/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "modules.usbaudio.audio_hal" /*#define LOG_NDEBUG 0*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* FOR TESTING: * Set k_force_channels to force the number of channels to present to AudioFlinger. * 0 disables (this is default: present the device channels to AudioFlinger). * 2 forces to legacy stereo mode. * * Others values can be tried (up to 8). * TODO: AudioFlinger cannot support more than 8 active output channels * at this time, so limiting logic needs to be put here or communicated from above. */ static const unsigned k_force_channels = 0; #include "alsa_device_profile.h" #include "alsa_device_proxy.h" #include "alsa_logging.h" #define DEFAULT_INPUT_BUFFER_SIZE_MS 20 // fixed channel count of 8 limitation (for data processing in AudioFlinger) #define FCC_8 8 struct audio_device { struct audio_hw_device hw_device; pthread_mutex_t lock; /* see note below on mutex acquisition order */ /* output */ alsa_device_profile out_profile; /* input */ alsa_device_profile in_profile; bool mic_muted; bool standby; }; struct stream_out { struct audio_stream_out stream; pthread_mutex_t lock; /* see note below on mutex acquisition order */ bool standby; struct audio_device *dev; /* hardware information - only using this for the lock */ alsa_device_profile * profile; /* Points to the alsa_device_profile in the audio_device */ alsa_device_proxy proxy; /* state of the stream */ unsigned hal_channel_count; /* channel count exposed to AudioFlinger. * This may differ from the device channel count when * the device is not compatible with AudioFlinger * capabilities, e.g. exposes too many channels or * too few channels. */ void * conversion_buffer; /* any conversions are put into here * they could come from here too if * there was a previous conversion */ size_t conversion_buffer_size; /* in bytes */ }; struct stream_in { struct audio_stream_in stream; pthread_mutex_t lock; /* see note below on mutex acquisition order */ bool standby; struct audio_device *dev; /* hardware information - only using this for the lock */ alsa_device_profile * profile; /* Points to the alsa_device_profile in the audio_device */ alsa_device_proxy proxy; /* state of the stream */ unsigned hal_channel_count; /* channel count exposed to AudioFlinger. * This may differ from the device channel count when * the device is not compatible with AudioFlinger * capabilities, e.g. exposes too many channels or * too few channels. */ audio_channel_mask_t hal_channel_mask; /* channel mask exposed to AudioFlinger. */ /* We may need to read more data from the device in order to data reduce to 16bit, 4chan */ void * conversion_buffer; /* any conversions are put into here * they could come from here too if * there was a previous conversion */ size_t conversion_buffer_size; /* in bytes */ }; /* * Data Conversions */ /* * Convert a buffer of packed (3-byte) PCM24LE samples to PCM16LE samples. * in_buff points to the buffer of PCM24LE samples * num_in_samples size of input buffer in SAMPLES * out_buff points to the buffer to receive converted PCM16LE LE samples. * returns * the number of BYTES of output data. * We are doing this since we *always* present to The Framework as A PCM16LE device, but need to * support PCM24_3LE (24-bit, packed). * NOTE: * This conversion is safe to do in-place (in_buff == out_buff). * TODO Move this to a utilities module. */ static size_t convert_24_3_to_16(const unsigned char * in_buff, size_t num_in_samples, short * out_buff) { /* * Move from front to back so that the conversion can be done in-place * i.e. in_buff == out_buff */ /* we need 2 bytes in the output for every 3 bytes in the input */ unsigned char* dst_ptr = (unsigned char*)out_buff; const unsigned char* src_ptr = in_buff; size_t src_smpl_index; for (src_smpl_index = 0; src_smpl_index < num_in_samples; src_smpl_index++) { src_ptr++; /* lowest-(skip)-byte */ *dst_ptr++ = *src_ptr++; /* low-byte */ *dst_ptr++ = *src_ptr++; /* high-byte */ } /* return number of *bytes* generated: */ return num_in_samples * 2; } /* * Convert a buffer of packed (3-byte) PCM32 samples to PCM16LE samples. * in_buff points to the buffer of PCM32 samples * num_in_samples size of input buffer in SAMPLES * out_buff points to the buffer to receive converted PCM16LE LE samples. * returns * the number of BYTES of output data. * We are doing this since we *always* present to The Framework as A PCM16LE device, but need to * support PCM_FORMAT_S32_LE (32-bit). * NOTE: * This conversion is safe to do in-place (in_buff == out_buff). * TODO Move this to a utilities module. */ static size_t convert_32_to_16(const int32_t * in_buff, size_t num_in_samples, short * out_buff) { /* * Move from front to back so that the conversion can be done in-place * i.e. in_buff == out_buff */ short * dst_ptr = out_buff; const int32_t* src_ptr = in_buff; size_t src_smpl_index; for (src_smpl_index = 0; src_smpl_index < num_in_samples; src_smpl_index++) { *dst_ptr++ = *src_ptr++ >> 16; } /* return number of *bytes* generated: */ return num_in_samples * 2; } /* * Extract the card and device numbers from the supplied key/value pairs. * kvpairs A null-terminated string containing the key/value pairs or card and device. * i.e. "card=1;device=42" * card A pointer to a variable to receive the parsed-out card number. * device A pointer to a variable to receive the parsed-out device number. * NOTE: The variables pointed to by card and device return -1 (undefined) if the * associated key/value pair is not found in the provided string. * Return true if the kvpairs string contain a card/device spec, false otherwise. */ static bool parse_card_device_params(const char *kvpairs, int *card, int *device) { struct str_parms * parms = str_parms_create_str(kvpairs); char value[32]; int param_val; // initialize to "undefined" state. *card = -1; *device = -1; param_val = str_parms_get_str(parms, "card", value, sizeof(value)); if (param_val >= 0) { *card = atoi(value); } param_val = str_parms_get_str(parms, "device", value, sizeof(value)); if (param_val >= 0) { *device = atoi(value); } str_parms_destroy(parms); return *card >= 0 && *device >= 0; } static char * device_get_parameters(alsa_device_profile * profile, const char * keys) { if (profile->card < 0 || profile->device < 0) { return strdup(""); } struct str_parms *query = str_parms_create_str(keys); struct str_parms *result = str_parms_create(); /* These keys are from hardware/libhardware/include/audio.h */ /* supported sample rates */ if (str_parms_has_key(query, AUDIO_PARAMETER_STREAM_SUP_SAMPLING_RATES)) { char* rates_list = profile_get_sample_rate_strs(profile); str_parms_add_str(result, AUDIO_PARAMETER_STREAM_SUP_SAMPLING_RATES, rates_list); free(rates_list); } /* supported channel counts */ if (str_parms_has_key(query, AUDIO_PARAMETER_STREAM_SUP_CHANNELS)) { char* channels_list = profile_get_channel_count_strs(profile); str_parms_add_str(result, AUDIO_PARAMETER_STREAM_SUP_CHANNELS, channels_list); free(channels_list); } /* supported sample formats */ if (str_parms_has_key(query, AUDIO_PARAMETER_STREAM_SUP_FORMATS)) { char * format_params = profile_get_format_strs(profile); str_parms_add_str(result, AUDIO_PARAMETER_STREAM_SUP_FORMATS, format_params); free(format_params); } str_parms_destroy(query); char* result_str = str_parms_to_str(result); str_parms_destroy(result); ALOGV("device_get_parameters = %s", result_str); return result_str; } /* * HAl Functions */ /** * NOTE: when multiple mutexes have to be acquired, always respect the * following order: hw device > out stream */ /* * OUT functions */ static uint32_t out_get_sample_rate(const struct audio_stream *stream) { uint32_t rate = proxy_get_sample_rate(&((struct stream_out*)stream)->proxy); ALOGV("out_get_sample_rate() = %d", rate); return rate; } static int out_set_sample_rate(struct audio_stream *stream, uint32_t rate) { return 0; } static size_t out_get_buffer_size(const struct audio_stream *stream) { const struct stream_out* out = (const struct stream_out*)stream; size_t buffer_size = proxy_get_period_size(&out->proxy) * audio_stream_out_frame_size(&(out->stream)); return buffer_size; } static uint32_t out_get_channels(const struct audio_stream *stream) { const struct stream_out *out = (const struct stream_out*)stream; return audio_channel_out_mask_from_count(out->hal_channel_count); } static audio_format_t out_get_format(const struct audio_stream *stream) { /* Note: The HAL doesn't do any FORMAT conversion at this time. It * Relies on the framework to provide data in the specified format. * This could change in the future. */ alsa_device_proxy * proxy = &((struct stream_out*)stream)->proxy; audio_format_t format = audio_format_from_pcm_format(proxy_get_format(proxy)); return format; } static int out_set_format(struct audio_stream *stream, audio_format_t format) { return 0; } static int out_standby(struct audio_stream *stream) { struct stream_out *out = (struct stream_out *)stream; pthread_mutex_lock(&out->dev->lock); pthread_mutex_lock(&out->lock); if (!out->standby) { proxy_close(&out->proxy); out->standby = true; } pthread_mutex_unlock(&out->lock); pthread_mutex_unlock(&out->dev->lock); return 0; } static int out_dump(const struct audio_stream *stream, int fd) { return 0; } static int out_set_parameters(struct audio_stream *stream, const char *kvpairs) { ALOGV("out_set_parameters() keys:%s", kvpairs); struct stream_out *out = (struct stream_out *)stream; int routing = 0; int ret_value = 0; int card = -1; int device = -1; if (!parse_card_device_params(kvpairs, &card, &device)) { // nothing to do return ret_value; } /* Lock the device because that is where the profile lives */ pthread_mutex_lock(&out->dev->lock); pthread_mutex_lock(&out->lock); if (!profile_is_cached_for(out->profile, card, device)) { /* cannot read pcm device info if playback is active */ if (!out->standby) ret_value = -ENOSYS; else { int saved_card = out->profile->card; int saved_device = out->profile->device; out->profile->card = card; out->profile->device = device; ret_value = profile_read_device_info(out->profile) ? 0 : -EINVAL; if (ret_value != 0) { out->profile->card = saved_card; out->profile->device = saved_device; } } } pthread_mutex_unlock(&out->lock); pthread_mutex_unlock(&out->dev->lock); return ret_value; } static char * out_get_parameters(const struct audio_stream *stream, const char *keys) { struct stream_out *out = (struct stream_out *)stream; pthread_mutex_lock(&out->dev->lock); pthread_mutex_lock(&out->lock); char * params_str = device_get_parameters(out->profile, keys); pthread_mutex_unlock(&out->lock); pthread_mutex_unlock(&out->dev->lock); return params_str; } static uint32_t out_get_latency(const struct audio_stream_out *stream) { alsa_device_proxy * proxy = &((struct stream_out*)stream)->proxy; return proxy_get_latency(proxy); } static int out_set_volume(struct audio_stream_out *stream, float left, float right) { return -ENOSYS; } /* must be called with hw device and output stream mutexes locked */ static int start_output_stream(struct stream_out *out) { ALOGV("start_output_stream(card:%d device:%d)", out->profile->card, out->profile->device); return proxy_open(&out->proxy); } static ssize_t out_write(struct audio_stream_out *stream, const void* buffer, size_t bytes) { int ret; struct stream_out *out = (struct stream_out *)stream; pthread_mutex_lock(&out->dev->lock); pthread_mutex_lock(&out->lock); if (out->standby) { ret = start_output_stream(out); if (ret != 0) { pthread_mutex_unlock(&out->dev->lock); goto err; } out->standby = false; } pthread_mutex_unlock(&out->dev->lock); alsa_device_proxy* proxy = &out->proxy; const void * write_buff = buffer; int num_write_buff_bytes = bytes; const int num_device_channels = proxy_get_channel_count(proxy); /* what we told alsa */ const int num_req_channels = out->hal_channel_count; /* what we told AudioFlinger */ if (num_device_channels != num_req_channels) { /* allocate buffer */ const size_t required_conversion_buffer_size = bytes * num_device_channels / num_req_channels; if (required_conversion_buffer_size > out->conversion_buffer_size) { out->conversion_buffer_size = required_conversion_buffer_size; out->conversion_buffer = realloc(out->conversion_buffer, out->conversion_buffer_size); } /* convert data */ const audio_format_t audio_format = out_get_format(&(out->stream.common)); const unsigned sample_size_in_bytes = audio_bytes_per_sample(audio_format); num_write_buff_bytes = adjust_channels(write_buff, num_req_channels, out->conversion_buffer, num_device_channels, sample_size_in_bytes, num_write_buff_bytes); write_buff = out->conversion_buffer; } if (write_buff != NULL && num_write_buff_bytes != 0) { proxy_write(&out->proxy, write_buff, num_write_buff_bytes); } pthread_mutex_unlock(&out->lock); return bytes; err: pthread_mutex_unlock(&out->lock); if (ret != 0) { usleep(bytes * 1000000 / audio_stream_out_frame_size(stream) / out_get_sample_rate(&stream->common)); } return bytes; } static int out_get_render_position(const struct audio_stream_out *stream, uint32_t *dsp_frames) { return -EINVAL; } static int out_get_presentation_position(const struct audio_stream_out *stream, uint64_t *frames, struct timespec *timestamp) { /* FIXME - This needs to be implemented */ return -EINVAL; } static int out_add_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int out_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int out_get_next_write_timestamp(const struct audio_stream_out *stream, int64_t *timestamp) { return -EINVAL; } static int adev_open_output_stream(struct audio_hw_device *dev, audio_io_handle_t handle, audio_devices_t devices, audio_output_flags_t flags, struct audio_config *config, struct audio_stream_out **stream_out, const char *address /*__unused*/) { ALOGV("adev_open_output_stream() handle:0x%X, device:0x%X, flags:0x%X, addr:%s", handle, devices, flags, address); struct audio_device *adev = (struct audio_device *)dev; struct stream_out *out; out = (struct stream_out *)calloc(1, sizeof(struct stream_out)); if (!out) return -ENOMEM; /* setup function pointers */ out->stream.common.get_sample_rate = out_get_sample_rate; out->stream.common.set_sample_rate = out_set_sample_rate; out->stream.common.get_buffer_size = out_get_buffer_size; out->stream.common.get_channels = out_get_channels; out->stream.common.get_format = out_get_format; out->stream.common.set_format = out_set_format; out->stream.common.standby = out_standby; out->stream.common.dump = out_dump; out->stream.common.set_parameters = out_set_parameters; out->stream.common.get_parameters = out_get_parameters; out->stream.common.add_audio_effect = out_add_audio_effect; out->stream.common.remove_audio_effect = out_remove_audio_effect; out->stream.get_latency = out_get_latency; out->stream.set_volume = out_set_volume; out->stream.write = out_write; out->stream.get_render_position = out_get_render_position; out->stream.get_presentation_position = out_get_presentation_position; out->stream.get_next_write_timestamp = out_get_next_write_timestamp; out->dev = adev; pthread_mutex_lock(&adev->lock); out->profile = &adev->out_profile; // build this to hand to the alsa_device_proxy struct pcm_config proxy_config; memset(&proxy_config, 0, sizeof(proxy_config)); /* Pull out the card/device pair */ parse_card_device_params(address, &(out->profile->card), &(out->profile->device)); profile_read_device_info(out->profile); pthread_mutex_unlock(&adev->lock); int ret = 0; /* Rate */ if (config->sample_rate == 0) { proxy_config.rate = config->sample_rate = profile_get_default_sample_rate(out->profile); } else if (profile_is_sample_rate_valid(out->profile, config->sample_rate)) { proxy_config.rate = config->sample_rate; } else { proxy_config.rate = config->sample_rate = profile_get_default_sample_rate(out->profile); ret = -EINVAL; } /* Format */ if (config->format == AUDIO_FORMAT_DEFAULT) { proxy_config.format = profile_get_default_format(out->profile); config->format = audio_format_from_pcm_format(proxy_config.format); } else { enum pcm_format fmt = pcm_format_from_audio_format(config->format); if (profile_is_format_valid(out->profile, fmt)) { proxy_config.format = fmt; } else { proxy_config.format = profile_get_default_format(out->profile); config->format = audio_format_from_pcm_format(proxy_config.format); ret = -EINVAL; } } /* Channels */ unsigned proposed_channel_count = profile_get_default_channel_count(out->profile); if (k_force_channels) { proposed_channel_count = k_force_channels; } else if (config->channel_mask != AUDIO_CHANNEL_NONE) { proposed_channel_count = audio_channel_count_from_out_mask(config->channel_mask); } /* we can expose any channel count mask, and emulate internally. */ config->channel_mask = audio_channel_out_mask_from_count(proposed_channel_count); out->hal_channel_count = proposed_channel_count; /* no validity checks are needed as proxy_prepare() forces channel_count to be valid. * and we emulate any channel count discrepancies in out_write(). */ proxy_config.channels = proposed_channel_count; proxy_prepare(&out->proxy, out->profile, &proxy_config); /* TODO The retry mechanism isn't implemented in AudioPolicyManager/AudioFlinger. */ ret = 0; out->conversion_buffer = NULL; out->conversion_buffer_size = 0; out->standby = true; *stream_out = &out->stream; return ret; err_open: free(out); *stream_out = NULL; return -ENOSYS; } static void adev_close_output_stream(struct audio_hw_device *dev, struct audio_stream_out *stream) { struct stream_out *out = (struct stream_out *)stream; ALOGV("adev_close_output_stream(c:%d d:%d)", out->profile->card, out->profile->device); /* Close the pcm device */ out_standby(&stream->common); free(out->conversion_buffer); out->conversion_buffer = NULL; out->conversion_buffer_size = 0; free(stream); } static size_t adev_get_input_buffer_size(const struct audio_hw_device *dev, const struct audio_config *config) { /* TODO This needs to be calculated based on format/channels/rate */ return 320; } /* * IN functions */ static uint32_t in_get_sample_rate(const struct audio_stream *stream) { uint32_t rate = proxy_get_sample_rate(&((const struct stream_in *)stream)->proxy); ALOGV("in_get_sample_rate() = %d", rate); return rate; } static int in_set_sample_rate(struct audio_stream *stream, uint32_t rate) { ALOGV("in_set_sample_rate(%d) - NOPE", rate); return -ENOSYS; } static size_t in_get_buffer_size(const struct audio_stream *stream) { const struct stream_in * in = ((const struct stream_in*)stream); return proxy_get_period_size(&in->proxy) * audio_stream_in_frame_size(&(in->stream)); } static uint32_t in_get_channels(const struct audio_stream *stream) { const struct stream_in *in = (const struct stream_in*)stream; return in->hal_channel_mask; } static audio_format_t in_get_format(const struct audio_stream *stream) { alsa_device_proxy *proxy = &((struct stream_in*)stream)->proxy; audio_format_t format = audio_format_from_pcm_format(proxy_get_format(proxy)); return format; } static int in_set_format(struct audio_stream *stream, audio_format_t format) { ALOGV("in_set_format(%d) - NOPE", format); return -ENOSYS; } static int in_standby(struct audio_stream *stream) { struct stream_in *in = (struct stream_in *)stream; pthread_mutex_lock(&in->dev->lock); pthread_mutex_lock(&in->lock); if (!in->standby) { proxy_close(&in->proxy); in->standby = true; } pthread_mutex_unlock(&in->lock); pthread_mutex_unlock(&in->dev->lock); return 0; } static int in_dump(const struct audio_stream *stream, int fd) { return 0; } static int in_set_parameters(struct audio_stream *stream, const char *kvpairs) { ALOGV("in_set_parameters() keys:%s", kvpairs); struct stream_in *in = (struct stream_in *)stream; char value[32]; int param_val; int routing = 0; int ret_value = 0; int card = -1; int device = -1; if (!parse_card_device_params(kvpairs, &card, &device)) { // nothing to do return ret_value; } pthread_mutex_lock(&in->dev->lock); pthread_mutex_lock(&in->lock); if (card >= 0 && device >= 0 && !profile_is_cached_for(in->profile, card, device)) { /* cannot read pcm device info if playback is active */ if (!in->standby) ret_value = -ENOSYS; else { int saved_card = in->profile->card; int saved_device = in->profile->device; in->profile->card = card; in->profile->device = device; ret_value = profile_read_device_info(in->profile) ? 0 : -EINVAL; if (ret_value != 0) { in->profile->card = saved_card; in->profile->device = saved_device; } } } pthread_mutex_unlock(&in->lock); pthread_mutex_unlock(&in->dev->lock); return ret_value; } static char * in_get_parameters(const struct audio_stream *stream, const char *keys) { struct stream_in *in = (struct stream_in *)stream; pthread_mutex_lock(&in->dev->lock); pthread_mutex_lock(&in->lock); char * params_str = device_get_parameters(in->profile, keys); pthread_mutex_unlock(&in->lock); pthread_mutex_unlock(&in->dev->lock); return params_str; } static int in_add_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int in_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int in_set_gain(struct audio_stream_in *stream, float gain) { return 0; } /* must be called with hw device and output stream mutexes locked */ static int start_input_stream(struct stream_in *in) { ALOGV("ustart_input_stream(card:%d device:%d)", in->profile->card, in->profile->device); return proxy_open(&in->proxy); } /* TODO mutex stuff here (see out_write) */ static ssize_t in_read(struct audio_stream_in *stream, void* buffer, size_t bytes) { size_t num_read_buff_bytes = 0; void * read_buff = buffer; void * out_buff = buffer; int ret = 0; struct stream_in * in = (struct stream_in *)stream; pthread_mutex_lock(&in->dev->lock); pthread_mutex_lock(&in->lock); if (in->standby) { if (start_input_stream(in) != 0) { pthread_mutex_unlock(&in->dev->lock); goto err; } in->standby = false; } pthread_mutex_unlock(&in->dev->lock); alsa_device_profile * profile = in->profile; /* * OK, we need to figure out how much data to read to be able to output the requested * number of bytes in the HAL format (16-bit, stereo). */ num_read_buff_bytes = bytes; int num_device_channels = proxy_get_channel_count(&in->proxy); /* what we told Alsa */ int num_req_channels = in->hal_channel_count; /* what we told AudioFlinger */ if (num_device_channels != num_req_channels) { num_read_buff_bytes = (num_device_channels * num_read_buff_bytes) / num_req_channels; } /* Setup/Realloc the conversion buffer (if necessary). */ if (num_read_buff_bytes != bytes) { if (num_read_buff_bytes > in->conversion_buffer_size) { /*TODO Remove this when AudioPolicyManger/AudioFlinger support arbitrary formats (and do these conversions themselves) */ in->conversion_buffer_size = num_read_buff_bytes; in->conversion_buffer = realloc(in->conversion_buffer, in->conversion_buffer_size); } read_buff = in->conversion_buffer; } ret = proxy_read(&in->proxy, read_buff, num_read_buff_bytes); if (ret == 0) { if (num_device_channels != num_req_channels) { // ALOGV("chans dev:%d req:%d", num_device_channels, num_req_channels); out_buff = buffer; /* Num Channels conversion */ if (num_device_channels != num_req_channels) { audio_format_t audio_format = in_get_format(&(in->stream.common)); unsigned sample_size_in_bytes = audio_bytes_per_sample(audio_format); num_read_buff_bytes = adjust_channels(read_buff, num_device_channels, out_buff, num_req_channels, sample_size_in_bytes, num_read_buff_bytes); } } /* no need to acquire in->dev->lock to read mic_muted here as we don't change its state */ if (num_read_buff_bytes > 0 && in->dev->mic_muted) memset(buffer, 0, num_read_buff_bytes); } else { num_read_buff_bytes = 0; // reset the value after USB headset is unplugged } err: pthread_mutex_unlock(&in->lock); return num_read_buff_bytes; } static uint32_t in_get_input_frames_lost(struct audio_stream_in *stream) { return 0; } static int adev_open_input_stream(struct audio_hw_device *dev, audio_io_handle_t handle, audio_devices_t devices, struct audio_config *config, struct audio_stream_in **stream_in, audio_input_flags_t flags __unused, const char *address /*__unused*/, audio_source_t source __unused) { ALOGV("in adev_open_input_stream() rate:%" PRIu32 ", chanMask:0x%" PRIX32 ", fmt:%" PRIu8, config->sample_rate, config->channel_mask, config->format); struct stream_in *in = (struct stream_in *)calloc(1, sizeof(struct stream_in)); int ret = 0; if (in == NULL) return -ENOMEM; /* setup function pointers */ in->stream.common.get_sample_rate = in_get_sample_rate; in->stream.common.set_sample_rate = in_set_sample_rate; in->stream.common.get_buffer_size = in_get_buffer_size; in->stream.common.get_channels = in_get_channels; in->stream.common.get_format = in_get_format; in->stream.common.set_format = in_set_format; in->stream.common.standby = in_standby; in->stream.common.dump = in_dump; in->stream.common.set_parameters = in_set_parameters; in->stream.common.get_parameters = in_get_parameters; in->stream.common.add_audio_effect = in_add_audio_effect; in->stream.common.remove_audio_effect = in_remove_audio_effect; in->stream.set_gain = in_set_gain; in->stream.read = in_read; in->stream.get_input_frames_lost = in_get_input_frames_lost; in->dev = (struct audio_device *)dev; pthread_mutex_lock(&in->dev->lock); in->profile = &in->dev->in_profile; struct pcm_config proxy_config; memset(&proxy_config, 0, sizeof(proxy_config)); /* Pull out the card/device pair */ parse_card_device_params(address, &(in->profile->card), &(in->profile->device)); profile_read_device_info(in->profile); pthread_mutex_unlock(&in->dev->lock); /* Rate */ if (config->sample_rate == 0) { proxy_config.rate = config->sample_rate = profile_get_default_sample_rate(in->profile); } else if (profile_is_sample_rate_valid(in->profile, config->sample_rate)) { proxy_config.rate = config->sample_rate; } else { proxy_config.rate = config->sample_rate = profile_get_default_sample_rate(in->profile); ret = -EINVAL; } /* Format */ if (config->format == AUDIO_FORMAT_DEFAULT) { proxy_config.format = profile_get_default_format(in->profile); config->format = audio_format_from_pcm_format(proxy_config.format); } else { enum pcm_format fmt = pcm_format_from_audio_format(config->format); if (profile_is_format_valid(in->profile, fmt)) { proxy_config.format = fmt; } else { proxy_config.format = profile_get_default_format(in->profile); config->format = audio_format_from_pcm_format(proxy_config.format); ret = -EINVAL; } } /* Channels */ unsigned proposed_channel_count = 0; if (k_force_channels) { proposed_channel_count = k_force_channels; } else if (config->channel_mask == AUDIO_CHANNEL_NONE) { proposed_channel_count = profile_get_default_channel_count(in->profile); } if (proposed_channel_count != 0) { config->channel_mask = audio_channel_in_mask_from_count(proposed_channel_count); if (config->channel_mask == AUDIO_CHANNEL_INVALID) config->channel_mask = audio_channel_mask_for_index_assignment_from_count(proposed_channel_count); in->hal_channel_count = proposed_channel_count; } else { in->hal_channel_count = audio_channel_count_from_in_mask(config->channel_mask); } /* we can expose any channel mask, and emulate internally based on channel count. */ in->hal_channel_mask = config->channel_mask; proxy_config.channels = profile_get_default_channel_count(in->profile); proxy_prepare(&in->proxy, in->profile, &proxy_config); in->standby = true; in->conversion_buffer = NULL; in->conversion_buffer_size = 0; *stream_in = &in->stream; return ret; } static void adev_close_input_stream(struct audio_hw_device *dev, struct audio_stream_in *stream) { struct stream_in *in = (struct stream_in *)stream; /* Close the pcm device */ in_standby(&stream->common); free(in->conversion_buffer); free(stream); } /* * ADEV Functions */ static int adev_set_parameters(struct audio_hw_device *dev, const char *kvpairs) { return 0; } static char * adev_get_parameters(const struct audio_hw_device *dev, const char *keys) { return strdup(""); } static int adev_init_check(const struct audio_hw_device *dev) { return 0; } static int adev_set_voice_volume(struct audio_hw_device *dev, float volume) { return -ENOSYS; } static int adev_set_master_volume(struct audio_hw_device *dev, float volume) { return -ENOSYS; } static int adev_set_mode(struct audio_hw_device *dev, audio_mode_t mode) { return 0; } static int adev_set_mic_mute(struct audio_hw_device *dev, bool state) { struct audio_device * adev = (struct audio_device *)dev; pthread_mutex_lock(&adev->lock); adev->mic_muted = state; pthread_mutex_unlock(&adev->lock); return -ENOSYS; } static int adev_get_mic_mute(const struct audio_hw_device *dev, bool *state) { return -ENOSYS; } static int adev_dump(const audio_hw_device_t *device, int fd) { return 0; } static int adev_close(hw_device_t *device) { struct audio_device *adev = (struct audio_device *)device; free(device); return 0; } static int adev_open(const hw_module_t* module, const char* name, hw_device_t** device) { if (strcmp(name, AUDIO_HARDWARE_INTERFACE) != 0) return -EINVAL; struct audio_device *adev = calloc(1, sizeof(struct audio_device)); if (!adev) return -ENOMEM; profile_init(&adev->out_profile, PCM_OUT); profile_init(&adev->in_profile, PCM_IN); adev->hw_device.common.tag = HARDWARE_DEVICE_TAG; adev->hw_device.common.version = AUDIO_DEVICE_API_VERSION_2_0; adev->hw_device.common.module = (struct hw_module_t *)module; adev->hw_device.common.close = adev_close; adev->hw_device.init_check = adev_init_check; adev->hw_device.set_voice_volume = adev_set_voice_volume; adev->hw_device.set_master_volume = adev_set_master_volume; adev->hw_device.set_mode = adev_set_mode; adev->hw_device.set_mic_mute = adev_set_mic_mute; adev->hw_device.get_mic_mute = adev_get_mic_mute; adev->hw_device.set_parameters = adev_set_parameters; adev->hw_device.get_parameters = adev_get_parameters; adev->hw_device.get_input_buffer_size = adev_get_input_buffer_size; adev->hw_device.open_output_stream = adev_open_output_stream; adev->hw_device.close_output_stream = adev_close_output_stream; adev->hw_device.open_input_stream = adev_open_input_stream; adev->hw_device.close_input_stream = adev_close_input_stream; adev->hw_device.dump = adev_dump; *device = &adev->hw_device.common; return 0; } static struct hw_module_methods_t hal_module_methods = { .open = adev_open, }; struct audio_module HAL_MODULE_INFO_SYM = { .common = { .tag = HARDWARE_MODULE_TAG, .module_api_version = AUDIO_MODULE_API_VERSION_0_1, .hal_api_version = HARDWARE_HAL_API_VERSION, .id = AUDIO_HARDWARE_MODULE_ID, .name = "USB audio HW HAL", .author = "The Android Open Source Project", .methods = &hal_module_methods, }, };