Merge tm-dev-plus-aosp-without-vendor@8763363

Bug: 236760014
Merged-In: If82a5bf302cb68a2c5b486006e4679fbfc8ee545
Change-Id: I9f63475a68f386bbb8ad768a8f2075e6c3c55eaa
This commit is contained in:
Xin Li 2022-06-27 23:38:54 +00:00
commit 7c0bc319e9
12 changed files with 570 additions and 276 deletions

View file

@ -61,6 +61,7 @@ cc_library_headers {
apex_available: [ apex_available: [
"//apex_available:platform", "//apex_available:platform",
"com.android.bluetooth", "com.android.bluetooth",
"com.android.media.swcodec",
], ],
min_sdk_version: "29", min_sdk_version: "29",
host_supported: true, host_supported: true,

View file

@ -52,6 +52,12 @@ enum {
SENSOR_TYPE_LOW_LATENCY_OFFBODY_DETECT = 34, SENSOR_TYPE_LOW_LATENCY_OFFBODY_DETECT = 34,
SENSOR_TYPE_ACCELEROMETER_UNCALIBRATED = 35, SENSOR_TYPE_ACCELEROMETER_UNCALIBRATED = 35,
SENSOR_TYPE_HINGE_ANGLE = 36, SENSOR_TYPE_HINGE_ANGLE = 36,
SENSOR_TYPE_HEAD_TRACKER = 37,
SENSOR_TYPE_ACCELEROMETER_LIMITED_AXES = 38,
SENSOR_TYPE_GYROSCOPE_LIMITED_AXES = 39,
SENSOR_TYPE_ACCELEROMETER_LIMITED_AXES_UNCALIBRATED = 40,
SENSOR_TYPE_GYROSCOPE_LIMITED_AXES_UNCALIBRATED = 41,
SENSOR_TYPE_HEADING = 42,
SENSOR_TYPE_DEVICE_PRIVATE_BASE = 65536 /* 0x10000 */, SENSOR_TYPE_DEVICE_PRIVATE_BASE = 65536 /* 0x10000 */,
}; };

View file

@ -186,6 +186,12 @@ enum {
#define SENSOR_STRING_TYPE_LOW_LATENCY_OFFBODY_DETECT "android.sensor.low_latency_offbody_detect" #define SENSOR_STRING_TYPE_LOW_LATENCY_OFFBODY_DETECT "android.sensor.low_latency_offbody_detect"
#define SENSOR_STRING_TYPE_ACCELEROMETER_UNCALIBRATED "android.sensor.accelerometer_uncalibrated" #define SENSOR_STRING_TYPE_ACCELEROMETER_UNCALIBRATED "android.sensor.accelerometer_uncalibrated"
#define SENSOR_STRING_TYPE_HINGE_ANGLE "android.sensor.hinge_angle" #define SENSOR_STRING_TYPE_HINGE_ANGLE "android.sensor.hinge_angle"
#define SENSOR_STRING_TYPE_HEAD_TRACKER "android.sensor.head_tracker"
#define SENSOR_STRING_TYPE_ACCELEROMETER_LIMITED_AXES "android.sensor.accelerometer_limited_axes"
#define SENSOR_STRING_TYPE_GYROSCOPE_LIMITED_AXES "android.sensor.gyroscope_limited_axes"
#define SENSOR_STRING_TYPE_ACCELEROMETER_LIMITED_AXES_UNCALIBRATED "android.sensor.accelerometer_limited_axes_uncalibrated"
#define SENSOR_STRING_TYPE_GYROSCOPE_LIMITED_AXES_UNCALIBRATED "android.sensor.gyroscope_limited_axes_uncalibrated"
#define SENSOR_STRING_TYPE_HEADING "android.sensor.heading"
/** /**
* Values returned by the accelerometer in various locations in the universe. * Values returned by the accelerometer in various locations in the universe.
@ -291,6 +297,76 @@ typedef struct {
}; };
} additional_info_event_t; } additional_info_event_t;
typedef struct {
float rx;
float ry;
float rz;
float vx;
float vy;
float vz;
int32_t discontinuity_count;
} head_tracker_event_t;
/**
* limited axes imu event data
*/
typedef struct {
union {
float calib[3];
struct {
float x;
float y;
float z;
};
};
union {
float supported[3];
struct {
float x_supported;
float y_supported;
float z_supported;
};
};
} limited_axes_imu_event_t;
/**
* limited axes uncalibrated imu event data
*/
typedef struct {
union {
float uncalib[3];
struct {
float x_uncalib;
float y_uncalib;
float z_uncalib;
};
};
union {
float bias[3];
struct {
float x_bias;
float y_bias;
float z_bias;
};
};
union {
float supported[3];
struct {
float x_supported;
float y_supported;
float z_supported;
};
};
} limited_axes_imu_uncalibrated_event_t;
/**
* Heading event data
*/
typedef struct {
float heading;
float accuracy;
} heading_event_t;
/** /**
* Union of the various types of sensor data * Union of the various types of sensor data
* that can be returned. * that can be returned.
@ -368,6 +444,26 @@ typedef struct sensors_event_t {
* SENSOR_TYPE_ADDITIONAL_INFO for details. * SENSOR_TYPE_ADDITIONAL_INFO for details.
*/ */
additional_info_event_t additional_info; additional_info_event_t additional_info;
/* vector describing head orientation (added for legacy code support only) */
head_tracker_event_t head_tracker;
/*
* limited axes imu event, See
* SENSOR_TYPE_GYROSCOPE_LIMITED_AXES and
* SENSOR_TYPE_ACCELEROMETER_LIMITED_AXES for details.
*/
limited_axes_imu_event_t limited_axes_imu;
/*
* limited axes imu uncalibrated event, See
* SENSOR_TYPE_GYROSCOPE_LIMITED_AXES_UNCALIBRATED and
* SENSOR_TYPE_ACCELEROMETER_LIMITED_AXES_UNCALIBRATED for details.
*/
limited_axes_imu_uncalibrated_event_t limited_axes_imu_uncalibrated;
/* heading data containing value in degrees and its accuracy */
heading_event_t heading;
}; };
union { union {

View file

@ -63,7 +63,7 @@ namespace android {
#endif // SUBMIX_VERBOSE_LOGGING #endif // SUBMIX_VERBOSE_LOGGING
// NOTE: This value will be rounded up to the nearest power of 2 by MonoPipe(). // NOTE: This value will be rounded up to the nearest power of 2 by MonoPipe().
#define DEFAULT_PIPE_SIZE_IN_FRAMES (1024*4) #define DEFAULT_PIPE_SIZE_IN_FRAMES (1024*4) // size at default sample rate
// Value used to divide the MonoPipe() buffer into segments that are written to the source and // Value used to divide the MonoPipe() buffer into segments that are written to the source and
// read from the sink. The maximum latency of the device is the size of the MonoPipe's buffer // read from the sink. The maximum latency of the device is the size of the MonoPipe's buffer
// the minimum latency is the MonoPipe buffer size divided by this value. // the minimum latency is the MonoPipe buffer size divided by this value.
@ -83,10 +83,7 @@ namespace android {
// multiple input streams from this device. If this option is enabled, each input stream returned // multiple input streams from this device. If this option is enabled, each input stream returned
// is *the same stream* which means that readers will race to read data from these streams. // is *the same stream* which means that readers will race to read data from these streams.
#define ENABLE_LEGACY_INPUT_OPEN 1 #define ENABLE_LEGACY_INPUT_OPEN 1
// Whether channel conversion (16-bit signed PCM mono->stereo, stereo->mono) is enabled.
#define ENABLE_CHANNEL_CONVERSION 1
// Whether resampling is enabled.
#define ENABLE_RESAMPLING 1
#if LOG_STREAMS_TO_FILES #if LOG_STREAMS_TO_FILES
// Folder to save stream log files to. // Folder to save stream log files to.
#define LOG_STREAM_FOLDER "/data/misc/audioserver" #define LOG_STREAM_FOLDER "/data/misc/audioserver"
@ -130,11 +127,6 @@ struct submix_config {
// channel bitfields are not equivalent. // channel bitfields are not equivalent.
audio_channel_mask_t input_channel_mask; audio_channel_mask_t input_channel_mask;
audio_channel_mask_t output_channel_mask; audio_channel_mask_t output_channel_mask;
#if ENABLE_RESAMPLING
// Input stream and output stream sample rates.
uint32_t input_sample_rate;
uint32_t output_sample_rate;
#endif // ENABLE_RESAMPLING
size_t pipe_frame_size; // Number of bytes in each audio frame in the pipe. size_t pipe_frame_size; // Number of bytes in each audio frame in the pipe.
size_t buffer_size_frames; // Size of the audio pipe in frames. size_t buffer_size_frames; // Size of the audio pipe in frames.
// Maximum number of frames buffered by the input and output streams. // Maximum number of frames buffered by the input and output streams.
@ -159,11 +151,6 @@ typedef struct route_config {
// destroyed if both and input and output streams are destroyed. // destroyed if both and input and output streams are destroyed.
struct submix_stream_out *output; struct submix_stream_out *output;
struct submix_stream_in *input; struct submix_stream_in *input;
#if ENABLE_RESAMPLING
// Buffer used as temporary storage for resampled data prior to returning data to the output
// stream.
int16_t resampler_buffer[DEFAULT_PIPE_SIZE_IN_FRAMES];
#endif // ENABLE_RESAMPLING
} route_config_t; } route_config_t;
struct submix_audio_device { struct submix_audio_device {
@ -221,6 +208,11 @@ static bool sample_rate_supported(const uint32_t sample_rate)
return return_value; return return_value;
} }
static size_t pipe_size_in_frames(const uint32_t sample_rate)
{
return DEFAULT_PIPE_SIZE_IN_FRAMES * ((float) sample_rate / DEFAULT_SAMPLE_RATE_HZ);
}
// Determine whether the specified sample rate is supported, if it is return the specified sample // Determine whether the specified sample rate is supported, if it is return the specified sample
// rate, otherwise return the default sample rate for the submix module. // rate, otherwise return the default sample rate for the submix module.
static uint32_t get_supported_sample_rate(uint32_t sample_rate) static uint32_t get_supported_sample_rate(uint32_t sample_rate)
@ -325,7 +317,6 @@ static struct submix_audio_device * audio_hw_device_get_submix_audio_device(
static bool audio_config_compare(const audio_config * const input_config, static bool audio_config_compare(const audio_config * const input_config,
const audio_config * const output_config) const audio_config * const output_config)
{ {
#if !ENABLE_CHANNEL_CONVERSION
const uint32_t input_channels = audio_channel_count_from_in_mask(input_config->channel_mask); const uint32_t input_channels = audio_channel_count_from_in_mask(input_config->channel_mask);
const uint32_t output_channels = audio_channel_count_from_out_mask(output_config->channel_mask); const uint32_t output_channels = audio_channel_count_from_out_mask(output_config->channel_mask);
if (input_channels != output_channels) { if (input_channels != output_channels) {
@ -333,13 +324,8 @@ static bool audio_config_compare(const audio_config * const input_config,
input_channels, output_channels); input_channels, output_channels);
return false; return false;
} }
#endif // !ENABLE_CHANNEL_CONVERSION
#if ENABLE_RESAMPLING
if (input_config->sample_rate != output_config->sample_rate &&
audio_channel_count_from_in_mask(input_config->channel_mask) != 1) {
#else
if (input_config->sample_rate != output_config->sample_rate) { if (input_config->sample_rate != output_config->sample_rate) {
#endif // ENABLE_RESAMPLING
ALOGE("audio_config_compare() sample rate mismatch %ul vs. %ul", ALOGE("audio_config_compare() sample rate mismatch %ul vs. %ul",
input_config->sample_rate, output_config->sample_rate); input_config->sample_rate, output_config->sample_rate);
return false; return false;
@ -376,24 +362,11 @@ static void submix_audio_device_create_pipe_l(struct submix_audio_device * const
in->route_handle = route_idx; in->route_handle = route_idx;
rsxadev->routes[route_idx].input = in; rsxadev->routes[route_idx].input = in;
rsxadev->routes[route_idx].config.input_channel_mask = config->channel_mask; rsxadev->routes[route_idx].config.input_channel_mask = config->channel_mask;
#if ENABLE_RESAMPLING
rsxadev->routes[route_idx].config.input_sample_rate = config->sample_rate;
// If the output isn't configured yet, set the output sample rate to the maximum supported
// sample rate such that the smallest possible input buffer is created, and put a default
// value for channel count
if (!rsxadev->routes[route_idx].output) {
rsxadev->routes[route_idx].config.output_sample_rate = 48000;
rsxadev->routes[route_idx].config.output_channel_mask = AUDIO_CHANNEL_OUT_STEREO;
}
#endif // ENABLE_RESAMPLING
} }
if (out) { if (out) {
out->route_handle = route_idx; out->route_handle = route_idx;
rsxadev->routes[route_idx].output = out; rsxadev->routes[route_idx].output = out;
rsxadev->routes[route_idx].config.output_channel_mask = config->channel_mask; rsxadev->routes[route_idx].config.output_channel_mask = config->channel_mask;
#if ENABLE_RESAMPLING
rsxadev->routes[route_idx].config.output_sample_rate = config->sample_rate;
#endif // ENABLE_RESAMPLING
} }
// Save the address // Save the address
strncpy(rsxadev->routes[route_idx].address, address, AUDIO_DEVICE_MAX_ADDRESS_LEN); strncpy(rsxadev->routes[route_idx].address, address, AUDIO_DEVICE_MAX_ADDRESS_LEN);
@ -403,18 +376,14 @@ static void submix_audio_device_create_pipe_l(struct submix_audio_device * const
{ {
struct submix_config * const device_config = &rsxadev->routes[route_idx].config; struct submix_config * const device_config = &rsxadev->routes[route_idx].config;
uint32_t channel_count; uint32_t channel_count;
if (out) if (out) {
channel_count = audio_channel_count_from_out_mask(config->channel_mask); channel_count = audio_channel_count_from_out_mask(config->channel_mask);
else } else {
channel_count = audio_channel_count_from_in_mask(config->channel_mask); channel_count = audio_channel_count_from_in_mask(config->channel_mask);
#if ENABLE_CHANNEL_CONVERSION }
// If channel conversion is enabled, allocate enough space for the maximum number of
// possible channels stored in the pipe for the situation when the number of channels in
// the output stream don't match the number in the input stream.
const uint32_t pipe_channel_count = max(channel_count, 2);
#else
const uint32_t pipe_channel_count = channel_count; const uint32_t pipe_channel_count = channel_count;
#endif // ENABLE_CHANNEL_CONVERSION
const NBAIO_Format format = Format_from_SR_C(config->sample_rate, pipe_channel_count, const NBAIO_Format format = Format_from_SR_C(config->sample_rate, pipe_channel_count,
config->format); config->format);
const NBAIO_Format offers[1] = {format}; const NBAIO_Format offers[1] = {format};
@ -444,11 +413,7 @@ static void submix_audio_device_create_pipe_l(struct submix_audio_device * const
buffer_period_count; buffer_period_count;
if (in) device_config->pipe_frame_size = audio_stream_in_frame_size(&in->stream); if (in) device_config->pipe_frame_size = audio_stream_in_frame_size(&in->stream);
if (out) device_config->pipe_frame_size = audio_stream_out_frame_size(&out->stream); if (out) device_config->pipe_frame_size = audio_stream_out_frame_size(&out->stream);
#if ENABLE_CHANNEL_CONVERSION
// Calculate the pipe frame size based upon the number of channels.
device_config->pipe_frame_size = (device_config->pipe_frame_size * pipe_channel_count) /
channel_count;
#endif // ENABLE_CHANNEL_CONVERSION
SUBMIX_ALOGV("submix_audio_device_create_pipe_l(): pipe frame size %zd, pipe size %zd, " SUBMIX_ALOGV("submix_audio_device_create_pipe_l(): pipe frame size %zd, pipe size %zd, "
"period size %zd", device_config->pipe_frame_size, "period size %zd", device_config->pipe_frame_size,
device_config->buffer_size_frames, device_config->buffer_period_size_frames); device_config->buffer_size_frames, device_config->buffer_period_size_frames);
@ -473,10 +438,6 @@ static void submix_audio_device_release_pipe_l(struct submix_audio_device * cons
rsxadev->routes[route_idx].rsxSource.clear(); rsxadev->routes[route_idx].rsxSource.clear();
} }
memset(rsxadev->routes[route_idx].address, 0, AUDIO_DEVICE_MAX_ADDRESS_LEN); memset(rsxadev->routes[route_idx].address, 0, AUDIO_DEVICE_MAX_ADDRESS_LEN);
#if ENABLE_RESAMPLING
memset(rsxadev->routes[route_idx].resampler_buffer, 0,
sizeof(int16_t) * DEFAULT_PIPE_SIZE_IN_FRAMES);
#endif
} }
// Remove references to the specified input and output streams. When the device no longer // Remove references to the specified input and output streams. When the device no longer
@ -624,11 +585,7 @@ static uint32_t out_get_sample_rate(const struct audio_stream *stream)
{ {
const struct submix_stream_out * const out = audio_stream_get_submix_stream_out( const struct submix_stream_out * const out = audio_stream_get_submix_stream_out(
const_cast<struct audio_stream *>(stream)); const_cast<struct audio_stream *>(stream));
#if ENABLE_RESAMPLING
const uint32_t out_rate = out->dev->routes[out->route_handle].config.output_sample_rate;
#else
const uint32_t out_rate = out->dev->routes[out->route_handle].config.common.sample_rate; const uint32_t out_rate = out->dev->routes[out->route_handle].config.common.sample_rate;
#endif // ENABLE_RESAMPLING
SUBMIX_ALOGV("out_get_sample_rate() returns %u for addr %s", SUBMIX_ALOGV("out_get_sample_rate() returns %u for addr %s",
out_rate, out->dev->routes[out->route_handle].address); out_rate, out->dev->routes[out->route_handle].address);
return out_rate; return out_rate;
@ -637,17 +594,6 @@ static uint32_t out_get_sample_rate(const struct audio_stream *stream)
static int out_set_sample_rate(struct audio_stream *stream, uint32_t rate) static int out_set_sample_rate(struct audio_stream *stream, uint32_t rate)
{ {
struct submix_stream_out * const out = audio_stream_get_submix_stream_out(stream); struct submix_stream_out * const out = audio_stream_get_submix_stream_out(stream);
#if ENABLE_RESAMPLING
// The sample rate of the stream can't be changed once it's set since this would change the
// output buffer size and hence break playback to the shared pipe.
if (rate != out->dev->routes[out->route_handle].config.output_sample_rate) {
ALOGE("out_set_sample_rate() resampling enabled can't change sample rate from "
"%u to %u for addr %s",
out->dev->routes[out->route_handle].config.output_sample_rate, rate,
out->dev->routes[out->route_handle].address);
return -ENOSYS;
}
#endif // ENABLE_RESAMPLING
if (!sample_rate_supported(rate)) { if (!sample_rate_supported(rate)) {
ALOGE("out_set_sample_rate(rate=%u) rate unsupported", rate); ALOGE("out_set_sample_rate(rate=%u) rate unsupported", rate);
return -ENOSYS; return -ENOSYS;
@ -994,11 +940,7 @@ static uint32_t in_get_sample_rate(const struct audio_stream *stream)
{ {
const struct submix_stream_in * const in = audio_stream_get_submix_stream_in( const struct submix_stream_in * const in = audio_stream_get_submix_stream_in(
const_cast<struct audio_stream*>(stream)); const_cast<struct audio_stream*>(stream));
#if ENABLE_RESAMPLING
const uint32_t rate = in->dev->routes[in->route_handle].config.input_sample_rate;
#else
const uint32_t rate = in->dev->routes[in->route_handle].config.common.sample_rate; const uint32_t rate = in->dev->routes[in->route_handle].config.common.sample_rate;
#endif // ENABLE_RESAMPLING
SUBMIX_ALOGV("in_get_sample_rate() returns %u", rate); SUBMIX_ALOGV("in_get_sample_rate() returns %u", rate);
return rate; return rate;
} }
@ -1006,15 +948,6 @@ static uint32_t in_get_sample_rate(const struct audio_stream *stream)
static int in_set_sample_rate(struct audio_stream *stream, uint32_t rate) static int in_set_sample_rate(struct audio_stream *stream, uint32_t rate)
{ {
const struct submix_stream_in * const in = audio_stream_get_submix_stream_in(stream); const struct submix_stream_in * const in = audio_stream_get_submix_stream_in(stream);
#if ENABLE_RESAMPLING
// The sample rate of the stream can't be changed once it's set since this would change the
// input buffer size and hence break recording from the shared pipe.
if (rate != in->dev->routes[in->route_handle].config.input_sample_rate) {
ALOGE("in_set_sample_rate() resampling enabled can't change sample rate from "
"%u to %u", in->dev->routes[in->route_handle].config.input_sample_rate, rate);
return -ENOSYS;
}
#endif // ENABLE_RESAMPLING
if (!sample_rate_supported(rate)) { if (!sample_rate_supported(rate)) {
ALOGE("in_set_sample_rate(rate=%u) rate unsupported", rate); ALOGE("in_set_sample_rate(rate=%u) rate unsupported", rate);
return -ENOSYS; return -ENOSYS;
@ -1033,13 +966,6 @@ static size_t in_get_buffer_size(const struct audio_stream *stream)
audio_stream_in_frame_size((const struct audio_stream_in *)stream); audio_stream_in_frame_size((const struct audio_stream_in *)stream);
size_t buffer_size_frames = calculate_stream_pipe_size_in_frames( size_t buffer_size_frames = calculate_stream_pipe_size_in_frames(
stream, config, config->buffer_period_size_frames, stream_frame_size); stream, config, config->buffer_period_size_frames, stream_frame_size);
#if ENABLE_RESAMPLING
// Scale the size of the buffer based upon the maximum number of frames that could be returned
// given the ratio of output to input sample rate.
buffer_size_frames = (size_t)(((float)buffer_size_frames *
(float)config->input_sample_rate) /
(float)config->output_sample_rate);
#endif // ENABLE_RESAMPLING
const size_t buffer_size_bytes = buffer_size_frames * stream_frame_size; const size_t buffer_size_bytes = buffer_size_frames * stream_frame_size;
SUBMIX_ALOGV("in_get_buffer_size() returns %zu bytes, %zu frames", buffer_size_bytes, SUBMIX_ALOGV("in_get_buffer_size() returns %zu bytes, %zu frames", buffer_size_bytes,
buffer_size_frames); buffer_size_frames);
@ -1168,65 +1094,10 @@ static ssize_t in_read(struct audio_stream_in *stream, void* buffer,
// read the data from the pipe (it's non blocking) // read the data from the pipe (it's non blocking)
int attempts = 0; int attempts = 0;
char* buff = (char*)buffer; char* buff = (char*)buffer;
#if ENABLE_CHANNEL_CONVERSION
// Determine whether channel conversion is required.
const uint32_t input_channels = audio_channel_count_from_in_mask(
rsxadev->routes[in->route_handle].config.input_channel_mask);
const uint32_t output_channels = audio_channel_count_from_out_mask(
rsxadev->routes[in->route_handle].config.output_channel_mask);
if (input_channels != output_channels) {
SUBMIX_ALOGV("in_read(): %d output channels will be converted to %d "
"input channels", output_channels, input_channels);
// Only support 16-bit PCM channel conversion from mono to stereo or stereo to mono.
ALOG_ASSERT(rsxadev->routes[in->route_handle].config.common.format ==
AUDIO_FORMAT_PCM_16_BIT);
ALOG_ASSERT((input_channels == 1 && output_channels == 2) ||
(input_channels == 2 && output_channels == 1));
}
#endif // ENABLE_CHANNEL_CONVERSION
#if ENABLE_RESAMPLING
const uint32_t input_sample_rate = in_get_sample_rate(&stream->common);
const uint32_t output_sample_rate =
rsxadev->routes[in->route_handle].config.output_sample_rate;
const size_t resampler_buffer_size_frames =
sizeof(rsxadev->routes[in->route_handle].resampler_buffer) /
sizeof(rsxadev->routes[in->route_handle].resampler_buffer[0]);
float resampler_ratio = 1.0f;
// Determine whether resampling is required.
if (input_sample_rate != output_sample_rate) {
resampler_ratio = (float)output_sample_rate / (float)input_sample_rate;
// Only support 16-bit PCM mono resampling.
// NOTE: Resampling is performed after the channel conversion step.
ALOG_ASSERT(rsxadev->routes[in->route_handle].config.common.format ==
AUDIO_FORMAT_PCM_16_BIT);
ALOG_ASSERT(audio_channel_count_from_in_mask(
rsxadev->routes[in->route_handle].config.input_channel_mask) == 1);
}
#endif // ENABLE_RESAMPLING
while ((remaining_frames > 0) && (attempts < MAX_READ_ATTEMPTS)) { while ((remaining_frames > 0) && (attempts < MAX_READ_ATTEMPTS)) {
ssize_t frames_read = -1977; ssize_t frames_read = -1977;
size_t read_frames = remaining_frames; size_t read_frames = remaining_frames;
#if ENABLE_RESAMPLING
char* const saved_buff = buff;
if (resampler_ratio != 1.0f) {
// Calculate the number of frames from the pipe that need to be read to generate
// the data for the input stream read.
const size_t frames_required_for_resampler = (size_t)(
(float)read_frames * (float)resampler_ratio);
read_frames = min(frames_required_for_resampler, resampler_buffer_size_frames);
// Read into the resampler buffer.
buff = (char*)rsxadev->routes[in->route_handle].resampler_buffer;
}
#endif // ENABLE_RESAMPLING
#if ENABLE_CHANNEL_CONVERSION
if (output_channels == 1 && input_channels == 2) {
// Need to read half the requested frames since the converted output
// data will take twice the space (mono->stereo).
read_frames /= 2;
}
#endif // ENABLE_CHANNEL_CONVERSION
SUBMIX_ALOGV("in_read(): frames available to read %zd", source->availableToRead()); SUBMIX_ALOGV("in_read(): frames available to read %zd", source->availableToRead());
@ -1234,56 +1105,6 @@ static ssize_t in_read(struct audio_stream_in *stream, void* buffer,
SUBMIX_ALOGV("in_read(): frames read %zd", frames_read); SUBMIX_ALOGV("in_read(): frames read %zd", frames_read);
#if ENABLE_CHANNEL_CONVERSION
// Perform in-place channel conversion.
// NOTE: In the following "input stream" refers to the data returned by this function
// and "output stream" refers to the data read from the pipe.
if (input_channels != output_channels && frames_read > 0) {
int16_t *data = (int16_t*)buff;
if (output_channels == 2 && input_channels == 1) {
// Offset into the output stream data in samples.
ssize_t output_stream_offset = 0;
for (ssize_t input_stream_frame = 0; input_stream_frame < frames_read;
input_stream_frame++, output_stream_offset += 2) {
// Average the content from both channels.
data[input_stream_frame] = ((int32_t)data[output_stream_offset] +
(int32_t)data[output_stream_offset + 1]) / 2;
}
} else if (output_channels == 1 && input_channels == 2) {
// Offset into the input stream data in samples.
ssize_t input_stream_offset = (frames_read - 1) * 2;
for (ssize_t output_stream_frame = frames_read - 1; output_stream_frame >= 0;
output_stream_frame--, input_stream_offset -= 2) {
const short sample = data[output_stream_frame];
data[input_stream_offset] = sample;
data[input_stream_offset + 1] = sample;
}
}
}
#endif // ENABLE_CHANNEL_CONVERSION
#if ENABLE_RESAMPLING
if (resampler_ratio != 1.0f) {
SUBMIX_ALOGV("in_read(): resampling %zd frames", frames_read);
const int16_t * const data = (int16_t*)buff;
int16_t * const resampled_buffer = (int16_t*)saved_buff;
// Resample with *no* filtering - if the data from the ouptut stream was really
// sampled at a different rate this will result in very nasty aliasing.
const float output_stream_frames = (float)frames_read;
size_t input_stream_frame = 0;
for (float output_stream_frame = 0.0f;
output_stream_frame < output_stream_frames &&
input_stream_frame < remaining_frames;
output_stream_frame += resampler_ratio, input_stream_frame++) {
resampled_buffer[input_stream_frame] = data[(size_t)output_stream_frame];
}
ALOG_ASSERT(input_stream_frame <= (ssize_t)resampler_buffer_size_frames);
SUBMIX_ALOGV("in_read(): resampler produced %zd frames", input_stream_frame);
frames_read = input_stream_frame;
buff = saved_buff;
}
#endif // ENABLE_RESAMPLING
if (frames_read > 0) { if (frames_read > 0) {
#if LOG_STREAMS_TO_FILES #if LOG_STREAMS_TO_FILES
if (in->log_fd >= 0) write(in->log_fd, buff, frames_read * frame_size); if (in->log_fd >= 0) write(in->log_fd, buff, frames_read * frame_size);
@ -1411,7 +1232,6 @@ static int adev_open_output_stream(struct audio_hw_device *dev,
struct submix_audio_device * const rsxadev = audio_hw_device_get_submix_audio_device(dev); struct submix_audio_device * const rsxadev = audio_hw_device_get_submix_audio_device(dev);
ALOGD("adev_open_output_stream(address=%s)", address); ALOGD("adev_open_output_stream(address=%s)", address);
struct submix_stream_out *out; struct submix_stream_out *out;
bool force_pipe_creation = false;
(void)handle; (void)handle;
(void)devices; (void)devices;
(void)flags; (void)flags;
@ -1464,25 +1284,20 @@ static int adev_open_output_stream(struct audio_hw_device *dev,
out->stream.get_next_write_timestamp = out_get_next_write_timestamp; out->stream.get_next_write_timestamp = out_get_next_write_timestamp;
out->stream.get_presentation_position = out_get_presentation_position; out->stream.get_presentation_position = out_get_presentation_position;
#if ENABLE_RESAMPLING
// Recreate the pipe with the correct sample rate so that MonoPipe.write() rate limits
// writes correctly.
force_pipe_creation = rsxadev->routes[route_idx].config.common.sample_rate
!= config->sample_rate;
#endif // ENABLE_RESAMPLING
// If the sink has been shutdown or pipe recreation is forced (see above), delete the pipe so // If the sink has been shutdown or pipe recreation is forced (see above), delete the pipe so
// that it's recreated. // that it's recreated.
if ((rsxadev->routes[route_idx].rsxSink != NULL if ((rsxadev->routes[route_idx].rsxSink != NULL
&& rsxadev->routes[route_idx].rsxSink->isShutdown()) || force_pipe_creation) { && rsxadev->routes[route_idx].rsxSink->isShutdown())) {
submix_audio_device_release_pipe_l(rsxadev, route_idx); submix_audio_device_release_pipe_l(rsxadev, route_idx);
} }
// Store a pointer to the device from the output stream. // Store a pointer to the device from the output stream.
out->dev = rsxadev; out->dev = rsxadev;
// Initialize the pipe. // Initialize the pipe.
ALOGV("adev_open_output_stream(): about to create pipe at index %d", route_idx); const size_t pipeSizeInFrames = pipe_size_in_frames(config->sample_rate);
submix_audio_device_create_pipe_l(rsxadev, config, DEFAULT_PIPE_SIZE_IN_FRAMES, ALOGI("adev_open_output_stream(): about to create pipe at index %d, rate %u, pipe size %zu",
route_idx, config->sample_rate, pipeSizeInFrames);
submix_audio_device_create_pipe_l(rsxadev, config, pipeSizeInFrames,
DEFAULT_PIPE_PERIOD_COUNT, NULL, out, address, route_idx); DEFAULT_PIPE_PERIOD_COUNT, NULL, out, address, route_idx);
#if LOG_STREAMS_TO_FILES #if LOG_STREAMS_TO_FILES
out->log_fd = open(LOG_STREAM_OUT_FILENAME, O_CREAT | O_TRUNC | O_WRONLY, out->log_fd = open(LOG_STREAM_OUT_FILENAME, O_CREAT | O_TRUNC | O_WRONLY,
@ -1611,7 +1426,8 @@ static size_t adev_get_input_buffer_size(const struct audio_hw_device *dev,
const size_t frame_size_in_bytes = audio_channel_count_from_in_mask(config->channel_mask) * const size_t frame_size_in_bytes = audio_channel_count_from_in_mask(config->channel_mask) *
audio_bytes_per_sample(config->format); audio_bytes_per_sample(config->format);
if (max_buffer_period_size_frames == 0) { if (max_buffer_period_size_frames == 0) {
max_buffer_period_size_frames = DEFAULT_PIPE_SIZE_IN_FRAMES; max_buffer_period_size_frames =
pipe_size_in_frames(get_supported_sample_rate(config->sample_rate));;
} }
const size_t buffer_size = max_buffer_period_size_frames * frame_size_in_bytes; const size_t buffer_size = max_buffer_period_size_frames * frame_size_in_bytes;
SUBMIX_ALOGV("adev_get_input_buffer_size() returns %zu bytes, %zu frames", SUBMIX_ALOGV("adev_get_input_buffer_size() returns %zu bytes, %zu frames",
@ -1724,8 +1540,10 @@ static int adev_open_input_stream(struct audio_hw_device *dev,
in->read_error_count = 0; in->read_error_count = 0;
// Initialize the pipe. // Initialize the pipe.
ALOGV("adev_open_input_stream(): about to create pipe"); const size_t pipeSizeInFrames = pipe_size_in_frames(config->sample_rate);
submix_audio_device_create_pipe_l(rsxadev, config, DEFAULT_PIPE_SIZE_IN_FRAMES, ALOGI("adev_open_input_stream(): about to create pipe at index %d, rate %u, pipe size %zu",
route_idx, config->sample_rate, pipeSizeInFrames);
submix_audio_device_create_pipe_l(rsxadev, config, pipeSizeInFrames,
DEFAULT_PIPE_PERIOD_COUNT, in, NULL, address, route_idx); DEFAULT_PIPE_PERIOD_COUNT, in, NULL, address, route_idx);
sp <MonoPipe> sink = rsxadev->routes[route_idx].rsxSink; sp <MonoPipe> sink = rsxadev->routes[route_idx].rsxSink;
@ -1779,16 +1597,9 @@ static int adev_dump(const audio_hw_device_t *device, int fd)
int n = snprintf(msg, sizeof(msg), "\nReroute submix audio module:\n"); int n = snprintf(msg, sizeof(msg), "\nReroute submix audio module:\n");
write(fd, &msg, n); write(fd, &msg, n);
for (int i=0 ; i < MAX_ROUTES ; i++) { for (int i=0 ; i < MAX_ROUTES ; i++) {
#if ENABLE_RESAMPLING
n = snprintf(msg, sizeof(msg), " route[%d] rate in=%d out=%d, addr=[%s]\n", i,
rsxadev->routes[i].config.input_sample_rate,
rsxadev->routes[i].config.output_sample_rate,
rsxadev->routes[i].address);
#else
n = snprintf(msg, sizeof(msg), " route[%d], rate=%d addr=[%s]\n", i, n = snprintf(msg, sizeof(msg), " route[%d], rate=%d addr=[%s]\n", i,
rsxadev->routes[i].config.common.sample_rate, rsxadev->routes[i].config.common.sample_rate,
rsxadev->routes[i].address); rsxadev->routes[i].address);
#endif
write(fd, &msg, n); write(fd, &msg, n);
} }
return 0; return 0;

View file

@ -87,7 +87,7 @@ int DynamicSensorManager::activate(int handle, bool enable) {
} }
return operateSensor(handle, return operateSensor(handle,
[&enable] (sp<BaseSensorObject> s)->int { [=] (sp<BaseSensorObject> s)->int {
return s->enable(enable); return s->enable(enable);
}); });
} }
@ -98,7 +98,7 @@ int DynamicSensorManager::batch(int handle, nsecs_t sample_period, nsecs_t batch
return 0; return 0;
} }
return operateSensor(handle, return operateSensor(handle,
[&sample_period, &batch_period] (sp<BaseSensorObject> s)->int { [=] (sp<BaseSensorObject> s)->int {
return s->batch(sample_period, batch_period); return s->batch(sample_period, batch_period);
}); });
} }
@ -239,6 +239,87 @@ const sensor_t& DynamicSensorManager::getDynamicMetaSensor() const {
return mMetaSensor; return mMetaSensor;
} }
int DynamicSensorManager::operateSensor(
int handle, OperateSensorFunc sensorFunc) {
std::shared_future<int> sensorOp;
{
std::lock_guard<std::mutex> lock(mSensorOpQueueLock);
// Invoke the function asynchronously.
sensorOp = std::async(
[this, handle = handle, sensorFunc = sensorFunc,
sensorOpIndex = mNextSensorOpIndex] ()->int {
return operateSensor(handle, sensorFunc, sensorOpIndex);
}).share();
// Add sensor operation to the queue.
mSensorOpQueue.push({mNextSensorOpIndex, sensorOp});
mNextSensorOpIndex++;
}
// Wait for the sensor operation to complete.
if (sensorOp.wait_for(kSensorOpTimeout) != std::future_status::ready) {
ALOGE("sensor operation timed out");
return TIMED_OUT;
}
return sensorOp.get();
}
int DynamicSensorManager::operateSensor(
int handle, OperateSensorFunc sensorFunc, uint64_t sensorOpIndex) {
int rv = 0;
// Wait until this sensor operation is at the head of the queue.
while (1) {
std::shared_future<int> headSensorOp;
{
std::lock_guard<std::mutex> lock(mSensorOpQueueLock);
if (mSensorOpQueue.front().first == sensorOpIndex) {
break;
}
headSensorOp = mSensorOpQueue.front().second;
}
headSensorOp.wait();
}
// Perform sensor operation.
sp<BaseSensorObject> sensor;
{
std::lock_guard<std::mutex> lk(mLock);
const auto i = mMap.find(handle);
if (i == mMap.end()) {
rv = BAD_VALUE;
}
if (rv == 0) {
sensor = i->second.promote();
if (sensor == nullptr) {
// sensor object is already gone
rv = BAD_VALUE;
}
}
}
if (rv == 0) {
rv = sensorFunc(sensor);
}
// Remove sensor operation from queue. When the operation's shared state is
// destroyed, execution of this function ceases. Thus, if the state is
// destroyed when the operation is removed from the queue, the lock will
// never be released. To prevent that, the state is shared locally, so it
// isn't destroyed until this function completes.
std::shared_future<int> sensorOp;
{
std::lock_guard<std::mutex> lock(mSensorOpQueueLock);
sensorOp = mSensorOpQueue.front().second;
mSensorOpQueue.pop();
}
return rv;
}
DynamicSensorManager::ConnectionReport::ConnectionReport( DynamicSensorManager::ConnectionReport::ConnectionReport(
int handle, sp<BaseSensorObject> sensor) : int handle, sp<BaseSensorObject> sensor) :
mSensor(*(sensor->getSensor())), mSensor(*(sensor->getSensor())),

View file

@ -22,7 +22,9 @@
#include <hardware/sensors.h> #include <hardware/sensors.h>
#include <utils/RefBase.h> #include <utils/RefBase.h>
#include <future>
#include <mutex> #include <mutex>
#include <queue>
#include <string> #include <string>
#include <unordered_map> #include <unordered_map>
#include <vector> #include <vector>
@ -92,24 +94,13 @@ private:
// returns next available handle to use upon a new sensor connection, or -1 if we run out. // returns next available handle to use upon a new sensor connection, or -1 if we run out.
int getNextAvailableHandle(); int getNextAvailableHandle();
// TF: int foo(sp<BaseSensorObject> obj); // Runs a sensor function with a timeout. On timeout, function could still
template <typename TF> // be running, so any function parameter or closure lifetimes should match
int operateSensor(int handle, TF f) const { // the function's lifetime.
sp<BaseSensorObject> s; using OperateSensorFunc = std::function<int(sp<BaseSensorObject>)>;
{ int operateSensor(int handle, OperateSensorFunc sensorFunc);
std::lock_guard<std::mutex> lk(mLock); int operateSensor(int handle, OperateSensorFunc sensorFunc,
const auto i = mMap.find(handle); uint64_t sensorOpIndex);
if (i == mMap.end()) {
return BAD_VALUE;
}
s = i->second.promote();
if (s == nullptr) {
// sensor object is already gone
return BAD_VALUE;
}
}
return f(s);
}
// available sensor handle space // available sensor handle space
const std::pair<int, int> mHandleRange; const std::pair<int, int> mHandleRange;
@ -133,6 +124,14 @@ private:
// daemons // daemons
std::vector<sp<BaseDynamicSensorDaemon>> mDaemonVector; std::vector<sp<BaseDynamicSensorDaemon>> mDaemonVector;
// Sensor operation queue. Calls to the sensor HAL must complete within 1
// second.
static constexpr std::chrono::milliseconds
kSensorOpTimeout = std::chrono::milliseconds(900);
std::mutex mSensorOpQueueLock;
std::queue<std::pair<uint64_t, std::shared_future<int>>> mSensorOpQueue;
uint64_t mNextSensorOpIndex = 0;
}; };
} // namespace SensorHalExt } // namespace SensorHalExt

View file

@ -71,7 +71,7 @@ public:
const sensors_event_t& e) override; const sensors_event_t& e) override;
private: private:
static constexpr int32_t kDynamicHandleBase = 0; static constexpr int32_t kDynamicHandleBase = 1;
static constexpr int32_t kDynamicHandleEnd = 0x1000000; static constexpr int32_t kDynamicHandleEnd = 0x1000000;
static constexpr int32_t kMaxDynamicHandleCount = kDynamicHandleEnd - static constexpr int32_t kMaxDynamicHandleCount = kDynamicHandleEnd -
kDynamicHandleBase; kDynamicHandleBase;

View file

@ -439,6 +439,7 @@ void HidRawSensor::initFeatureValueFromHidDeviceInfo(
featureValue->reportModeFlag = SENSOR_FLAG_SPECIAL_REPORTING_MODE; featureValue->reportModeFlag = SENSOR_FLAG_SPECIAL_REPORTING_MODE;
featureValue->isWakeUp = false; featureValue->isWakeUp = false;
featureValue->useUniqueIdForUuid = false;
memset(featureValue->uuid, 0, sizeof(featureValue->uuid)); memset(featureValue->uuid, 0, sizeof(featureValue->uuid));
featureValue->isAndroidCustom = false; featureValue->isAndroidCustom = false;
} }
@ -465,28 +466,16 @@ bool HidRawSensor::populateFeatureValueFromFeatureReport(
for (const auto & r : packet.reports) { for (const auto & r : packet.reports) {
switch (r.usage) { switch (r.usage) {
case FRIENDLY_NAME: case FRIENDLY_NAME:
if (!r.isByteAligned() || r.bitSize != 16 || r.count < 1) {
// invalid friendly name
break;
}
if (decodeString(r, buffer, &str) && !str.empty()) { if (decodeString(r, buffer, &str) && !str.empty()) {
featureValue->name = str; featureValue->name = str;
} }
break; break;
case SENSOR_MANUFACTURER: case SENSOR_MANUFACTURER:
if (!r.isByteAligned() || r.bitSize != 16 || r.count < 1) {
// invalid manufacturer
break;
}
if (decodeString(r, buffer, &str) && !str.empty()) { if (decodeString(r, buffer, &str) && !str.empty()) {
featureValue->vendor = str; featureValue->vendor = str;
} }
break; break;
case PERSISTENT_UNIQUE_ID: case PERSISTENT_UNIQUE_ID:
if (!r.isByteAligned() || r.bitSize != 16 || r.count < 1) {
// invalid unique id string
break;
}
if (decodeString(r, buffer, &str) && !str.empty()) { if (decodeString(r, buffer, &str) && !str.empty()) {
featureValue->uniqueId = str; featureValue->uniqueId = str;
} }
@ -541,10 +530,19 @@ bool HidRawSensor::validateFeatureValueAndBuildSensor() {
} }
// initialize uuid field, use name, vendor and uniqueId // initialize uuid field, use name, vendor and uniqueId
if (mFeatureInfo.name.size() >= 4 // initialize uuid field using one of the following methods:
&& mFeatureInfo.vendor.size() >= 4 //
&& mFeatureInfo.typeString.size() >= 4 // 1. use uniqueId
&& mFeatureInfo.uniqueId.size() >= 4) { // 2. use name, vendor and uniqueId
if (mFeatureInfo.useUniqueIdForUuid) {
if (mFeatureInfo.uniqueId.size() == sizeof(mFeatureInfo.uuid)) {
memcpy(mFeatureInfo.uuid, mFeatureInfo.uniqueId.c_str(),
sizeof(mFeatureInfo.uuid));
}
} else if (mFeatureInfo.name.size() >= 4
&& mFeatureInfo.vendor.size() >= 4
&& mFeatureInfo.typeString.size() >= 4
&& mFeatureInfo.uniqueId.size() >= 4) {
uint32_t tmp[4], h; uint32_t tmp[4], h;
std::hash<std::string> stringHash; std::hash<std::string> stringHash;
h = stringHash(mFeatureInfo.uniqueId); h = stringHash(mFeatureInfo.uniqueId);
@ -637,12 +635,17 @@ bool HidRawSensor::detectAndroidHeadTrackerSensor(
return false; return false;
} }
mFeatureInfo.type = SENSOR_TYPE_DEVICE_PRIVATE_BASE; mFeatureInfo.type = SENSOR_TYPE_HEAD_TRACKER;
mFeatureInfo.typeString = CUSTOM_TYPE_PREFIX + "headtracker"; mFeatureInfo.typeString = SENSOR_STRING_TYPE_HEAD_TRACKER;
mFeatureInfo.reportModeFlag = SENSOR_FLAG_CONTINUOUS_MODE; mFeatureInfo.reportModeFlag = SENSOR_FLAG_CONTINUOUS_MODE;
mFeatureInfo.permission = ""; mFeatureInfo.permission = "";
mFeatureInfo.isWakeUp = false; mFeatureInfo.isWakeUp = false;
// HID head tracker sensors must use the HID unique ID for the sensor UUID
// to permit association between the sensor and audio device (see
// specification for HEAD_TRACKER in SensorType).
mFeatureInfo.useUniqueIdForUuid = true;
return true; return true;
} }
@ -888,10 +891,18 @@ bool HidRawSensor::findSensorControlUsage(const std::vector<HidParser::ReportPac
mReportIntervalId = reportInterval->id; mReportIntervalId = reportInterval->id;
mReportIntervalBitOffset = reportInterval->bitOffset; mReportIntervalBitOffset = reportInterval->bitOffset;
mReportIntervalBitSize = reportInterval->bitSize; mReportIntervalBitSize = reportInterval->bitSize;
mReportIntervalScale = reportInterval->a;
mReportIntervalOffset = reportInterval->b;
mFeatureInfo.minDelay = std::max(static_cast<int64_t>(1), reportInterval->minRaw) * 1000; mFeatureInfo.minDelay = 1000000.0
mFeatureInfo.maxDelay = std::min(static_cast<int64_t>(1000000), * (reportInterval->minRaw + reportInterval->b)
reportInterval->maxRaw) * 1000; // maximum 1000 second * reportInterval->a;
mFeatureInfo.minDelay = std::max(1000, mFeatureInfo.minDelay);
mFeatureInfo.maxDelay = 1000000.0
* (reportInterval->maxRaw + reportInterval->b)
* reportInterval->a;
mFeatureInfo.maxDelay = std::min(static_cast<int64_t>(1000000000),
mFeatureInfo.maxDelay);
} }
return true; return true;
return (mPowerStateId >= 0 || mReportingStateId >= 0) && mReportIntervalId >= 0; return (mPowerStateId >= 0 || mReportingStateId >= 0) && mReportIntervalId >= 0;
@ -978,7 +989,9 @@ int HidRawSensor::batch(int64_t samplingPeriod, int64_t batchingPeriod) {
if (device->getFeature(id, &buffer) if (device->getFeature(id, &buffer)
&& (8 * buffer.size()) >= && (8 * buffer.size()) >=
(mReportIntervalBitOffset + mReportIntervalBitSize)) { (mReportIntervalBitOffset + mReportIntervalBitSize)) {
int64_t periodMs = samplingPeriod / 1000000; //ns -> ms int64_t periodMs =
(((static_cast<double>(samplingPeriod)) / 1000000000.0)
/ mReportIntervalScale) - mReportIntervalOffset;
int64_t maxPeriodMs = int64_t maxPeriodMs =
(1LL << std::min(mReportIntervalBitSize, 63U)) - 1; (1LL << std::min(mReportIntervalBitSize, 63U)) - 1;
periodMs = std::min(periodMs, maxPeriodMs); periodMs = std::min(periodMs, maxPeriodMs);
@ -1008,6 +1021,50 @@ void HidRawSensor::handleInput(uint8_t id, const std::vector<uint8_t> &message)
.type = mSensor.type .type = mSensor.type
}; };
bool valid = true; bool valid = true;
switch (mFeatureInfo.type) {
case SENSOR_TYPE_HEAD_TRACKER:
valid = getHeadTrackerEventData(message, &event);
break;
default:
valid = getSensorEventData(message, &event);
break;
}
if (!valid) {
LOG_E << "Invalid data observed in decoding, discard" << LOG_ENDL;
return;
}
event.timestamp = -1;
generateEvent(event);
}
bool HidRawSensor::getHeadTrackerEventData(const std::vector<uint8_t> &message,
sensors_event_t *event) {
head_tracker_event_t *head_tracker;
head_tracker = &(event->head_tracker);
if (!getReportFieldValue(message, &(mTranslateTable[0]),
&(head_tracker->rx))
|| !getReportFieldValue(message, &(mTranslateTable[1]),
&(head_tracker->ry))
|| !getReportFieldValue(message, &(mTranslateTable[2]),
&(head_tracker->rz))
|| !getReportFieldValue(message, &(mTranslateTable[3]),
&(head_tracker->vx))
|| !getReportFieldValue(message, &(mTranslateTable[4]),
&(head_tracker->vy))
|| !getReportFieldValue(message, &(mTranslateTable[5]),
&(head_tracker->vz))
|| !getReportFieldValue(message, &(mTranslateTable[6]),
&(head_tracker->discontinuity_count))) {
return false;
}
return true;
}
bool HidRawSensor::getSensorEventData(const std::vector<uint8_t> &message,
sensors_event_t *event) {
for (const auto &rec : mTranslateTable) { for (const auto &rec : mTranslateTable) {
int64_t v = (message[rec.byteOffset + rec.byteSize - 1] & 0x80) ? -1 : 0; int64_t v = (message[rec.byteOffset + rec.byteSize - 1] & 0x80) ? -1 : 0;
for (int i = static_cast<int>(rec.byteSize) - 1; i >= 0; --i) { for (int i = static_cast<int>(rec.byteSize) - 1; i >= 0; --i) {
@ -1017,26 +1074,23 @@ void HidRawSensor::handleInput(uint8_t id, const std::vector<uint8_t> &message)
switch (rec.type) { switch (rec.type) {
case TYPE_FLOAT: case TYPE_FLOAT:
if (v > rec.maxValue || v < rec.minValue) { if (v > rec.maxValue || v < rec.minValue) {
valid = false; return false;
} }
event.data[rec.index] = rec.a * (v + rec.b); event->data[rec.index] = rec.a * (v + rec.b);
break; break;
case TYPE_INT64: case TYPE_INT64:
if (v > rec.maxValue || v < rec.minValue) { if (v > rec.maxValue || v < rec.minValue) {
valid = false; return false;
} }
event.u64.data[rec.index] = v + rec.b; event->u64.data[rec.index] = v + rec.b;
break; break;
case TYPE_ACCURACY: case TYPE_ACCURACY:
event.magnetic.status = (v & 0xFF) + rec.b; event->magnetic.status = (v & 0xFF) + rec.b;
break; break;
} }
} }
if (!valid) {
LOG_V << "Range error observed in decoding, discard" << LOG_ENDL; return true;
}
event.timestamp = -1;
generateEvent(event);
} }
std::string HidRawSensor::dump() const { std::string HidRawSensor::dump() const {
@ -1055,11 +1109,15 @@ std::string HidRawSensor::dump() const {
<< " fifoSize: " << mFeatureInfo.fifoSize << LOG_ENDL << " fifoSize: " << mFeatureInfo.fifoSize << LOG_ENDL
<< " fifoMaxSize: " << mFeatureInfo.fifoMaxSize << LOG_ENDL << " fifoMaxSize: " << mFeatureInfo.fifoMaxSize << LOG_ENDL
<< " reportModeFlag: " << mFeatureInfo.reportModeFlag << LOG_ENDL << " reportModeFlag: " << mFeatureInfo.reportModeFlag << LOG_ENDL
<< " isWakeUp: " << (mFeatureInfo.isWakeUp ? "true" : "false") << LOG_ENDL << " isWakeUp: " << (mFeatureInfo.isWakeUp ? "true" : "false") << LOG_ENDL;
<< " uniqueId: " << mFeatureInfo.uniqueId << LOG_ENDL
<< " uuid: ";
ss << std::hex << std::setfill('0'); ss << " uniqueId: " << std::hex << std::setfill('0');
for (auto d : mFeatureInfo.uniqueId) {
ss << std::setw(2) << static_cast<int>(d) << " ";
}
ss << std::dec << std::setfill(' ') << LOG_ENDL;
ss << " uuid: " << std::hex << std::setfill('0');
for (auto d : mFeatureInfo.uuid) { for (auto d : mFeatureInfo.uuid) {
ss << std::setw(2) << static_cast<int>(d) << " "; ss << std::setw(2) << static_cast<int>(d) << " ";
} }

View file

@ -46,6 +46,14 @@ public:
// handle input report received // handle input report received
void handleInput(uint8_t id, const std::vector<uint8_t> &message); void handleInput(uint8_t id, const std::vector<uint8_t> &message);
// get head tracker sensor event data
bool getHeadTrackerEventData(const std::vector<uint8_t> &message,
sensors_event_t *event);
// get generic sensor event data
bool getSensorEventData(const std::vector<uint8_t> &message,
sensors_event_t *event);
// indicate if the HidRawSensor is a valid one // indicate if the HidRawSensor is a valid one
bool isValid() const { return mValid; }; bool isValid() const { return mValid; };
@ -86,6 +94,7 @@ private:
size_t fifoMaxSize; size_t fifoMaxSize;
uint32_t reportModeFlag; uint32_t reportModeFlag;
bool isWakeUp; bool isWakeUp;
bool useUniqueIdForUuid;
// dynamic sensor specific // dynamic sensor specific
std::string uniqueId; std::string uniqueId;
@ -140,6 +149,33 @@ private:
// process HID snesor spec defined orientation(quaternion) sensor usages. // process HID snesor spec defined orientation(quaternion) sensor usages.
bool processQuaternionUsage(const std::vector<HidParser::ReportPacket> &packets); bool processQuaternionUsage(const std::vector<HidParser::ReportPacket> &packets);
// get the value of a report field
template<typename ValueType>
bool getReportFieldValue(const std::vector<uint8_t> &message,
ReportTranslateRecord* rec, ValueType* value) {
bool valid = true;
int64_t v;
v = (message[rec->byteOffset + rec->byteSize - 1] & 0x80) ? -1 : 0;
for (int i = static_cast<int>(rec->byteSize) - 1; i >= 0; --i) {
v = (v << 8) | message[rec->byteOffset + i]; // HID is little endian
}
if (v > rec->maxValue || v < rec->minValue) {
valid = false;
}
switch (rec->type) {
case TYPE_FLOAT:
*value = rec->a * (v + rec->b);
break;
case TYPE_INT64:
*value = v + rec->b;
break;
}
return valid;
}
// dump data for test/debug purpose // dump data for test/debug purpose
std::string dump() const; std::string dump() const;
@ -159,6 +195,8 @@ private:
int mReportIntervalId; int mReportIntervalId;
unsigned int mReportIntervalBitOffset; unsigned int mReportIntervalBitOffset;
unsigned int mReportIntervalBitSize; unsigned int mReportIntervalBitSize;
double mReportIntervalScale;
int64_t mReportIntervalOffset;
// Input report translate table // Input report translate table
std::vector<ReportTranslateRecord> mTranslateTable; std::vector<ReportTranslateRecord> mTranslateTable;

View file

@ -240,10 +240,18 @@ std::vector<HidParser::ReportPacket> HidParser::convertGroupToPacket(
auto logical = r.getLogicalRange(); auto logical = r.getLogicalRange();
auto physical = r.getPhysicalRange(); auto physical = r.getPhysicalRange();
int64_t offset = physical.first - logical.first; double scale;
double scale = static_cast<double>((physical.second - physical.first)) if ((physical.first != physical.second) &&
/ (logical.second - logical.first); (logical.first != logical.second)) {
scale = static_cast<double>(physical.second - physical.first)
/ (logical.second - logical.first);
} else {
scale = (physical.first != 0) ? physical.first : 1.0;
}
scale *= r.getExponentValue(); scale *= r.getExponentValue();
int64_t offset =
(physical.first * r.getExponentValue() / scale) -
logical.first;
ReportItem digest = { ReportItem digest = {
.usage = r.getFullUsage(), .usage = r.getFullUsage(),

View file

@ -0,0 +1,153 @@
# Dynamic Sensors
[TOC]
## Links
* [Sensor HAL dynamic sensor support](https://source.android.com/devices/sensors/sensors-hal2#dynamic-sensors)
* [Sensors Multi-HAL](https://source.android.com/devices/sensors/sensors-multihal)
## Adding dynamic sensor support to a device
A few files need to be modified to add dynamic sensor support to a device. The
dynamic sensor HAL must be enabled in the device product makefile and in the
sensor sub-HAL configuration file, raw HID devices must be configured, and raw
HID device and dynamic sensor property permissions must be set up in the SELinux
policy files.
```shell
acme-co$ git -C device/acme/rocket-phone diff
diff --git a/sensor_hal/hals.conf b/sensor_hal/hals.conf
index a1f4b8b..d112546 100644
--- a/sensor_hal/hals.conf
+++ b/sensor_hal/hals.conf
@@ -1 +1,2 @@
+sensors.dynamic_sensor_hal.so
sensors.rocket-phone.so
diff --git a/rocket-phone.mk b/rocket-phone.mk
index 3fc8538..b1bd8a1 100644
--- a/rocket-phone.mk
+++ b/rocket-phone.mk
@@ -73,6 +73,9 @@
PRODUCT_PACKAGES += sensors.rocket-phone
PRODUCT_PACKAGES += thruster_stats
+# Add the dynamic sensor HAL.
+PRODUCT_PACKAGES += sensors.dynamic_sensor_hal
+
# Only install test tools in debug build or eng build.
ifneq ($(filter userdebug eng,$(TARGET_BUILD_VARIANT)),)
PRODUCT_PACKAGES += thruster_test
diff --git a/conf/ueventd.rc b/conf/ueventd.rc
index 88ee00b..2f03009 100644
--- a/conf/ueventd.rc
+++ b/conf/ueventd.rc
@@ -209,3 +209,7 @@
# Thrusters
/dev/thruster* 0600 system system
+
+# Raw HID devices
+/dev/hidraw* 0660 system system
+
diff --git a/sepolicy/sensor_hal.te b/sepolicy/sensor_hal.te
index 0797253..22a4208 100644
--- a/sepolicy/sensor_hal.te
+++ b/sepolicy/sensor_hal.te
@@ -52,6 +52,9 @@
# Allow sensor HAL to read thruster state.
allow hal_sensors_default thruster_state:file r_file_perms;
+# Allow access for dynamic sensor properties.
+get_prop(hal_sensors_default, vendor_dynamic_sensor_prop)
+
+# Allow access to raw HID devices for dynamic sensors.
+allow hal_sensors_default device:dir r_dir_perms;
+allow hal_sensors_default hidraw_device:chr_file rw_file_perms;
+
#
# Thruster sensor enforcements.
#
diff --git a/sepolicy/device.te b/sepolicy/device.te
index bc3c947..bad0be0 100644
--- a/sepolicy/device.te
+++ b/sepolicy/device.te
@@ -55,3 +55,7 @@
# Thruster
type thruster_device, dev_type;
+
+# Raw HID device
+type hidraw_device, dev_type;
+
diff --git a/sepolicy/property.te b/sepolicy/property.te
index 4b671a4..bb0894f 100644
--- a/sepolicy/property.te
+++ b/sepolicy/property.te
@@ -49,3 +49,7 @@
# Thruster
vendor_internal_prop(vendor_thruster_debug_prop)
+
+# Dynamic sensor
+vendor_internal_prop(vendor_dynamic_sensor_prop)
+
diff --git a/sepolicy/file_contexts b/sepolicy/file_contexts
index bc03a78..ff401dc 100644
--- a/sepolicy/file_contexts
+++ b/sepolicy/file_contexts
@@ -441,3 +441,7 @@
/dev/thruster-fuel u:object_r:thruster_device:s0
/dev/thruster-output u:object_r:thruster_device:s0
/dev/thruster-telemetry u:object_r:thruster_device:s0
+
+# Raw HID device
+/dev/hidraw[0-9]* u:object_r:hidraw_device:s0
+
diff --git a/sepolicy/property_contexts b/sepolicy/property_contexts
index 5d2f018..18a6059 100644
--- a/sepolicy/property_contexts
+++ b/sepolicy/property_contexts
@@ -104,3 +104,7 @@
# Thruster
vendor.thruster.debug u:object_r:vendor_thruster_debug_prop:s0
+
+# Dynamic sensor
+vendor.dynamic_sensor. u:object_r:vendor_dynamic_sensor_prop:s0
+
acme-co$
```
Once the file modifications are made, rebuild and flash. The dynamic sensor HAL
should be initialized and appear in the sensor service.
```shell
acme-co$ make -j28 && fastboot flashall
.
.
.
acme-co$ adb logcat -d | grep DynamicSensorHal
12-15 18:18:45.735 791 791 D DynamicSensorHal: DynamicSensorsSubHal::getSensorsList_2_1 invoked.
12-15 18:18:47.474 791 791 D DynamicSensorHal: DynamicSensorsSubHal::initialize invoked.
acme-co$ adb shell dumpsys sensorservice | grep Dynamic
0000000000) Dynamic Sensor Manager | Google | ver: 1 | type: android.sensor.dynamic_sensor_meta(32) | perm: n/a | flags: 0x00000007
Dynamic Sensor Manager (handle=0x00000000, connections=1)
Dynamic Sensor Manager 0x00000000 | status: active | pending flush events 0
acme-co$ adb logcat -c
acme-co$
```
When a dynamic sensor is paired with the device (e.g., Bluetooth rocket buds),
it will appear in the sensor service.
```shell
acme-co$ adb logcat -d | grep "DynamicSensorHal\|hidraw\|Rocket"
12-15 18:19:55.268 157 157 I hid-generic 0003: 1234:5678.0001: hidraw0: BLUETOOTH HID v0.00 Device [RocketBuds] on
12-15 18:19:55.235 791 809 E DynamicSensorHal: return 1 sensors
12-15 18:19:56.239 1629 1787 I SensorService: Dynamic sensor handle 0x1 connected, type 65536, name RocketBuds
acme-co$ adb shell dumpsys sensorservice | grep Rocket
0x00000001) RocketBuds | BLUETOOTH 1234:1234 | ver: 1 | type: com.google.hardware.sensor.hid_dynamic.headtracker(65536) | perm: n/a | flags: 0x00000020
acme-co$
```

View file

@ -460,6 +460,41 @@ static unsigned int populate_sample_rates_from_profile(const alsa_device_profile
return num_sample_rates; return num_sample_rates;
} }
static bool are_all_devices_found(unsigned int num_devices_to_find,
const int cards_to_find[],
const int devices_to_find[],
unsigned int num_devices,
const int cards[],
const int devices[]) {
for (unsigned int i = 0; i < num_devices_to_find; ++i) {
unsigned int j = 0;
for (; j < num_devices; ++j) {
if (cards_to_find[i] == cards[j] && devices_to_find[i] == devices[j]) {
break;
}
}
if (j >= num_devices) {
return false;
}
}
return true;
}
static bool are_devices_the_same(unsigned int left_num_devices,
const int left_cards[],
const int left_devices[],
unsigned int right_num_devices,
const int right_cards[],
const int right_devices[]) {
if (left_num_devices != right_num_devices) {
return false;
}
return are_all_devices_found(left_num_devices, left_cards, left_devices,
right_num_devices, right_cards, right_devices) &&
are_all_devices_found(right_num_devices, right_cards, right_devices,
left_num_devices, left_cards, left_devices);
}
/* /*
* HAl Functions * HAl Functions
*/ */
@ -548,10 +583,11 @@ static void stream_dump_alsa_devices(const struct listnode *alsa_devices, int fd
list_for_each(node, alsa_devices) { list_for_each(node, alsa_devices) {
struct alsa_device_info *device_info = struct alsa_device_info *device_info =
node_to_item(node, struct alsa_device_info, list_node); node_to_item(node, struct alsa_device_info, list_node);
dprintf(fd, "Output Profile %zu:\n", i); const char* direction = device_info->profile.direction == PCM_OUT ? "Output" : "Input";
dprintf(fd, "%s Profile %zu:\n", direction, i);
profile_dump(&device_info->profile, fd); profile_dump(&device_info->profile, fd);
dprintf(fd, "Output Proxy %zu:\n", i); dprintf(fd, "%s Proxy %zu:\n", direction, i);
proxy_dump(&device_info->proxy, fd); proxy_dump(&device_info->proxy, fd);
} }
} }
@ -1648,6 +1684,13 @@ static int adev_create_audio_patch(struct audio_hw_device *dev,
saved_devices[num_saved_devices++] = device_info->profile.device; saved_devices[num_saved_devices++] = device_info->profile.device;
} }
if (are_devices_the_same(
num_configs, cards, devices, num_saved_devices, saved_cards, saved_devices)) {
// The new devices are the same as original ones. No need to update.
stream_unlock(lock);
return 0;
}
device_lock(adev); device_lock(adev);
stream_standby_l(alsa_devices, out == NULL ? &in->standby : &out->standby); stream_standby_l(alsa_devices, out == NULL ? &in->standby : &out->standby);
device_unlock(adev); device_unlock(adev);