and
* full-resolution YUV data for each frame, and reprocess it to JPEG when a
* still image is requested by user. Settings should provide highest-quality
* full-resolution images without compromising preview frame rate. 3A on
* auto.
*/
CAMERA2_TEMPLATE_ZERO_SHUTTER_LAG
};
/**********************************************************************
*
* Camera device operations
*
*/
typedef struct camera2_device_ops {
/**********************************************************************
* Request and frame queue setup and management methods
*/
/**
* Pass in input request queue interface methods.
*/
int (*set_request_queue_src_ops)(struct camera2_device *,
camera2_metadata_queue_src_ops *queue_src_ops);
int (*get_request_queue_dst_ops)(struct camera2_device *,
camera2_metadata_queue_dst_ops **queue_dst_ops);
camera2_request_queue_src_ops_t *request_src_ops);
/**
* Input reprocessing queue methods
* Notify device that the request queue is no longer empty. Must only be
* called when the first buffer is added a new queue, or after the source
* has returned NULL in response to a dequeue call.
*/
int (*set_reprocess_queue_ops)(struct camera2_device *,
camera2_metadata_queue_src_ops *queue_src_ops);
int (*get_reprocess_queue_dst_ops)(struct camera2_device *,
camera2_metadata_queue_dst_ops **queue_dst_ops);
int (*notify_request_queue_not_empty)(struct camera2_device *);
/**
* Output frame queue methods
* Pass in output frame queue interface methods
*/
int (*set_frame_queue_dst_ops)(struct camera2_device *,
camera2_metadata_queue_dst_ops *queue_dst_ops);
int (*get_frame_queue_src_ops)(struct camera2_device *,
camera2_metadata_queue_src_ops **queue_dst_ops);
camera2_frame_queue_dst_ops_t *frame_dst_ops);
/**
* Pass in notification methods
*/
int (*set_notify_callback)(struct camera2_device *,
camera2_notify_callback notify_cb);
/**
* Number of camera frames being processed by the device
* at the moment (frames that have had their request dequeued,
* but have not yet been enqueued onto output pipeline(s) )
* Number of camera requests being processed by the device at the moment
* (captures/reprocesses that have had their request dequeued, but have not
* yet been enqueued onto output pipeline(s) ). No streams may be released
* by the framework until the in-progress count is 0.
*/
int (*get_in_progress_count)(struct camera2_device *);
@ -228,52 +446,195 @@ typedef struct camera2_device_ops {
* Flush all in-progress captures. This includes all dequeued requests
* (regular or reprocessing) that have not yet placed any outputs into a
* stream or the frame queue. Partially completed captures must be completed
* normally. No new requests may be dequeued from the request or
* reprocessing queues until the flush completes.
* normally. No new requests may be dequeued from the request queue until
* the flush completes.
*/
int (*flush_captures_in_progress)(struct camera2_device *);
/**
* Camera stream management
* Create a filled-in default request for standard camera use cases.
*
* The device must return a complete request that is configured to meet the
* requested use case, which must be one of the CAMERA2_TEMPLATE_*
* enums. All request control fields must be included, except for
* android.request.outputStreams and android.request.frameNumber.
*
* The metadata buffer returned must be allocated with
* allocate_camera_metadata. The framework takes ownership of the buffer.
*/
int (*construct_default_request)(struct camera2_device *,
int request_template,
camera_metadata_t **request);
/**********************************************************************
* Stream management
*/
/**
* Operations on the input reprocessing stream
*/
int (*get_reprocess_stream_ops)(struct camera2_device *,
camera2_stream_ops_t **stream_ops);
/**
* Get the number of streams that can be simultaneously allocated.
* A request may include any allocated pipeline for its output, without
* causing a substantial delay in frame production.
*/
int (*get_stream_slot_count)(struct camera2_device *);
/**
* Allocate a new stream for use. Requires specifying which pipeline slot
* to use. Specifies the buffer width, height, and format.
* Error conditions:
* - Allocating an already-allocated slot without first releasing it
* - Requesting a width/height/format combination not listed as supported
* - Requesting a pipeline slot >= pipeline slot count.
* allocate_stream:
*
* Allocate a new output stream for use, defined by the output buffer width,
* height, target, and possibly the pixel format. Returns the new stream's
* ID, gralloc usage flags, minimum queue buffer count, and possibly the
* pixel format, on success. Error conditions:
*
* - Requesting a width/height/format combination not listed as
* supported by the sensor's static characteristics
*
* - Asking for too many streams of a given format type (2 bayer raw
* streams, for example).
*
* Input parameters:
*
* - width, height, format: Specification for the buffers to be sent through
* this stream. Format is a value from the HAL_PIXEL_FORMAT_* list, or
* CAMERA2_HAL_PIXEL_FORMAT_OPAQUE. In the latter case, the camera device
* must select an appropriate (possible platform-specific) HAL pixel
* format to return in format_actual. In the former case, format_actual
* must be set to match format.
*
* - stream_ops: A structure of function pointers for obtaining and queuing
* up buffers for this stream. The underlying stream will be configured
* based on the usage and max_buffers outputs. The methods in this
* structure may not be called until after allocate_stream returns.
*
* Output parameters:
*
* - stream_id: An unsigned integer identifying this stream. This value is
* used in incoming requests to identify the stream, and in releasing the
* stream.
*
* - format_actual: If the input format is CAMERA2_HAL_PIXEL_FORMAT_OPAQUE,
* then device must select the appropriate (possible platform-specific)
* pixel format and return it in *format_actual. It will be treated as an
* opaque value by the framework, and simply passed to the gralloc module
* when new buffers need to be allocated. If the input format is one of
* the values from HAL_PIXEL_FORMAT_* list, then *format_actual must be
* set equal to format. In the latter case, format_actual may also be
* NULL, in which case it can be ignored as an output.
*
* - usage: The gralloc usage mask needed by the HAL device for producing
* the requested type of data. This is used in allocating new gralloc
* buffers for the stream buffer queue.
*
* - max_buffers: The maximum number of buffers the HAL device may need to
* have dequeued at the same time. The device may not dequeue more buffers
* than this value at the same time.
*
*/
int (*allocate_stream)(
struct camera2_device *,
uint32_t stream_slot,
uint32_t width,
uint32_t height,
uint32_t format,
camera2_stream_ops_t *camera2_stream_ops);
struct camera2_device *,
// inputs
uint32_t width,
uint32_t height,
int format,
camera2_stream_ops_t *stream_ops,
// outputs
uint32_t *stream_id,
uint32_t *format_actual,
uint32_t *usage,
uint32_t *max_buffers);
/**
* Release a stream. Returns an error if called when
* get_in_progress_count is non-zero, or if the pipeline slot is not
* allocated.
* Register buffers for a given stream. This is called after a successful
* allocate_stream call, and before the first request referencing the stream
* is enqueued. This method is intended to allow the HAL device to map or
* otherwise prepare the buffers for later use. num_buffers is guaranteed to
* be at least max_buffers (from allocate_stream), but may be larger. The
* buffers will already be locked for use. At the end of the call, all the
* buffers must be ready to be returned to the queue.
*/
int (*register_stream_buffers)(
struct camera2_device *,
uint32_t stream_id,
int num_buffers,
buffer_handle_t *buffers);
/**
* Release a stream. Returns an error if called when get_in_progress_count
* is non-zero, or if the stream id is invalid.
*/
int (*release_stream)(
struct camera2_device *,
uint32_t stream_slot);
struct camera2_device *,
uint32_t stream_id);
/**
* allocate_reprocess_stream:
*
* Allocate a new input stream for use, defined by the output buffer width,
* height, and the pixel format. Returns the new stream's ID, gralloc usage
* flags, and required simultaneously acquirable buffer count, on
* success. Error conditions:
*
* - Requesting a width/height/format combination not listed as
* supported by the sensor's static characteristics
*
* - Asking for too many reprocessing streams to be configured at once.
*
* Input parameters:
*
* - width, height, format: Specification for the buffers to be sent through
* this stream. Format must be a value from the HAL_PIXEL_FORMAT_* list.
*
* - reprocess_stream_ops: A structure of function pointers for acquiring
* and releasing buffers for this stream. The underlying stream will be
* configured based on the usage and max_buffers outputs.
*
* Output parameters:
*
* - stream_id: An unsigned integer identifying this stream. This value is
* used in incoming requests to identify the stream, and in releasing the
* stream. These ids are numbered separately from the input stream ids.
*
* - consumer_usage: The gralloc usage mask needed by the HAL device for
* consuming the requested type of data. This is used in allocating new
* gralloc buffers for the stream buffer queue.
*
* - max_buffers: The maximum number of buffers the HAL device may need to
* have acquired at the same time. The device may not have more buffers
* acquired at the same time than this value.
*
*/
int (*allocate_reprocess_stream)(struct camera2_device *,
uint32_t width,
uint32_t height,
uint32_t format,
camera2_stream_in_ops_t *reprocess_stream_ops,
// outputs
uint32_t *stream_id,
uint32_t *consumer_usage,
uint32_t *max_buffers);
/**
* Release a reprocessing stream. Returns an error if called when
* get_in_progress_count is non-zero, or if the stream id is not
* valid.
*/
int (*release_reprocess_stream)(
struct camera2_device *,
uint32_t stream_id);
/**********************************************************************
* Miscellaneous methods
*/
/**
* Trigger asynchronous activity. This is used for triggering special
* behaviors of the camera 3A routines when they are in use. See the
* documentation for CAMERA2_TRIGGER_* above for details of the trigger ids
* and their arguments.
*/
int (*trigger_action)(struct camera2_device *,
uint32_t trigger_id,
int ext1,
int ext2);
/**
* Notification callback setup
*/
int (*set_notify_callback)(struct camera2_device *,
camera2_notify_callback notify_cb,
void *user);
/**
* Get methods to query for vendor extension metadata tag infomation. May
@ -282,13 +643,6 @@ typedef struct camera2_device_ops {
int (*get_metadata_vendor_tag_ops)(struct camera2_device*,
vendor_tag_query_ops_t **ops);
/**
* Release the camera hardware. Requests that are in flight will be
* canceled. No further buffers will be pushed into any allocated pipelines
* once this call returns.
*/
void (*release)(struct camera2_device *);
/**
* Dump state of the camera hardware
*/
@ -296,6 +650,11 @@ typedef struct camera2_device_ops {
} camera2_device_ops_t;
/**********************************************************************
*
* Camera device definition
*
*/
typedef struct camera2_device {
/**
* common.version must equal CAMERA_DEVICE_API_VERSION_2_0 to identify

View file

@ -2,13 +2,15 @@ LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)
LOCAL_SRC_FILES:= \
camera2.cpp
camera2.cpp \
camera2_utils.cpp
LOCAL_SHARED_LIBRARIES := \
libutils \
libstlport \
libhardware \
libcamera_metadata
libcamera_metadata \
libgui
LOCAL_STATIC_LIBRARIES := \
libgtest \
@ -21,7 +23,7 @@ LOCAL_C_INCLUDES += \
external/stlport/stlport \
system/media/camera/include \
LOCAL_MODULE:= camera2_hal_tests
LOCAL_MODULE:= camera2_test
LOCAL_MODULE_TAGS := tests
include $(BUILD_EXECUTABLE)

View file

@ -14,10 +14,21 @@
* limitations under the License.
*/
#include <system/camera_metadata.h>
#include <hardware/camera2.h>
#define LOG_TAG "Camera2_test"
#define LOG_NDEBUG 0
#include <utils/Log.h>
#include <gtest/gtest.h>
#include <iostream>
#include <fstream>
#include <utils/Vector.h>
#include <gui/CpuConsumer.h>
#include <system/camera_metadata.h>
#include "camera2_utils.h"
namespace android {
class Camera2Test: public testing::Test {
public:
@ -33,12 +44,16 @@ class Camera2Test: public testing::Test {
ASSERT_TRUE(NULL != module)
<< "No camera module was set by hw_get_module";
std::cout << " Camera module name: " << module->name << std::endl;
std::cout << " Camera module author: " << module->author << std::endl;
std::cout << " Camera module API version: 0x" << std::hex
<< module->module_api_version << std::endl;
std::cout << " Camera module HAL API version: 0x" << std::hex
<< module->hal_api_version << std::endl;
IF_ALOGV() {
std::cout << " Camera module name: "
<< module->name << std::endl;
std::cout << " Camera module author: "
<< module->author << std::endl;
std::cout << " Camera module API version: 0x" << std::hex
<< module->module_api_version << std::endl;
std::cout << " Camera module HAL API version: 0x" << std::hex
<< module->hal_api_version << std::endl;
}
int16_t version2_0 = CAMERA_MODULE_API_VERSION_2_0;
ASSERT_EQ(version2_0, module->module_api_version)
@ -52,7 +67,10 @@ class Camera2Test: public testing::Test {
sNumCameras = sCameraModule->get_number_of_cameras();
ASSERT_LT(0, sNumCameras) << "No camera devices available!";
std::cout << " Camera device count: " << sNumCameras << std::endl;
IF_ALOGV() {
std::cout << " Camera device count: " << sNumCameras << std::endl;
}
sCameraSupportsHal2 = new bool[sNumCameras];
for (int i = 0; i < sNumCameras; i++) {
@ -60,19 +78,24 @@ class Camera2Test: public testing::Test {
res = sCameraModule->get_camera_info(i, &info);
ASSERT_EQ(0, res)
<< "Failure getting camera info for camera " << i;
std::cout << " Camera device: " << std::dec
<< i << std::endl;;
std::cout << " Facing: " << std::dec
<< info.facing << std::endl;
std::cout << " Orientation: " << std::dec
<< info.orientation << std::endl;
std::cout << " Version: 0x" << std::hex <<
info.device_version << std::endl;
IF_ALOGV() {
std::cout << " Camera device: " << std::dec
<< i << std::endl;;
std::cout << " Facing: " << std::dec
<< info.facing << std::endl;
std::cout << " Orientation: " << std::dec
<< info.orientation << std::endl;
std::cout << " Version: 0x" << std::hex <<
info.device_version << std::endl;
}
if (info.device_version >= CAMERA_DEVICE_API_VERSION_2_0) {
sCameraSupportsHal2[i] = true;
ASSERT_TRUE(NULL != info.static_camera_characteristics);
std::cout << " Static camera metadata:" << std::endl;
dump_camera_metadata(info.static_camera_characteristics, 0, 1);
IF_ALOGV() {
std::cout << " Static camera metadata:" << std::endl;
dump_camera_metadata(info.static_camera_characteristics,
0, 1);
}
} else {
sCameraSupportsHal2[i] = false;
}
@ -83,13 +106,26 @@ class Camera2Test: public testing::Test {
return sCameraModule;
}
static const camera2_device_t *openCameraDevice(int id) {
static int getNumCameras() {
return sNumCameras;
}
static bool isHal2Supported(int id) {
return sCameraSupportsHal2[id];
}
static camera2_device_t *openCameraDevice(int id) {
ALOGV("Opening camera %d", id);
if (NULL == sCameraSupportsHal2) return NULL;
if (id >= sNumCameras) return NULL;
if (!sCameraSupportsHal2[id]) return NULL;
hw_device_t *device = NULL;
const camera_module_t *cam_module = getCameraModule();
if (cam_module == NULL) {
return NULL;
}
char camId[10];
int res;
@ -98,7 +134,7 @@ class Camera2Test: public testing::Test {
(const hw_module_t*)cam_module,
camId,
&device);
if (res < 0 || cam_module == NULL) {
if (res != NO_ERROR || device == NULL) {
return NULL;
}
camera2_device_t *cam_device =
@ -106,18 +142,439 @@ class Camera2Test: public testing::Test {
return cam_device;
}
private:
static status_t configureCameraDevice(camera2_device_t *dev,
MetadataQueue &requestQueue,
MetadataQueue &frameQueue,
NotifierListener &listener) {
status_t err;
err = dev->ops->set_request_queue_src_ops(dev,
requestQueue.getToConsumerInterface());
if (err != OK) return err;
requestQueue.setFromConsumerInterface(dev);
err = dev->ops->set_frame_queue_dst_ops(dev,
frameQueue.getToProducerInterface());
if (err != OK) return err;
err = listener.getNotificationsFrom(dev);
if (err != OK) return err;
vendor_tag_query_ops_t *vendor_metadata_tag_ops;
err = dev->ops->get_metadata_vendor_tag_ops(dev, &vendor_metadata_tag_ops);
if (err != OK) return err;
err = set_camera_metadata_vendor_tag_ops(vendor_metadata_tag_ops);
if (err != OK) return err;
return OK;
}
static status_t closeCameraDevice(camera2_device_t *cam_dev) {
int res;
ALOGV("Closing camera %p", cam_dev);
hw_device_t *dev = reinterpret_cast<hw_device_t *>(cam_dev);
res = dev->close(dev);
return res;
}
void setUpCamera(int id) {
ASSERT_GT(sNumCameras, id);
status_t res;
if (mDevice != NULL) {
closeCameraDevice(mDevice);
}
mDevice = openCameraDevice(id);
ASSERT_TRUE(NULL != mDevice) << "Failed to open camera device";
camera_info info;
res = sCameraModule->get_camera_info(id, &info);
ASSERT_EQ(OK, res);
mStaticInfo = info.static_camera_characteristics;
res = configureCameraDevice(mDevice,
mRequests,
mFrames,
mNotifications);
ASSERT_EQ(OK, res) << "Failure to configure camera device";
}
void setUpStream(sp<ISurfaceTexture> consumer,
int width, int height, int format, int *id) {
status_t res;
StreamAdapter* stream = new StreamAdapter(consumer);
ALOGV("Creating stream, format 0x%x, %d x %d", format, width, height);
res = stream->connectToDevice(mDevice, width, height, format);
ASSERT_EQ(NO_ERROR, res) << "Failed to connect to stream: "
<< strerror(-res);
mStreams.push_back(stream);
*id = stream->getId();
}
void disconnectStream(int id) {
status_t res;
unsigned int i=0;
for (; i < mStreams.size(); i++) {
if (mStreams[i]->getId() == id) {
res = mStreams[i]->disconnect();
ASSERT_EQ(NO_ERROR, res) <<
"Failed to disconnect stream " << id;
break;
}
}
ASSERT_GT(mStreams.size(), i) << "Stream id not found:" << id;
}
void getResolutionList(uint32_t format,
uint32_t **list,
size_t *count) {
uint32_t *availableFormats;
size_t availableFormatsCount;
status_t res;
res = find_camera_metadata_entry(mStaticInfo,
ANDROID_SCALER_AVAILABLE_FORMATS,
NULL,
(void**)&availableFormats,
&availableFormatsCount);
ASSERT_EQ(OK, res);
uint32_t formatIdx;
for (formatIdx=0; formatIdx < availableFormatsCount; formatIdx++) {
if (availableFormats[formatIdx] == format) break;
}
ASSERT_NE(availableFormatsCount, formatIdx)
<< "No support found for format 0x" << std::hex << format;
uint32_t *availableSizesPerFormat;
size_t availableSizesPerFormatCount;
res = find_camera_metadata_entry(mStaticInfo,
ANDROID_SCALER_AVAILABLE_SIZES_PER_FORMAT,
NULL,
(void**)&availableSizesPerFormat,
&availableSizesPerFormatCount);
ASSERT_EQ(OK, res);
int size_offset = 0;
for (unsigned int i=0; i < formatIdx; i++) {
size_offset += availableSizesPerFormat[i];
}
uint32_t *availableSizes;
size_t availableSizesCount;
res = find_camera_metadata_entry(mStaticInfo,
ANDROID_SCALER_AVAILABLE_SIZES,
NULL,
(void**)&availableSizes,
&availableSizesCount);
ASSERT_EQ(OK, res);
*list = availableSizes + size_offset;
*count = availableSizesPerFormat[formatIdx];
}
virtual void SetUp() {
const ::testing::TestInfo* const testInfo =
::testing::UnitTest::GetInstance()->current_test_info();
ALOGV("*** Starting test %s in test case %s", testInfo->name(), testInfo->test_case_name());
mDevice = NULL;
}
virtual void TearDown() {
for (unsigned int i = 0; i < mStreams.size(); i++) {
delete mStreams[i];
}
if (mDevice != NULL) {
closeCameraDevice(mDevice);
}
}
camera2_device *mDevice;
camera_metadata_t *mStaticInfo;
MetadataQueue mRequests;
MetadataQueue mFrames;
NotifierListener mNotifications;
Vector<StreamAdapter*> mStreams;
private:
static camera_module_t *sCameraModule;
static int sNumCameras;
static bool *sCameraSupportsHal2;
static int sNumCameras;
static bool *sCameraSupportsHal2;
};
camera_module_t *Camera2Test::sCameraModule = NULL;
int Camera2Test::sNumCameras = 0;
bool *Camera2Test::sCameraSupportsHal2 = NULL;
bool *Camera2Test::sCameraSupportsHal2 = NULL;
int Camera2Test::sNumCameras = 0;
static const nsecs_t USEC = 1000;
static const nsecs_t MSEC = 1000*USEC;
static const nsecs_t SEC = 1000*MSEC;
TEST_F(Camera2Test, Basic) {
ASSERT_TRUE(NULL != getCameraModule());
TEST_F(Camera2Test, OpenClose) {
status_t res;
for (int id = 0; id < getNumCameras(); id++) {
if (!isHal2Supported(id)) continue;
camera2_device_t *d = openCameraDevice(id);
ASSERT_TRUE(NULL != d) << "Failed to open camera device";
res = closeCameraDevice(d);
ASSERT_EQ(NO_ERROR, res) << "Failed to close camera device";
}
}
TEST_F(Camera2Test, Capture1Raw) {
status_t res;
for (int id = 0; id < getNumCameras(); id++) {
if (!isHal2Supported(id)) continue;
ASSERT_NO_FATAL_FAILURE(setUpCamera(id));
sp<CpuConsumer> rawConsumer = new CpuConsumer(1);
sp<FrameWaiter> rawWaiter = new FrameWaiter();
rawConsumer->setFrameAvailableListener(rawWaiter);
uint32_t *rawResolutions;
size_t rawResolutionsCount;
int format = HAL_PIXEL_FORMAT_RAW_SENSOR;
getResolutionList(format,
&rawResolutions, &rawResolutionsCount);
ASSERT_LT((uint32_t)0, rawResolutionsCount);
// Pick first available raw resolution
int width = rawResolutions[0];
int height = rawResolutions[1];
int streamId;
ASSERT_NO_FATAL_FAILURE(
setUpStream(rawConsumer->getProducerInterface(),
width, height, format, &streamId) );
camera_metadata_t *request;
request = allocate_camera_metadata(20, 2000);
uint8_t metadataMode = ANDROID_REQUEST_METADATA_FULL;
add_camera_metadata_entry(request,
ANDROID_REQUEST_METADATA_MODE,
(void**)&metadataMode, 1);
uint32_t outputStreams = streamId;
add_camera_metadata_entry(request,
ANDROID_REQUEST_OUTPUT_STREAMS,
(void**)&outputStreams, 1);
uint64_t exposureTime = 2*MSEC;
add_camera_metadata_entry(request,
ANDROID_SENSOR_EXPOSURE_TIME,
(void**)&exposureTime, 1);
uint64_t frameDuration = 30*MSEC;
add_camera_metadata_entry(request,
ANDROID_SENSOR_FRAME_DURATION,
(void**)&frameDuration, 1);
uint32_t sensitivity = 100;
add_camera_metadata_entry(request,
ANDROID_SENSOR_SENSITIVITY,
(void**)&sensitivity, 1);
uint32_t hourOfDay = 12;
add_camera_metadata_entry(request,
0x80000000, // EMULATOR_HOUROFDAY
&hourOfDay, 1);
IF_ALOGV() {
std::cout << "Input request: " << std::endl;
dump_camera_metadata(request, 0, 1);
}
res = mRequests.enqueue(request);
ASSERT_EQ(NO_ERROR, res) << "Can't enqueue request: " << strerror(-res);
res = mFrames.waitForBuffer(exposureTime + SEC);
ASSERT_EQ(NO_ERROR, res) << "No frame to get: " << strerror(-res);
camera_metadata_t *frame;
res = mFrames.dequeue(&frame);
ASSERT_EQ(NO_ERROR, res);
ASSERT_TRUE(frame != NULL);
IF_ALOGV() {
std::cout << "Output frame:" << std::endl;
dump_camera_metadata(frame, 0, 1);
}
res = rawWaiter->waitForFrame(exposureTime + SEC);
ASSERT_EQ(NO_ERROR, res);
CpuConsumer::LockedBuffer buffer;
res = rawConsumer->lockNextBuffer(&buffer);
ASSERT_EQ(NO_ERROR, res);
IF_ALOGV() {
const char *dumpname =
"/data/local/tmp/camera2_test-capture1raw-dump.raw";
ALOGV("Dumping raw buffer to %s", dumpname);
// Write to file
std::ofstream rawFile(dumpname);
for (unsigned int y = 0; y < buffer.height; y++) {
rawFile.write((const char *)(buffer.data + y * buffer.stride * 2),
buffer.width * 2);
}
rawFile.close();
}
res = rawConsumer->unlockBuffer(buffer);
ASSERT_EQ(NO_ERROR, res);
ASSERT_NO_FATAL_FAILURE(disconnectStream(streamId));
res = closeCameraDevice(mDevice);
ASSERT_EQ(NO_ERROR, res) << "Failed to close camera device";
}
}
TEST_F(Camera2Test, CaptureBurstRaw) {
status_t res;
for (int id = 0; id < getNumCameras(); id++) {
if (!isHal2Supported(id)) continue;
ASSERT_NO_FATAL_FAILURE(setUpCamera(id));
sp<CpuConsumer> rawConsumer = new CpuConsumer(1);
sp<FrameWaiter> rawWaiter = new FrameWaiter();
rawConsumer->setFrameAvailableListener(rawWaiter);
uint32_t *rawResolutions;
size_t rawResolutionsCount;
int format = HAL_PIXEL_FORMAT_RAW_SENSOR;
getResolutionList(format,
&rawResolutions, &rawResolutionsCount);
ASSERT_LT((uint32_t)0, rawResolutionsCount);
// Pick first available raw resolution
int width = rawResolutions[0];
int height = rawResolutions[1];
int streamId;
ASSERT_NO_FATAL_FAILURE(
setUpStream(rawConsumer->getProducerInterface(),
width, height, format, &streamId) );
camera_metadata_t *request;
request = allocate_camera_metadata(20, 2000);
uint8_t metadataMode = ANDROID_REQUEST_METADATA_FULL;
add_camera_metadata_entry(request,
ANDROID_REQUEST_METADATA_MODE,
(void**)&metadataMode, 1);
uint32_t outputStreams = streamId;
add_camera_metadata_entry(request,
ANDROID_REQUEST_OUTPUT_STREAMS,
(void**)&outputStreams, 1);
uint64_t frameDuration = 30*MSEC;
add_camera_metadata_entry(request,
ANDROID_SENSOR_FRAME_DURATION,
(void**)&frameDuration, 1);
uint32_t sensitivity = 100;
add_camera_metadata_entry(request,
ANDROID_SENSOR_SENSITIVITY,
(void**)&sensitivity, 1);
uint32_t hourOfDay = 12;
add_camera_metadata_entry(request,
0x80000000, // EMULATOR_HOUROFDAY
&hourOfDay, 1);
IF_ALOGV() {
std::cout << "Input request template: " << std::endl;
dump_camera_metadata(request, 0, 1);
}
int numCaptures = 10;
// Enqueue numCaptures requests with increasing exposure time
uint64_t exposureTime = 1 * MSEC;
for (int reqCount = 0; reqCount < numCaptures; reqCount++ ) {
camera_metadata_t *req;
req = allocate_camera_metadata(20, 2000);
append_camera_metadata(req, request);
add_camera_metadata_entry(req,
ANDROID_SENSOR_EXPOSURE_TIME,
(void**)&exposureTime, 1);
exposureTime *= 2;
res = mRequests.enqueue(req);
ASSERT_EQ(NO_ERROR, res) << "Can't enqueue request: "
<< strerror(-res);
}
// Get frames and image buffers one by one
for (int frameCount = 0; frameCount < 10; frameCount++) {
res = mFrames.waitForBuffer(SEC);
ASSERT_EQ(NO_ERROR, res) << "No frame to get: " << strerror(-res);
camera_metadata_t *frame;
res = mFrames.dequeue(&frame);
ASSERT_EQ(NO_ERROR, res);
ASSERT_TRUE(frame != NULL);
uint32_t *frameNumber;
res = find_camera_metadata_entry(frame,
ANDROID_REQUEST_FRAME_COUNT,
NULL, (void**)&frameNumber, NULL);
ASSERT_EQ(NO_ERROR, res);
ASSERT_EQ(frameCount, *frameNumber);
res = rawWaiter->waitForFrame(SEC);
ASSERT_EQ(NO_ERROR, res) <<
"Never got raw data for capture " << frameCount;
CpuConsumer::LockedBuffer buffer;
res = rawConsumer->lockNextBuffer(&buffer);
ASSERT_EQ(NO_ERROR, res);
IF_ALOGV() {
char dumpname[60];
snprintf(dumpname, 60,
"/data/local/tmp/camera2_test-capture1raw-dump_%d.raw",
frameCount);
ALOGV("Dumping raw buffer to %s", dumpname);
// Write to file
std::ofstream rawFile(dumpname);
for (unsigned int y = 0; y < buffer.height; y++) {
rawFile.write(
(const char *)(buffer.data + y * buffer.stride * 2),
buffer.width * 2);
}
rawFile.close();
}
res = rawConsumer->unlockBuffer(buffer);
ASSERT_EQ(NO_ERROR, res);
}
}
}
} // namespace android

View file

@ -0,0 +1,583 @@
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Utility classes for camera2 HAL testing
#define LOG_TAG "Camera2_test_utils"
#define LOG_NDEBUG 0
#include "utils/Log.h"
#include "camera2_utils.h"
namespace android {
/**
* MetadataQueue
*/
MetadataQueue::MetadataQueue():
mDevice(NULL),
mFrameCount(0),
mCount(0),
mStreamSlotCount(0),
mSignalConsumer(true)
{
camera2_request_queue_src_ops::dequeue_request = consumer_dequeue;
camera2_request_queue_src_ops::request_count = consumer_buffer_count;
camera2_request_queue_src_ops::free_request = consumer_free;
camera2_frame_queue_dst_ops::dequeue_frame = producer_dequeue;
camera2_frame_queue_dst_ops::cancel_frame = producer_cancel;
camera2_frame_queue_dst_ops::enqueue_frame = producer_enqueue;
}
MetadataQueue::~MetadataQueue() {
freeBuffers(mEntries.begin(), mEntries.end());
freeBuffers(mStreamSlot.begin(), mStreamSlot.end());
}
// Interface to camera2 HAL as consumer (input requests/reprocessing)
camera2_request_queue_src_ops_t* MetadataQueue::getToConsumerInterface() {
return static_cast<camera2_request_queue_src_ops_t*>(this);
}
void MetadataQueue::setFromConsumerInterface(camera2_device_t *d) {
mDevice = d;
}
camera2_frame_queue_dst_ops_t* MetadataQueue::getToProducerInterface() {
return static_cast<camera2_frame_queue_dst_ops_t*>(this);
}
// Real interfaces
status_t MetadataQueue::enqueue(camera_metadata_t *buf) {
Mutex::Autolock l(mMutex);
mCount++;
mEntries.push_back(buf);
notEmpty.signal();
if (mSignalConsumer && mDevice != NULL) {
mSignalConsumer = false;
mMutex.unlock();
ALOGV("%s: Signaling consumer", __FUNCTION__);
mDevice->ops->notify_request_queue_not_empty(mDevice);
mMutex.lock();
}
return OK;
}
int MetadataQueue::getBufferCount() {
Mutex::Autolock l(mMutex);
if (mStreamSlotCount > 0) {
return CAMERA2_REQUEST_QUEUE_IS_BOTTOMLESS;
}
return mCount;
}
status_t MetadataQueue::dequeue(camera_metadata_t **buf, bool incrementCount) {
Mutex::Autolock l(mMutex);
if (mCount == 0) {
if (mStreamSlotCount == 0) {
ALOGV("%s: Empty", __FUNCTION__);
*buf = NULL;
mSignalConsumer = true;
return OK;
}
ALOGV("%s: Streaming %d frames to queue", __FUNCTION__,
mStreamSlotCount);
for (List<camera_metadata_t*>::iterator slotEntry = mStreamSlot.begin();
slotEntry != mStreamSlot.end();
slotEntry++ ) {
size_t entries = get_camera_metadata_entry_count(*slotEntry);
size_t dataBytes = get_camera_metadata_data_count(*slotEntry);
camera_metadata_t *copy = allocate_camera_metadata(entries, dataBytes);
append_camera_metadata(copy, *slotEntry);
mEntries.push_back(copy);
}
mCount = mStreamSlotCount;
}
ALOGV("MetadataQueue: deque (%d buffers)", mCount);
camera_metadata_t *b = *(mEntries.begin());
mEntries.erase(mEntries.begin());
if (incrementCount) {
add_camera_metadata_entry(b,
ANDROID_REQUEST_FRAME_COUNT,
(void**)&mFrameCount, 1);
mFrameCount++;
}
*buf = b;
mCount--;
return OK;
}
status_t MetadataQueue::waitForBuffer(nsecs_t timeout) {
Mutex::Autolock l(mMutex);
status_t res;
while (mCount == 0) {
res = notEmpty.waitRelative(mMutex,timeout);
if (res != OK) return res;
}
return OK;
}
status_t MetadataQueue::setStreamSlot(camera_metadata_t *buf) {
if (buf == NULL) {
freeBuffers(mStreamSlot.begin(), mStreamSlot.end());
mStreamSlotCount = 0;
return OK;
}
if (mStreamSlotCount > 1) {
List<camera_metadata_t*>::iterator deleter = ++mStreamSlot.begin();
freeBuffers(++mStreamSlot.begin(), mStreamSlot.end());
mStreamSlotCount = 1;
}
if (mStreamSlotCount == 1) {
free_camera_metadata( *(mStreamSlot.begin()) );
*(mStreamSlot.begin()) = buf;
} else {
mStreamSlot.push_front(buf);
mStreamSlotCount = 1;
}
return OK;
}
status_t MetadataQueue::setStreamSlot(const List<camera_metadata_t*> &bufs) {
if (mStreamSlotCount > 0) {
freeBuffers(mStreamSlot.begin(), mStreamSlot.end());
}
mStreamSlot = bufs;
mStreamSlotCount = mStreamSlot.size();
return OK;
}
status_t MetadataQueue::freeBuffers(List<camera_metadata_t*>::iterator start,
List<camera_metadata_t*>::iterator end) {
while (start != end) {
free_camera_metadata(*start);
start = mStreamSlot.erase(start);
}
return OK;
}
int MetadataQueue::consumer_buffer_count(
camera2_request_queue_src_ops_t *q) {
MetadataQueue *queue = static_cast<MetadataQueue *>(q);
return queue->getBufferCount();
}
int MetadataQueue::consumer_dequeue(camera2_request_queue_src_ops_t *q,
camera_metadata_t **buffer) {
MetadataQueue *queue = static_cast<MetadataQueue *>(q);
return queue->dequeue(buffer, true);
}
int MetadataQueue::consumer_free(camera2_request_queue_src_ops_t *q,
camera_metadata_t *old_buffer) {
MetadataQueue *queue = static_cast<MetadataQueue *>(q);
free_camera_metadata(old_buffer);
return OK;
}
int MetadataQueue::producer_dequeue(camera2_frame_queue_dst_ops_t *q,
size_t entries, size_t bytes,
camera_metadata_t **buffer) {
camera_metadata_t *new_buffer =
allocate_camera_metadata(entries, bytes);
if (new_buffer == NULL) return NO_MEMORY;
*buffer = new_buffer;
return OK;
}
int MetadataQueue::producer_cancel(camera2_frame_queue_dst_ops_t *q,
camera_metadata_t *old_buffer) {
free_camera_metadata(old_buffer);
return OK;
}
int MetadataQueue::producer_enqueue(camera2_frame_queue_dst_ops_t *q,
camera_metadata_t *filled_buffer) {
MetadataQueue *queue = static_cast<MetadataQueue *>(q);
return queue->enqueue(filled_buffer);
}
/**
* NotifierListener
*/
NotifierListener::NotifierListener() {
}
status_t NotifierListener::getNotificationsFrom(camera2_device *dev) {
if (!dev) return BAD_VALUE;
status_t err;
err = dev->ops->set_notify_callback(dev,
notify_callback_dispatch,
(void*)this);
return err;
}
status_t NotifierListener::getNextNotification(int32_t *msg_type,
int32_t *ext1,
int32_t *ext2,
int32_t *ext3) {
Mutex::Autolock l(mMutex);
if (mNotifications.size() == 0) return BAD_VALUE;
return getNextNotificationLocked(msg_type, ext1, ext2, ext3);
}
status_t NotifierListener::waitForNotification(int32_t *msg_type,
int32_t *ext1,
int32_t *ext2,
int32_t *ext3) {
Mutex::Autolock l(mMutex);
while (mNotifications.size() == 0) {
mNewNotification.wait(mMutex);
}
return getNextNotificationLocked(msg_type, ext1, ext2, ext3);
}
int NotifierListener::numNotifications() {
Mutex::Autolock l(mMutex);
return mNotifications.size();
}
status_t NotifierListener::getNextNotificationLocked(int32_t *msg_type,
int32_t *ext1,
int32_t *ext2,
int32_t *ext3) {
*msg_type = mNotifications.begin()->msg_type;
*ext1 = mNotifications.begin()->ext1;
*ext2 = mNotifications.begin()->ext2;
*ext3 = mNotifications.begin()->ext3;
mNotifications.erase(mNotifications.begin());
return OK;
}
void NotifierListener::onNotify(int32_t msg_type,
int32_t ext1,
int32_t ext2,
int32_t ext3) {
Mutex::Autolock l(mMutex);
mNotifications.push_back(Notification(msg_type, ext1, ext2, ext3));
mNewNotification.signal();
}
void NotifierListener::notify_callback_dispatch(int32_t msg_type,
int32_t ext1,
int32_t ext2,
int32_t ext3,
void *user) {
NotifierListener *me = reinterpret_cast<NotifierListener*>(user);
me->onNotify(msg_type, ext1, ext2, ext3);
}
/**
* StreamAdapter
*/
#ifndef container_of
#define container_of(ptr, type, member) \
(type *)((char*)(ptr) - offsetof(type, member))
#endif
StreamAdapter::StreamAdapter(sp<ISurfaceTexture> consumer):
mState(UNINITIALIZED), mDevice(NULL),
mId(-1),
mWidth(0), mHeight(0), mFormatRequested(0)
{
mConsumerInterface = new SurfaceTextureClient(consumer);
camera2_stream_ops::dequeue_buffer = dequeue_buffer;
camera2_stream_ops::enqueue_buffer = enqueue_buffer;
camera2_stream_ops::cancel_buffer = cancel_buffer;
camera2_stream_ops::set_crop = set_crop;
}
StreamAdapter::~StreamAdapter() {
disconnect();
}
status_t StreamAdapter::connectToDevice(camera2_device_t *d,
uint32_t width, uint32_t height, int format) {
if (mState != UNINITIALIZED) return INVALID_OPERATION;
if (d == NULL) {
ALOGE("%s: Null device passed to stream adapter", __FUNCTION__);
return BAD_VALUE;
}
status_t res;
mWidth = width;
mHeight = height;
mFormatRequested = format;
// Allocate device-side stream interface
uint32_t id;
uint32_t formatActual;
uint32_t usage;
uint32_t maxBuffers = 2;
res = d->ops->allocate_stream(d,
mWidth, mHeight, mFormatRequested, getStreamOps(),
&id, &formatActual, &usage, &maxBuffers);
if (res != OK) {
ALOGE("%s: Device stream allocation failed: %s (%d)",
__FUNCTION__, strerror(-res), res);
mState = UNINITIALIZED;
return res;
}
mDevice = d;
mId = id;
mFormat = formatActual;
mUsage = usage;
mMaxProducerBuffers = maxBuffers;
// Configure consumer-side ANativeWindow interface
res = native_window_api_connect(mConsumerInterface.get(),
NATIVE_WINDOW_API_CAMERA);
if (res != OK) {
ALOGE("%s: Unable to connect to native window for stream %d",
__FUNCTION__, mId);
mState = ALLOCATED;
return res;
}
res = native_window_set_usage(mConsumerInterface.get(), mUsage);
if (res != OK) {
ALOGE("%s: Unable to configure usage %08x for stream %d",
__FUNCTION__, mUsage, mId);
mState = CONNECTED;
return res;
}
res = native_window_set_buffers_geometry(mConsumerInterface.get(),
mWidth, mHeight, mFormat);
if (res != OK) {
ALOGE("%s: Unable to configure buffer geometry"
" %d x %d, format 0x%x for stream %d",
__FUNCTION__, mWidth, mHeight, mFormat, mId);
mState = CONNECTED;
return res;
}
int maxConsumerBuffers;
res = mConsumerInterface->query(mConsumerInterface.get(),
NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, &maxConsumerBuffers);
if (res != OK) {
ALOGE("%s: Unable to query consumer undequeued"
" buffer count for stream %d", __FUNCTION__, mId);
mState = CONNECTED;
return res;
}
mMaxConsumerBuffers = maxConsumerBuffers;
ALOGV("%s: Producer wants %d buffers, consumer wants %d", __FUNCTION__,
mMaxProducerBuffers, mMaxConsumerBuffers);
int totalBuffers = mMaxConsumerBuffers + mMaxProducerBuffers;
res = native_window_set_buffer_count(mConsumerInterface.get(),
totalBuffers);
if (res != OK) {
ALOGE("%s: Unable to set buffer count for stream %d",
__FUNCTION__, mId);
mState = CONNECTED;
return res;
}
// Register allocated buffers with HAL device
buffer_handle_t *buffers = new buffer_handle_t[totalBuffers];
ANativeWindowBuffer **anwBuffers = new ANativeWindowBuffer*[totalBuffers];
int bufferIdx = 0;
for (; bufferIdx < totalBuffers; bufferIdx++) {
res = mConsumerInterface->dequeueBuffer(mConsumerInterface.get(),
&anwBuffers[bufferIdx]);
if (res != OK) {
ALOGE("%s: Unable to dequeue buffer %d for initial registration for"
"stream %d", __FUNCTION__, bufferIdx, mId);
mState = CONNECTED;
goto cleanUpBuffers;
}
res = mConsumerInterface->lockBuffer(mConsumerInterface.get(),
anwBuffers[bufferIdx]);
if (res != OK) {
ALOGE("%s: Unable to lock buffer %d for initial registration for"
"stream %d", __FUNCTION__, bufferIdx, mId);
mState = CONNECTED;
bufferIdx++;
goto cleanUpBuffers;
}
buffers[bufferIdx] = anwBuffers[bufferIdx]->handle;
}
res = mDevice->ops->register_stream_buffers(mDevice,
mId,
totalBuffers,
buffers);
if (res != OK) {
ALOGE("%s: Unable to register buffers with HAL device for stream %d",
__FUNCTION__, mId);
mState = CONNECTED;
} else {
mState = ACTIVE;
}
cleanUpBuffers:
for (int i = 0; i < bufferIdx; i++) {
res = mConsumerInterface->cancelBuffer(mConsumerInterface.get(),
anwBuffers[i]);
}
delete anwBuffers;
delete buffers;
return res;
}
status_t StreamAdapter::disconnect() {
status_t res;
if (mState >= ALLOCATED) {
res = mDevice->ops->release_stream(mDevice, mId);
if (res != OK) {
ALOGE("%s: Unable to release stream %d",
__FUNCTION__, mId);
return res;
}
}
if (mState >= CONNECTED) {
res = native_window_api_disconnect(mConsumerInterface.get(),
NATIVE_WINDOW_API_CAMERA);
if (res != OK) {
ALOGE("%s: Unable to disconnect stream %d from native window",
__FUNCTION__, mId);
return res;
}
}
mId = -1;
mState = DISCONNECTED;
return OK;
}
int StreamAdapter::getId() {
return mId;
}
camera2_stream_ops *StreamAdapter::getStreamOps() {
return static_cast<camera2_stream_ops *>(this);
}
ANativeWindow* StreamAdapter::toANW(camera2_stream_ops_t *w) {
return static_cast<StreamAdapter*>(w)->mConsumerInterface.get();
}
int StreamAdapter::dequeue_buffer(camera2_stream_ops_t *w,
buffer_handle_t** buffer) {
int res;
int state = static_cast<StreamAdapter*>(w)->mState;
if (state != ACTIVE) {
ALOGE("%s: Called when in bad state: %d", __FUNCTION__, state);
return INVALID_OPERATION;
}
ANativeWindow *a = toANW(w);
ANativeWindowBuffer* anb;
res = a->dequeueBuffer(a, &anb);
if (res != OK) return res;
res = a->lockBuffer(a, anb);
if (res != OK) return res;
*buffer = &(anb->handle);
return res;
}
int StreamAdapter::enqueue_buffer(camera2_stream_ops_t* w,
int64_t timestamp,
buffer_handle_t* buffer) {
int state = static_cast<StreamAdapter*>(w)->mState;
if (state != ACTIVE) {
ALOGE("%s: Called when in bad state: %d", __FUNCTION__, state);
return INVALID_OPERATION;
}
ANativeWindow *a = toANW(w);
status_t err;
err = native_window_set_buffers_timestamp(a, timestamp);
if (err != OK) return err;
return a->queueBuffer(a,
container_of(buffer, ANativeWindowBuffer, handle));
}
int StreamAdapter::cancel_buffer(camera2_stream_ops_t* w,
buffer_handle_t* buffer) {
int state = static_cast<StreamAdapter*>(w)->mState;
if (state != ACTIVE) {
ALOGE("%s: Called when in bad state: %d", __FUNCTION__, state);
return INVALID_OPERATION;
}
ANativeWindow *a = toANW(w);
return a->cancelBuffer(a,
container_of(buffer, ANativeWindowBuffer, handle));
}
int StreamAdapter::set_crop(camera2_stream_ops_t* w,
int left, int top, int right, int bottom) {
int state = static_cast<StreamAdapter*>(w)->mState;
if (state != ACTIVE) {
ALOGE("%s: Called when in bad state: %d", __FUNCTION__, state);
return INVALID_OPERATION;
}
ANativeWindow *a = toANW(w);
android_native_rect_t crop = { left, top, right, bottom };
return native_window_set_crop(a, &crop);
}
/**
* FrameWaiter
*/
FrameWaiter::FrameWaiter():
mPendingFrames(0) {
}
status_t FrameWaiter::waitForFrame(nsecs_t timeout) {
status_t res;
Mutex::Autolock lock(mMutex);
while (mPendingFrames == 0) {
res = mCondition.waitRelative(mMutex, timeout);
if (res != OK) return res;
}
mPendingFrames--;
return OK;
}
void FrameWaiter::onFrameAvailable() {
Mutex::Autolock lock(mMutex);
mPendingFrames++;
mCondition.signal();
}
} // namespace android

View file

@ -0,0 +1,235 @@
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Utility classes for camera2 HAL testing
#include <system/camera_metadata.h>
#include <hardware/camera2.h>
#include <gui/SurfaceTextureClient.h>
#include <gui/CpuConsumer.h>
#include <utils/List.h>
#include <utils/Mutex.h>
#include <utils/Condition.h>
namespace android {
/**
* Queue class for both sending requests to a camera2 device, and for receiving
* frames from a camera2 device.
*/
class MetadataQueue: public camera2_request_queue_src_ops_t,
public camera2_frame_queue_dst_ops_t {
public:
MetadataQueue();
~MetadataQueue();
// Interface to camera2 HAL device, either for requests (device is consumer)
// or for frames (device is producer)
camera2_request_queue_src_ops_t* getToConsumerInterface();
void setFromConsumerInterface(camera2_device_t *d);
camera2_frame_queue_dst_ops_t* getToProducerInterface();
// Real interfaces. On enqueue, queue takes ownership of buffer pointer
// On dequeue, user takes ownership of buffer pointer.
status_t enqueue(camera_metadata_t *buf);
status_t dequeue(camera_metadata_t **buf, bool incrementCount = true);
int getBufferCount();
status_t waitForBuffer(nsecs_t timeout);
// Set repeating buffer(s); if the queue is empty on a dequeue call, the
// queue copies the contents of the stream slot into the queue, and then
// dequeues the first new entry.
status_t setStreamSlot(camera_metadata_t *buf);
status_t setStreamSlot(const List<camera_metadata_t*> &bufs);
private:
status_t freeBuffers(List<camera_metadata_t*>::iterator start,
List<camera_metadata_t*>::iterator end);
camera2_device_t *mDevice;
Mutex mMutex;
Condition notEmpty;
int mFrameCount;
int mCount;
List<camera_metadata_t*> mEntries;
int mStreamSlotCount;
List<camera_metadata_t*> mStreamSlot;
bool mSignalConsumer;
static int consumer_buffer_count(camera2_request_queue_src_ops_t *q);
static int consumer_dequeue(camera2_request_queue_src_ops_t *q,
camera_metadata_t **buffer);
static int consumer_free(camera2_request_queue_src_ops_t *q,
camera_metadata_t *old_buffer);
static int producer_dequeue(camera2_frame_queue_dst_ops_t *q,
size_t entries, size_t bytes,
camera_metadata_t **buffer);
static int producer_cancel(camera2_frame_queue_dst_ops_t *q,
camera_metadata_t *old_buffer);
static int producer_enqueue(camera2_frame_queue_dst_ops_t *q,
camera_metadata_t *filled_buffer);
};
/**
* Basic class to receive and queue up notifications from the camera device
*/
class NotifierListener {
public:
NotifierListener();
status_t getNotificationsFrom(camera2_device *dev);
status_t getNextNotification(int32_t *msg_type, int32_t *ext1,
int32_t *ext2, int32_t *ext3);
status_t waitForNotification(int32_t *msg_type, int32_t *ext1,
int32_t *ext2, int32_t *ext3);
int numNotifications();
private:
status_t getNextNotificationLocked(int32_t *msg_type,
int32_t *ext1, int32_t *ext2, int32_t *ext3);
struct Notification {
Notification(int32_t type, int32_t e1, int32_t e2, int32_t e3):
msg_type(type),
ext1(e1),
ext2(e2),
ext3(e3)
{}
int32_t msg_type;
int32_t ext1;
int32_t ext2;
int32_t ext3;
};
List<Notification> mNotifications;
Mutex mMutex;
Condition mNewNotification;
void onNotify(int32_t msg_type,
int32_t ext1,
int32_t ext2,
int32_t ext3);
static void notify_callback_dispatch(int32_t msg_type,
int32_t ext1,
int32_t ext2,
int32_t ext3,
void *user);
};
/**
* Adapter from an ISurfaceTexture interface to camera2 device stream ops.
* Also takes care of allocating/deallocating stream in device interface
*/
class StreamAdapter: public camera2_stream_ops {
public:
StreamAdapter(sp<ISurfaceTexture> consumer);
~StreamAdapter();
status_t connectToDevice(camera2_device_t *d,
uint32_t width, uint32_t height, int format);
status_t disconnect();
// Get stream ID. Only valid after a successful connectToDevice call.
int getId();
private:
enum {
ERROR = -1,
DISCONNECTED = 0,
UNINITIALIZED,
ALLOCATED,
CONNECTED,
ACTIVE
} mState;
sp<ANativeWindow> mConsumerInterface;
camera2_device_t *mDevice;
uint32_t mId;
uint32_t mWidth;
uint32_t mHeight;
uint32_t mFormat;
uint32_t mUsage;
uint32_t mMaxProducerBuffers;
uint32_t mMaxConsumerBuffers;
int mFormatRequested;
camera2_stream_ops *getStreamOps();
static ANativeWindow* toANW(camera2_stream_ops_t *w);
static int dequeue_buffer(camera2_stream_ops_t *w,
buffer_handle_t** buffer);
static int enqueue_buffer(camera2_stream_ops_t* w,
int64_t timestamp,
buffer_handle_t* buffer);
static int cancel_buffer(camera2_stream_ops_t* w,
buffer_handle_t* buffer);
static int set_crop(camera2_stream_ops_t* w,
int left, int top, int right, int bottom);
};
/**
* Simple class to wait on the CpuConsumer to have a frame available
*/
class FrameWaiter : public CpuConsumer::FrameAvailableListener {
public:
FrameWaiter();
/**
* Wait for max timeout nanoseconds for a new frame. Returns
* OK if a frame is available, TIMED_OUT if the timeout was reached.
*/
status_t waitForFrame(nsecs_t timeout);
virtual void onFrameAvailable();
int mPendingFrames;
Mutex mMutex;
Condition mCondition;
};
}