/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "modules.usbaudio.audio_hal" /*#define LOG_NDEBUG 0*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "alsa_device_profile.h" #include "alsa_device_proxy.h" #include "alsa_logging.h" #define DEFAULT_INPUT_BUFFER_SIZE_MS 20 /* Lock play & record samples rates at or above this threshold */ #define RATELOCK_THRESHOLD 96000 struct audio_device { struct audio_hw_device hw_device; pthread_mutex_t lock; /* see note below on mutex acquisition order */ /* output */ alsa_device_profile out_profile; struct listnode output_stream_list; /* input */ alsa_device_profile in_profile; struct listnode input_stream_list; /* lock input & output sample rates */ /*FIXME - How do we address multiple output streams? */ uint32_t device_sample_rate; bool mic_muted; bool standby; }; struct stream_lock { pthread_mutex_t lock; /* see note below on mutex acquisition order */ pthread_mutex_t pre_lock; /* acquire before lock to avoid DOS by playback thread */ }; struct stream_out { struct audio_stream_out stream; struct stream_lock lock; bool standby; struct audio_device *adev; /* hardware information - only using this for the lock */ alsa_device_profile * profile; /* Points to the alsa_device_profile in the audio_device */ alsa_device_proxy proxy; /* state of the stream */ unsigned hal_channel_count; /* channel count exposed to AudioFlinger. * This may differ from the device channel count when * the device is not compatible with AudioFlinger * capabilities, e.g. exposes too many channels or * too few channels. */ audio_channel_mask_t hal_channel_mask; /* USB devices deal in channel counts, not masks * so the proxy doesn't have a channel_mask, but * audio HALs need to talk about channel masks * so expose the one calculated by * adev_open_output_stream */ struct listnode list_node; void * conversion_buffer; /* any conversions are put into here * they could come from here too if * there was a previous conversion */ size_t conversion_buffer_size; /* in bytes */ }; struct stream_in { struct audio_stream_in stream; struct stream_lock lock; bool standby; struct audio_device *adev; /* hardware information - only using this for the lock */ alsa_device_profile * profile; /* Points to the alsa_device_profile in the audio_device */ alsa_device_proxy proxy; /* state of the stream */ unsigned hal_channel_count; /* channel count exposed to AudioFlinger. * This may differ from the device channel count when * the device is not compatible with AudioFlinger * capabilities, e.g. exposes too many channels or * too few channels. */ audio_channel_mask_t hal_channel_mask; /* USB devices deal in channel counts, not masks * so the proxy doesn't have a channel_mask, but * audio HALs need to talk about channel masks * so expose the one calculated by * adev_open_input_stream */ struct listnode list_node; /* We may need to read more data from the device in order to data reduce to 16bit, 4chan */ void * conversion_buffer; /* any conversions are put into here * they could come from here too if * there was a previous conversion */ size_t conversion_buffer_size; /* in bytes */ }; /* * Locking Helpers */ /* * NOTE: when multiple mutexes have to be acquired, always take the * stream_in or stream_out mutex first, followed by the audio_device mutex. * stream pre_lock is always acquired before stream lock to prevent starvation of control thread by * higher priority playback or capture thread. */ static void stream_lock_init(struct stream_lock *lock) { pthread_mutex_init(&lock->lock, (const pthread_mutexattr_t *) NULL); pthread_mutex_init(&lock->pre_lock, (const pthread_mutexattr_t *) NULL); } static void stream_lock(struct stream_lock *lock) { pthread_mutex_lock(&lock->pre_lock); pthread_mutex_lock(&lock->lock); pthread_mutex_unlock(&lock->pre_lock); } static void stream_unlock(struct stream_lock *lock) { pthread_mutex_unlock(&lock->lock); } static void device_lock(struct audio_device *adev) { pthread_mutex_lock(&adev->lock); } static int device_try_lock(struct audio_device *adev) { return pthread_mutex_trylock(&adev->lock); } static void device_unlock(struct audio_device *adev) { pthread_mutex_unlock(&adev->lock); } /* * streams list management */ static void adev_add_stream_to_list( struct audio_device* adev, struct listnode* list, struct listnode* stream_node) { device_lock(adev); list_add_tail(list, stream_node); device_unlock(adev); } static void adev_remove_stream_from_list( struct audio_device* adev, struct listnode* stream_node) { device_lock(adev); list_remove(stream_node); device_unlock(adev); } /* * Extract the card and device numbers from the supplied key/value pairs. * kvpairs A null-terminated string containing the key/value pairs or card and device. * i.e. "card=1;device=42" * card A pointer to a variable to receive the parsed-out card number. * device A pointer to a variable to receive the parsed-out device number. * NOTE: The variables pointed to by card and device return -1 (undefined) if the * associated key/value pair is not found in the provided string. * Return true if the kvpairs string contain a card/device spec, false otherwise. */ static bool parse_card_device_params(const char *kvpairs, int *card, int *device) { struct str_parms * parms = str_parms_create_str(kvpairs); char value[32]; int param_val; // initialize to "undefined" state. *card = -1; *device = -1; param_val = str_parms_get_str(parms, "card", value, sizeof(value)); if (param_val >= 0) { *card = atoi(value); } param_val = str_parms_get_str(parms, "device", value, sizeof(value)); if (param_val >= 0) { *device = atoi(value); } str_parms_destroy(parms); return *card >= 0 && *device >= 0; } static char * device_get_parameters(alsa_device_profile * profile, const char * keys) { if (profile->card < 0 || profile->device < 0) { return strdup(""); } struct str_parms *query = str_parms_create_str(keys); struct str_parms *result = str_parms_create(); /* These keys are from hardware/libhardware/include/audio.h */ /* supported sample rates */ if (str_parms_has_key(query, AUDIO_PARAMETER_STREAM_SUP_SAMPLING_RATES)) { char* rates_list = profile_get_sample_rate_strs(profile); str_parms_add_str(result, AUDIO_PARAMETER_STREAM_SUP_SAMPLING_RATES, rates_list); free(rates_list); } /* supported channel counts */ if (str_parms_has_key(query, AUDIO_PARAMETER_STREAM_SUP_CHANNELS)) { char* channels_list = profile_get_channel_count_strs(profile); str_parms_add_str(result, AUDIO_PARAMETER_STREAM_SUP_CHANNELS, channels_list); free(channels_list); } /* supported sample formats */ if (str_parms_has_key(query, AUDIO_PARAMETER_STREAM_SUP_FORMATS)) { char * format_params = profile_get_format_strs(profile); str_parms_add_str(result, AUDIO_PARAMETER_STREAM_SUP_FORMATS, format_params); free(format_params); } str_parms_destroy(query); char* result_str = str_parms_to_str(result); str_parms_destroy(result); ALOGV("device_get_parameters = %s", result_str); return result_str; } /* * HAl Functions */ /** * NOTE: when multiple mutexes have to be acquired, always respect the * following order: hw device > out stream */ /* * OUT functions */ static uint32_t out_get_sample_rate(const struct audio_stream *stream) { uint32_t rate = proxy_get_sample_rate(&((struct stream_out*)stream)->proxy); ALOGV("out_get_sample_rate() = %d", rate); return rate; } static int out_set_sample_rate(struct audio_stream *stream, uint32_t rate) { return 0; } static size_t out_get_buffer_size(const struct audio_stream *stream) { const struct stream_out* out = (const struct stream_out*)stream; size_t buffer_size = proxy_get_period_size(&out->proxy) * audio_stream_out_frame_size(&(out->stream)); return buffer_size; } static uint32_t out_get_channels(const struct audio_stream *stream) { const struct stream_out *out = (const struct stream_out*)stream; return out->hal_channel_mask; } static audio_format_t out_get_format(const struct audio_stream *stream) { /* Note: The HAL doesn't do any FORMAT conversion at this time. It * Relies on the framework to provide data in the specified format. * This could change in the future. */ alsa_device_proxy * proxy = &((struct stream_out*)stream)->proxy; audio_format_t format = audio_format_from_pcm_format(proxy_get_format(proxy)); return format; } static int out_set_format(struct audio_stream *stream, audio_format_t format) { return 0; } static int out_standby(struct audio_stream *stream) { struct stream_out *out = (struct stream_out *)stream; stream_lock(&out->lock); if (!out->standby) { device_lock(out->adev); proxy_close(&out->proxy); device_unlock(out->adev); out->standby = true; } stream_unlock(&out->lock); return 0; } static int out_dump(const struct audio_stream *stream, int fd) { const struct stream_out* out_stream = (const struct stream_out*) stream; if (out_stream != NULL) { dprintf(fd, "Output Profile:\n"); profile_dump(out_stream->profile, fd); dprintf(fd, "Output Proxy:\n"); proxy_dump(&out_stream->proxy, fd); } return 0; } static int out_set_parameters(struct audio_stream *stream, const char *kvpairs) { ALOGV("out_set_parameters() keys:%s", kvpairs); struct stream_out *out = (struct stream_out *)stream; int routing = 0; int ret_value = 0; int card = -1; int device = -1; if (!parse_card_device_params(kvpairs, &card, &device)) { // nothing to do return ret_value; } stream_lock(&out->lock); /* Lock the device because that is where the profile lives */ device_lock(out->adev); if (!profile_is_cached_for(out->profile, card, device)) { /* cannot read pcm device info if playback is active */ if (!out->standby) ret_value = -ENOSYS; else { int saved_card = out->profile->card; int saved_device = out->profile->device; out->profile->card = card; out->profile->device = device; ret_value = profile_read_device_info(out->profile) ? 0 : -EINVAL; if (ret_value != 0) { out->profile->card = saved_card; out->profile->device = saved_device; } } } device_unlock(out->adev); stream_unlock(&out->lock); return ret_value; } static char * out_get_parameters(const struct audio_stream *stream, const char *keys) { struct stream_out *out = (struct stream_out *)stream; stream_lock(&out->lock); device_lock(out->adev); char * params_str = device_get_parameters(out->profile, keys); device_unlock(out->adev); stream_unlock(&out->lock); return params_str; } static uint32_t out_get_latency(const struct audio_stream_out *stream) { alsa_device_proxy * proxy = &((struct stream_out*)stream)->proxy; return proxy_get_latency(proxy); } static int out_set_volume(struct audio_stream_out *stream, float left, float right) { return -ENOSYS; } /* must be called with hw device and output stream mutexes locked */ static int start_output_stream(struct stream_out *out) { ALOGV("start_output_stream(card:%d device:%d)", out->profile->card, out->profile->device); return proxy_open(&out->proxy); } static ssize_t out_write(struct audio_stream_out *stream, const void* buffer, size_t bytes) { int ret; struct stream_out *out = (struct stream_out *)stream; stream_lock(&out->lock); if (out->standby) { device_lock(out->adev); ret = start_output_stream(out); device_unlock(out->adev); if (ret != 0) { goto err; } out->standby = false; } alsa_device_proxy* proxy = &out->proxy; const void * write_buff = buffer; int num_write_buff_bytes = bytes; const int num_device_channels = proxy_get_channel_count(proxy); /* what we told alsa */ const int num_req_channels = out->hal_channel_count; /* what we told AudioFlinger */ if (num_device_channels != num_req_channels) { /* allocate buffer */ const size_t required_conversion_buffer_size = bytes * num_device_channels / num_req_channels; if (required_conversion_buffer_size > out->conversion_buffer_size) { out->conversion_buffer_size = required_conversion_buffer_size; out->conversion_buffer = realloc(out->conversion_buffer, out->conversion_buffer_size); } /* convert data */ const audio_format_t audio_format = out_get_format(&(out->stream.common)); const unsigned sample_size_in_bytes = audio_bytes_per_sample(audio_format); num_write_buff_bytes = adjust_channels(write_buff, num_req_channels, out->conversion_buffer, num_device_channels, sample_size_in_bytes, num_write_buff_bytes); write_buff = out->conversion_buffer; } if (write_buff != NULL && num_write_buff_bytes != 0) { proxy_write(&out->proxy, write_buff, num_write_buff_bytes); } stream_unlock(&out->lock); return bytes; err: stream_unlock(&out->lock); if (ret != 0) { usleep(bytes * 1000000 / audio_stream_out_frame_size(stream) / out_get_sample_rate(&stream->common)); } return bytes; } static int out_get_render_position(const struct audio_stream_out *stream, uint32_t *dsp_frames) { return -EINVAL; } static int out_get_presentation_position(const struct audio_stream_out *stream, uint64_t *frames, struct timespec *timestamp) { struct stream_out *out = (struct stream_out *)stream; // discard const qualifier stream_lock(&out->lock); const alsa_device_proxy *proxy = &out->proxy; const int ret = proxy_get_presentation_position(proxy, frames, timestamp); stream_unlock(&out->lock); return ret; } static int out_add_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int out_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int out_get_next_write_timestamp(const struct audio_stream_out *stream, int64_t *timestamp) { return -EINVAL; } static int adev_open_output_stream(struct audio_hw_device *hw_dev, audio_io_handle_t handle, audio_devices_t devicesSpec __unused, audio_output_flags_t flags, struct audio_config *config, struct audio_stream_out **stream_out, const char *address /*__unused*/) { ALOGV("adev_open_output_stream() handle:0x%X, devicesSpec:0x%X, flags:0x%X, addr:%s", handle, devicesSpec, flags, address); struct stream_out *out; out = (struct stream_out *)calloc(1, sizeof(struct stream_out)); if (out == NULL) { return -ENOMEM; } /* setup function pointers */ out->stream.common.get_sample_rate = out_get_sample_rate; out->stream.common.set_sample_rate = out_set_sample_rate; out->stream.common.get_buffer_size = out_get_buffer_size; out->stream.common.get_channels = out_get_channels; out->stream.common.get_format = out_get_format; out->stream.common.set_format = out_set_format; out->stream.common.standby = out_standby; out->stream.common.dump = out_dump; out->stream.common.set_parameters = out_set_parameters; out->stream.common.get_parameters = out_get_parameters; out->stream.common.add_audio_effect = out_add_audio_effect; out->stream.common.remove_audio_effect = out_remove_audio_effect; out->stream.get_latency = out_get_latency; out->stream.set_volume = out_set_volume; out->stream.write = out_write; out->stream.get_render_position = out_get_render_position; out->stream.get_presentation_position = out_get_presentation_position; out->stream.get_next_write_timestamp = out_get_next_write_timestamp; stream_lock_init(&out->lock); out->adev = (struct audio_device *)hw_dev; device_lock(out->adev); out->profile = &out->adev->out_profile; // build this to hand to the alsa_device_proxy struct pcm_config proxy_config; memset(&proxy_config, 0, sizeof(proxy_config)); /* Pull out the card/device pair */ parse_card_device_params(address, &(out->profile->card), &(out->profile->device)); profile_read_device_info(out->profile); int ret = 0; /* Rate */ if (config->sample_rate == 0) { proxy_config.rate = config->sample_rate = profile_get_default_sample_rate(out->profile); } else if (profile_is_sample_rate_valid(out->profile, config->sample_rate)) { proxy_config.rate = config->sample_rate; } else { proxy_config.rate = config->sample_rate = profile_get_default_sample_rate(out->profile); ret = -EINVAL; } out->adev->device_sample_rate = config->sample_rate; device_unlock(out->adev); /* Format */ if (config->format == AUDIO_FORMAT_DEFAULT) { proxy_config.format = profile_get_default_format(out->profile); config->format = audio_format_from_pcm_format(proxy_config.format); } else { enum pcm_format fmt = pcm_format_from_audio_format(config->format); if (profile_is_format_valid(out->profile, fmt)) { proxy_config.format = fmt; } else { proxy_config.format = profile_get_default_format(out->profile); config->format = audio_format_from_pcm_format(proxy_config.format); ret = -EINVAL; } } /* Channels */ bool calc_mask = false; if (config->channel_mask == AUDIO_CHANNEL_NONE) { /* query case */ out->hal_channel_count = profile_get_default_channel_count(out->profile); calc_mask = true; } else { /* explicit case */ out->hal_channel_count = audio_channel_count_from_out_mask(config->channel_mask); } /* The Framework is currently limited to no more than this number of channels */ if (out->hal_channel_count > FCC_8) { out->hal_channel_count = FCC_8; calc_mask = true; } if (calc_mask) { /* need to calculate the mask from channel count either because this is the query case * or the specified mask isn't valid for this device, or is more then the FW can handle */ config->channel_mask = out->hal_channel_count <= FCC_2 /* position mask for mono and stereo*/ ? audio_channel_out_mask_from_count(out->hal_channel_count) /* otherwise indexed */ : audio_channel_mask_for_index_assignment_from_count(out->hal_channel_count); } out->hal_channel_mask = config->channel_mask; // Validate the "logical" channel count against support in the "actual" profile. // if they differ, choose the "actual" number of channels *closest* to the "logical". // and store THAT in proxy_config.channels proxy_config.channels = profile_get_closest_channel_count(out->profile, out->hal_channel_count); proxy_prepare(&out->proxy, out->profile, &proxy_config); /* TODO The retry mechanism isn't implemented in AudioPolicyManager/AudioFlinger. */ ret = 0; out->conversion_buffer = NULL; out->conversion_buffer_size = 0; out->standby = true; /* Save the stream for adev_dump() */ adev_add_stream_to_list(out->adev, &out->adev->output_stream_list, &out->list_node); *stream_out = &out->stream; return ret; err_open: free(out); *stream_out = NULL; return -ENOSYS; } static void adev_close_output_stream(struct audio_hw_device *hw_dev, struct audio_stream_out *stream) { struct stream_out *out = (struct stream_out *)stream; ALOGV("adev_close_output_stream(c:%d d:%d)", out->profile->card, out->profile->device); adev_remove_stream_from_list(out->adev, &out->list_node); /* Close the pcm device */ out_standby(&stream->common); free(out->conversion_buffer); out->conversion_buffer = NULL; out->conversion_buffer_size = 0; device_lock(out->adev); out->adev->device_sample_rate = 0; device_unlock(out->adev); free(stream); } static size_t adev_get_input_buffer_size(const struct audio_hw_device *hw_dev, const struct audio_config *config) { /* TODO This needs to be calculated based on format/channels/rate */ return 320; } /* * IN functions */ static uint32_t in_get_sample_rate(const struct audio_stream *stream) { uint32_t rate = proxy_get_sample_rate(&((const struct stream_in *)stream)->proxy); ALOGV("in_get_sample_rate() = %d", rate); return rate; } static int in_set_sample_rate(struct audio_stream *stream, uint32_t rate) { ALOGV("in_set_sample_rate(%d) - NOPE", rate); return -ENOSYS; } static size_t in_get_buffer_size(const struct audio_stream *stream) { const struct stream_in * in = ((const struct stream_in*)stream); return proxy_get_period_size(&in->proxy) * audio_stream_in_frame_size(&(in->stream)); } static uint32_t in_get_channels(const struct audio_stream *stream) { const struct stream_in *in = (const struct stream_in*)stream; return in->hal_channel_mask; } static audio_format_t in_get_format(const struct audio_stream *stream) { alsa_device_proxy *proxy = &((struct stream_in*)stream)->proxy; audio_format_t format = audio_format_from_pcm_format(proxy_get_format(proxy)); return format; } static int in_set_format(struct audio_stream *stream, audio_format_t format) { ALOGV("in_set_format(%d) - NOPE", format); return -ENOSYS; } static int in_standby(struct audio_stream *stream) { struct stream_in *in = (struct stream_in *)stream; stream_lock(&in->lock); if (!in->standby) { device_lock(in->adev); proxy_close(&in->proxy); device_unlock(in->adev); in->standby = true; } stream_unlock(&in->lock); return 0; } static int in_dump(const struct audio_stream *stream, int fd) { const struct stream_in* in_stream = (const struct stream_in*)stream; if (in_stream != NULL) { dprintf(fd, "Input Profile:\n"); profile_dump(in_stream->profile, fd); dprintf(fd, "Input Proxy:\n"); proxy_dump(&in_stream->proxy, fd); } return 0; } static int in_set_parameters(struct audio_stream *stream, const char *kvpairs) { ALOGV("in_set_parameters() keys:%s", kvpairs); struct stream_in *in = (struct stream_in *)stream; char value[32]; int param_val; int routing = 0; int ret_value = 0; int card = -1; int device = -1; if (!parse_card_device_params(kvpairs, &card, &device)) { // nothing to do return ret_value; } stream_lock(&in->lock); device_lock(in->adev); if (card >= 0 && device >= 0 && !profile_is_cached_for(in->profile, card, device)) { /* cannot read pcm device info if playback is active */ if (!in->standby) ret_value = -ENOSYS; else { int saved_card = in->profile->card; int saved_device = in->profile->device; in->profile->card = card; in->profile->device = device; ret_value = profile_read_device_info(in->profile) ? 0 : -EINVAL; if (ret_value != 0) { in->profile->card = saved_card; in->profile->device = saved_device; } } } device_unlock(in->adev); stream_unlock(&in->lock); return ret_value; } static char * in_get_parameters(const struct audio_stream *stream, const char *keys) { struct stream_in *in = (struct stream_in *)stream; stream_lock(&in->lock); device_lock(in->adev); char * params_str = device_get_parameters(in->profile, keys); device_unlock(in->adev); stream_unlock(&in->lock); return params_str; } static int in_add_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int in_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int in_set_gain(struct audio_stream_in *stream, float gain) { return 0; } /* must be called with hw device and output stream mutexes locked */ static int start_input_stream(struct stream_in *in) { ALOGV("start_input_stream(card:%d device:%d)", in->profile->card, in->profile->device); return proxy_open(&in->proxy); } /* TODO mutex stuff here (see out_write) */ static ssize_t in_read(struct audio_stream_in *stream, void* buffer, size_t bytes) { size_t num_read_buff_bytes = 0; void * read_buff = buffer; void * out_buff = buffer; int ret = 0; struct stream_in * in = (struct stream_in *)stream; stream_lock(&in->lock); if (in->standby) { device_lock(in->adev); ret = start_input_stream(in); device_unlock(in->adev); if (ret != 0) { goto err; } in->standby = false; } alsa_device_profile * profile = in->profile; /* * OK, we need to figure out how much data to read to be able to output the requested * number of bytes in the HAL format (16-bit, stereo). */ num_read_buff_bytes = bytes; int num_device_channels = proxy_get_channel_count(&in->proxy); /* what we told Alsa */ int num_req_channels = in->hal_channel_count; /* what we told AudioFlinger */ if (num_device_channels != num_req_channels) { num_read_buff_bytes = (num_device_channels * num_read_buff_bytes) / num_req_channels; } /* Setup/Realloc the conversion buffer (if necessary). */ if (num_read_buff_bytes != bytes) { if (num_read_buff_bytes > in->conversion_buffer_size) { /*TODO Remove this when AudioPolicyManger/AudioFlinger support arbitrary formats (and do these conversions themselves) */ in->conversion_buffer_size = num_read_buff_bytes; in->conversion_buffer = realloc(in->conversion_buffer, in->conversion_buffer_size); } read_buff = in->conversion_buffer; } ret = proxy_read(&in->proxy, read_buff, num_read_buff_bytes); if (ret == 0) { if (num_device_channels != num_req_channels) { // ALOGV("chans dev:%d req:%d", num_device_channels, num_req_channels); out_buff = buffer; /* Num Channels conversion */ if (num_device_channels != num_req_channels) { audio_format_t audio_format = in_get_format(&(in->stream.common)); unsigned sample_size_in_bytes = audio_bytes_per_sample(audio_format); num_read_buff_bytes = adjust_channels(read_buff, num_device_channels, out_buff, num_req_channels, sample_size_in_bytes, num_read_buff_bytes); } } /* no need to acquire in->adev->lock to read mic_muted here as we don't change its state */ if (num_read_buff_bytes > 0 && in->adev->mic_muted) memset(buffer, 0, num_read_buff_bytes); } else { num_read_buff_bytes = 0; // reset the value after USB headset is unplugged } err: stream_unlock(&in->lock); return num_read_buff_bytes; } static uint32_t in_get_input_frames_lost(struct audio_stream_in *stream) { return 0; } static int adev_open_input_stream(struct audio_hw_device *hw_dev, audio_io_handle_t handle, audio_devices_t devicesSpec __unused, struct audio_config *config, struct audio_stream_in **stream_in, audio_input_flags_t flags __unused, const char *address /*__unused*/, audio_source_t source __unused) { ALOGV("adev_open_input_stream() rate:%" PRIu32 ", chanMask:0x%" PRIX32 ", fmt:%" PRIu8, config->sample_rate, config->channel_mask, config->format); struct stream_in *in = (struct stream_in *)calloc(1, sizeof(struct stream_in)); int ret = 0; if (in == NULL) { return -ENOMEM; } /* setup function pointers */ in->stream.common.get_sample_rate = in_get_sample_rate; in->stream.common.set_sample_rate = in_set_sample_rate; in->stream.common.get_buffer_size = in_get_buffer_size; in->stream.common.get_channels = in_get_channels; in->stream.common.get_format = in_get_format; in->stream.common.set_format = in_set_format; in->stream.common.standby = in_standby; in->stream.common.dump = in_dump; in->stream.common.set_parameters = in_set_parameters; in->stream.common.get_parameters = in_get_parameters; in->stream.common.add_audio_effect = in_add_audio_effect; in->stream.common.remove_audio_effect = in_remove_audio_effect; in->stream.set_gain = in_set_gain; in->stream.read = in_read; in->stream.get_input_frames_lost = in_get_input_frames_lost; stream_lock_init(&in->lock); in->adev = (struct audio_device *)hw_dev; device_lock(in->adev); in->profile = &in->adev->in_profile; struct pcm_config proxy_config; memset(&proxy_config, 0, sizeof(proxy_config)); /* Pull out the card/device pair */ parse_card_device_params(address, &(in->profile->card), &(in->profile->device)); profile_read_device_info(in->profile); /* Rate */ if (config->sample_rate == 0) { config->sample_rate = profile_get_default_sample_rate(in->profile); } if (in->adev->device_sample_rate != 0 && /* we are playing, so lock the rate */ in->adev->device_sample_rate >= RATELOCK_THRESHOLD) {/* but only for high sample rates */ ret = config->sample_rate != in->adev->device_sample_rate ? -EINVAL : 0; proxy_config.rate = config->sample_rate = in->adev->device_sample_rate; } else if (profile_is_sample_rate_valid(in->profile, config->sample_rate)) { in->adev->device_sample_rate = proxy_config.rate = config->sample_rate; } else { proxy_config.rate = config->sample_rate = profile_get_default_sample_rate(in->profile); ret = -EINVAL; } device_unlock(in->adev); /* Format */ if (config->format == AUDIO_FORMAT_DEFAULT) { proxy_config.format = profile_get_default_format(in->profile); config->format = audio_format_from_pcm_format(proxy_config.format); } else { enum pcm_format fmt = pcm_format_from_audio_format(config->format); if (profile_is_format_valid(in->profile, fmt)) { proxy_config.format = fmt; } else { proxy_config.format = profile_get_default_format(in->profile); config->format = audio_format_from_pcm_format(proxy_config.format); ret = -EINVAL; } } /* Channels */ bool calc_mask = false; if (config->channel_mask == AUDIO_CHANNEL_NONE) { /* query case */ in->hal_channel_count = profile_get_default_channel_count(in->profile); calc_mask = true; } else { /* explicit case */ in->hal_channel_count = audio_channel_count_from_in_mask(config->channel_mask); } /* The Framework is currently limited to no more than this number of channels */ if (in->hal_channel_count > FCC_8) { in->hal_channel_count = FCC_8; calc_mask = true; } if (calc_mask) { /* need to calculate the mask from channel count either because this is the query case * or the specified mask isn't valid for this device, or is more then the FW can handle */ in->hal_channel_mask = in->hal_channel_count <= FCC_2 /* position mask for mono & stereo */ ? audio_channel_in_mask_from_count(in->hal_channel_count) /* otherwise indexed */ : audio_channel_mask_for_index_assignment_from_count(in->hal_channel_count); // if we change the mask... if (in->hal_channel_mask != config->channel_mask && config->channel_mask != AUDIO_CHANNEL_NONE) { config->channel_mask = in->hal_channel_mask; ret = -EINVAL; } } else { in->hal_channel_mask = config->channel_mask; } if (ret == 0) { // Validate the "logical" channel count against support in the "actual" profile. // if they differ, choose the "actual" number of channels *closest* to the "logical". // and store THAT in proxy_config.channels proxy_config.channels = profile_get_closest_channel_count(in->profile, in->hal_channel_count); proxy_prepare(&in->proxy, in->profile, &proxy_config); in->standby = true; in->conversion_buffer = NULL; in->conversion_buffer_size = 0; *stream_in = &in->stream; /* Save this for adev_dump() */ adev_add_stream_to_list(in->adev, &in->adev->input_stream_list, &in->list_node); } else { // Deallocate this stream on error, because AudioFlinger won't call // adev_close_input_stream() in this case. *stream_in = NULL; free(in); } return ret; } static void adev_close_input_stream(struct audio_hw_device *hw_dev, struct audio_stream_in *stream) { struct stream_in *in = (struct stream_in *)stream; ALOGV("adev_close_input_stream(c:%d d:%d)", in->profile->card, in->profile->device); adev_remove_stream_from_list(in->adev, &in->list_node); /* Close the pcm device */ in_standby(&stream->common); free(in->conversion_buffer); free(stream); } /* * ADEV Functions */ static int adev_set_parameters(struct audio_hw_device *hw_dev, const char *kvpairs) { return 0; } static char * adev_get_parameters(const struct audio_hw_device *hw_dev, const char *keys) { return strdup(""); } static int adev_init_check(const struct audio_hw_device *hw_dev) { return 0; } static int adev_set_voice_volume(struct audio_hw_device *hw_dev, float volume) { return -ENOSYS; } static int adev_set_master_volume(struct audio_hw_device *hw_dev, float volume) { return -ENOSYS; } static int adev_set_mode(struct audio_hw_device *hw_dev, audio_mode_t mode) { return 0; } static int adev_set_mic_mute(struct audio_hw_device *hw_dev, bool state) { struct audio_device * adev = (struct audio_device *)hw_dev; device_lock(adev); adev->mic_muted = state; device_unlock(adev); return -ENOSYS; } static int adev_get_mic_mute(const struct audio_hw_device *hw_dev, bool *state) { return -ENOSYS; } static int adev_dump(const struct audio_hw_device *device, int fd) { dprintf(fd, "\nUSB audio module:\n"); struct audio_device* adev = (struct audio_device*)device; const int kNumRetries = 3; const int kSleepTimeMS = 500; // use device_try_lock() in case we dumpsys during a deadlock int retry = kNumRetries; while (retry > 0 && device_try_lock(adev) != 0) { sleep(kSleepTimeMS); retry--; } if (retry > 0) { if (list_empty(&adev->output_stream_list)) { dprintf(fd, " No output streams.\n"); } else { struct listnode* node; list_for_each(node, &adev->output_stream_list) { struct audio_stream* stream = (struct audio_stream *)node_to_item(node, struct stream_out, list_node); out_dump(stream, fd); } } if (list_empty(&adev->input_stream_list)) { dprintf(fd, "\n No input streams.\n"); } else { struct listnode* node; list_for_each(node, &adev->input_stream_list) { struct audio_stream* stream = (struct audio_stream *)node_to_item(node, struct stream_in, list_node); in_dump(stream, fd); } } device_unlock(adev); } else { // Couldn't lock dprintf(fd, " Could not obtain device lock.\n"); } return 0; } static int adev_close(hw_device_t *device) { struct audio_device *adev = (struct audio_device *)device; free(device); return 0; } static int adev_open(const hw_module_t* module, const char* name, hw_device_t** device) { if (strcmp(name, AUDIO_HARDWARE_INTERFACE) != 0) return -EINVAL; struct audio_device *adev = calloc(1, sizeof(struct audio_device)); if (!adev) return -ENOMEM; profile_init(&adev->out_profile, PCM_OUT); profile_init(&adev->in_profile, PCM_IN); list_init(&adev->output_stream_list); list_init(&adev->input_stream_list); adev->hw_device.common.tag = HARDWARE_DEVICE_TAG; adev->hw_device.common.version = AUDIO_DEVICE_API_VERSION_2_0; adev->hw_device.common.module = (struct hw_module_t *)module; adev->hw_device.common.close = adev_close; adev->hw_device.init_check = adev_init_check; adev->hw_device.set_voice_volume = adev_set_voice_volume; adev->hw_device.set_master_volume = adev_set_master_volume; adev->hw_device.set_mode = adev_set_mode; adev->hw_device.set_mic_mute = adev_set_mic_mute; adev->hw_device.get_mic_mute = adev_get_mic_mute; adev->hw_device.set_parameters = adev_set_parameters; adev->hw_device.get_parameters = adev_get_parameters; adev->hw_device.get_input_buffer_size = adev_get_input_buffer_size; adev->hw_device.open_output_stream = adev_open_output_stream; adev->hw_device.close_output_stream = adev_close_output_stream; adev->hw_device.open_input_stream = adev_open_input_stream; adev->hw_device.close_input_stream = adev_close_input_stream; adev->hw_device.dump = adev_dump; *device = &adev->hw_device.common; return 0; } static struct hw_module_methods_t hal_module_methods = { .open = adev_open, }; struct audio_module HAL_MODULE_INFO_SYM = { .common = { .tag = HARDWARE_MODULE_TAG, .module_api_version = AUDIO_MODULE_API_VERSION_0_1, .hal_api_version = HARDWARE_HAL_API_VERSION, .id = AUDIO_HARDWARE_MODULE_ID, .name = "USB audio HW HAL", .author = "The Android Open Source Project", .methods = &hal_module_methods, }, };