platform_hardware_libhardware/include/hardware/hwcomposer.h
Jesse Hall ac3f7e195c Simplify prepare and set semantics (comments only)
Documentation updated for semantic changes vs. HWC 0.x:

* Prepare won't be called with NULL pointers. This used to be used to
  disable hardware composition, though that wasn't documented. Now
  we'll call prepare with non-NULL pointers but the layer list will
  have zero layers.

* Set won't be called with NULL pointers. This used to cause the
  display to turn off; that is now done by calling the blank() method,
  which is no longer optional.

Change-Id: I9c69dc34f64e499a5ba5f8729836e7c216f8c733
2012-08-07 16:08:35 -07:00

434 lines
16 KiB
C

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_INCLUDE_HARDWARE_HWCOMPOSER_H
#define ANDROID_INCLUDE_HARDWARE_HWCOMPOSER_H
#include <stdint.h>
#include <sys/cdefs.h>
#include <hardware/gralloc.h>
#include <hardware/hardware.h>
#include <cutils/native_handle.h>
#include <hardware/hwcomposer_defs.h>
__BEGIN_DECLS
/*****************************************************************************/
/* for compatibility */
#define HWC_MODULE_API_VERSION HWC_MODULE_API_VERSION_0_1
#define HWC_DEVICE_API_VERSION HWC_DEVICE_API_VERSION_0_1
#define HWC_API_VERSION HWC_DEVICE_API_VERSION
/* Users of this header can define HWC_REMOVE_DEPRECATED_VERSIONS to test that
* they still work with just the current version declared, before the
* deprecated versions are actually removed.
*
* To find code that still depends on the old versions, set the #define to 1
* here. Code that explicitly sets it to zero (rather than simply not defining
* it) will still see the old versions.
*/
#if !defined(HWC_REMOVE_DEPRECATED_VERSIONS)
#define HWC_REMOVE_DEPRECATED_VERSIONS 0
#endif
/*****************************************************************************/
/**
* The id of this module
*/
#define HWC_HARDWARE_MODULE_ID "hwcomposer"
/**
* Name of the sensors device to open
*/
#define HWC_HARDWARE_COMPOSER "composer"
struct hwc_composer_device_1;
typedef struct hwc_methods_1 {
/*
* eventControl(..., event, enabled)
* Enables or disables h/w composer events for a display.
*
* eventControl can be called from any thread and takes effect
* immediately.
*
* Supported events are:
* HWC_EVENT_VSYNC
*
* returns -EINVAL if the "event" parameter is not one of the value above
* or if the "enabled" parameter is not 0 or 1.
*/
int (*eventControl)(
struct hwc_composer_device_1* dev, int dpy,
int event, int enabled);
/*
* blank(..., blank)
* Blanks or unblanks a display's screen.
*
* Turns the screen off when blank is nonzero, on when blank is zero.
* Multiple sequential calls with the same blank value must be supported.
*
* returns 0 on success, negative on error.
*/
int (*blank)(struct hwc_composer_device_1* dev, int dpy, int blank);
} hwc_methods_1_t;
typedef struct hwc_rect {
int left;
int top;
int right;
int bottom;
} hwc_rect_t;
typedef struct hwc_region {
size_t numRects;
hwc_rect_t const* rects;
} hwc_region_t;
typedef struct hwc_color {
uint8_t r;
uint8_t g;
uint8_t b;
uint8_t a;
} hwc_color_t;
typedef struct hwc_layer_1 {
/*
* initially set to HWC_FRAMEBUFFER or HWC_BACKGROUND.
* HWC_FRAMEBUFFER
* indicates the layer will be drawn into the framebuffer
* using OpenGL ES.
* The HWC can toggle this value to HWC_OVERLAY, to indicate
* it will handle the layer.
*
* HWC_BACKGROUND
* indicates this is a special "background" layer. The only valid
* field is backgroundColor. HWC_BACKGROUND can only be used with
* HWC_API_VERSION >= 0.2
* The HWC can toggle this value to HWC_FRAMEBUFFER, to indicate
* it CANNOT handle the background color
*
*/
int32_t compositionType;
/* see hwc_layer_t::hints above */
uint32_t hints;
/* see hwc_layer_t::flags above */
uint32_t flags;
union {
/* color of the background. hwc_color_t.a is ignored */
hwc_color_t backgroundColor;
struct {
/* handle of buffer to compose. This handle is guaranteed to have been
* allocated from gralloc using the GRALLOC_USAGE_HW_COMPOSER usage flag. If
* the layer's handle is unchanged across two consecutive prepare calls and
* the HWC_GEOMETRY_CHANGED flag is not set for the second call then the
* HWComposer implementation may assume that the contents of the buffer have
* not changed. */
buffer_handle_t handle;
/* transformation to apply to the buffer during composition */
uint32_t transform;
/* blending to apply during composition */
int32_t blending;
/* area of the source to consider, the origin is the top-left corner of
* the buffer */
hwc_rect_t sourceCrop;
/* where to composite the sourceCrop onto the display. The sourceCrop
* is scaled using linear filtering to the displayFrame. The origin is the
* top-left corner of the screen.
*/
hwc_rect_t displayFrame;
/* visible region in screen space. The origin is the
* top-left corner of the screen.
* The visible region INCLUDES areas overlapped by a translucent layer.
*/
hwc_region_t visibleRegionScreen;
/* Sync fence object that will be signaled when the buffer's
* contents are available. May be -1 if the contents are already
* available. This field is only valid during set(), and should be
* ignored during prepare(). The set() call must not wait for the
* fence to be signaled before returning, but the HWC must wait for
* all buffers to be signaled before reading from them.
*
* The HWC takes ownership of the acquireFenceFd and is responsible
* for closing it when no longer needed.
*/
int acquireFenceFd;
/* During set() the HWC must set this field to a file descriptor for
* a sync fence object that will signal after the HWC has finished
* reading from the buffer. The field is ignored by prepare(). Each
* layer should have a unique file descriptor, even if more than one
* refer to the same underlying fence object; this allows each to be
* closed independently.
*
* If buffer reads can complete at significantly different times,
* then using independent fences is preferred. For example, if the
* HWC handles some layers with a blit engine and others with
* overlays, then the blit layers can be reused immediately after
* the blit completes, but the overlay layers can't be reused until
* a subsequent frame has been displayed.
*
* The HWC client taks ownership of the releaseFenceFd and is
* responsible for closing it when no longer needed.
*/
int releaseFenceFd;
};
};
/* Allow for expansion w/o breaking binary compatibility.
* Pad layer to 96 bytes, assuming 32-bit pointers.
*/
int32_t reserved[24 - 18];
} hwc_layer_1_t;
/* This represents a display, typically an EGLDisplay object */
typedef void* hwc_display_t;
/* This represents a surface, typically an EGLSurface object */
typedef void* hwc_surface_t;
/*
* hwc_display_contents_1_t::flags values
*/
enum {
/*
* HWC_GEOMETRY_CHANGED is set by SurfaceFlinger to indicate that the list
* passed to (*prepare)() has changed by more than just the buffer handles
* and acquire fences.
*/
HWC_GEOMETRY_CHANGED = 0x00000001,
};
/*
* Description of the contents to output on a display.
*
* This is the top-level structure passed to the prepare and set calls to
* negotiate and commit the composition of a display image.
*/
typedef struct hwc_display_contents_1 {
/* File descriptor referring to a Sync HAL fence object which will signal
* when this display image is no longer visible, i.e. when the following
* set() takes effect. The fence object is created and returned by the set
* call; this field will be -1 on entry to prepare and set. SurfaceFlinger
* will close the returned file descriptor.
*/
int flipFenceFd;
/* (dpy, sur) is the target of SurfaceFlinger's OpenGL ES composition.
* They aren't relevant to prepare. The set call should commit this surface
* atomically to the display along with any overlay layers.
*/
hwc_display_t dpy;
hwc_surface_t sur;
/* List of layers that will be composed on the display. The buffer handles
* in the list will be unique. If numHwLayers is 0, all composition will be
* performed by SurfaceFlinger.
*/
uint32_t flags;
size_t numHwLayers;
hwc_layer_1_t hwLayers[0];
} hwc_display_contents_1_t;
/* see hwc_composer_device::registerProcs()
* Any of the callbacks can be NULL, in which case the corresponding
* functionality is not supported.
*/
typedef struct hwc_procs {
/*
* (*invalidate)() triggers a screen refresh, in particular prepare and set
* will be called shortly after this call is made. Note that there is
* NO GUARANTEE that the screen refresh will happen after invalidate()
* returns (in particular, it could happen before).
* invalidate() is GUARANTEED TO NOT CALL BACK into the h/w composer HAL and
* it is safe to call invalidate() from any of hwc_composer_device
* hooks, unless noted otherwise.
*/
void (*invalidate)(struct hwc_procs* procs);
/*
* (*vsync)() is called by the h/w composer HAL when a vsync event is
* received and HWC_EVENT_VSYNC is enabled on a display
* (see: hwc_event_control).
*
* the "dpy" parameter indicates which display the vsync event is for.
* the "timestamp" parameter is the system monotonic clock timestamp in
* nanosecond of when the vsync event happened.
*
* vsync() is GUARANTEED TO NOT CALL BACK into the h/w composer HAL.
*
* It is expected that vsync() is called from a thread of at least
* HAL_PRIORITY_URGENT_DISPLAY with as little latency as possible,
* typically less than 0.5 ms.
*
* It is a (silent) error to have HWC_EVENT_VSYNC enabled when calling
* hwc_composer_device.set(..., 0, 0, 0) (screen off). The implementation
* can either stop or continue to process VSYNC events, but must not
* crash or cause other problems.
*/
void (*vsync)(struct hwc_procs* procs, int dpy, int64_t timestamp);
} hwc_procs_t;
/*****************************************************************************/
typedef struct hwc_module {
struct hw_module_t common;
} hwc_module_t;
typedef struct hwc_composer_device_1 {
struct hw_device_t common;
/*
* (*prepare)() is called for each frame before composition and is used by
* SurfaceFlinger to determine what composition steps the HWC can handle.
*
* (*prepare)() can be called more than once, the last call prevails.
*
* The HWC responds by setting the compositionType field in each layer to
* either HWC_FRAMEBUFFER or HWC_OVERLAY. In the former case, the
* composition for the layer is handled by SurfaceFlinger with OpenGL ES,
* in the later case, the HWC will have to handle the layer's composition.
*
* (*prepare)() is called with HWC_GEOMETRY_CHANGED to indicate that the
* list's geometry has changed, that is, when more than just the buffer's
* handles have been updated. Typically this happens (but is not limited to)
* when a window is added, removed, resized or moved.
*
* The numDisplays parameter will always be greater than zero, displays
* will be non-NULL, and the array entries will be non-NULL.
*
* returns: 0 on success. An negative error code on error. If an error is
* returned, SurfaceFlinger will assume that none of the layer will be
* handled by the HWC.
*/
int (*prepare)(struct hwc_composer_device_1 *dev,
size_t numDisplays, hwc_display_contents_1_t** displays);
/*
* (*set)() is used in place of eglSwapBuffers(), and assumes the same
* functionality, except it also commits the work list atomically with
* the actual eglSwapBuffers().
*
* The layer lists are guaranteed to be the same as the ones returned from
* the last call to (*prepare)().
*
* When this call returns the caller assumes that the displays will be
* updated in the near future with the content of their work lists, without
* artifacts during the transition from the previous frame.
*
* A display with zero layers indicates that the entire composition has
* been handled by SurfaceFlinger with OpenGL ES. In this case, (*set)()
* behaves just like eglSwapBuffers().
*
* The numDisplays parameter will always be greater than zero, displays
* will be non-NULL, and the array entries will be non-NULL.
*
* IMPORTANT NOTE: there is an implicit layer containing opaque black
* pixels behind all the layers in the list. It is the responsibility of
* the hwcomposer module to make sure black pixels are output (or blended
* from).
*
* returns: 0 on success. An negative error code on error:
* HWC_EGL_ERROR: eglGetError() will provide the proper error code
* Another code for non EGL errors.
*/
int (*set)(struct hwc_composer_device_1 *dev,
size_t numDisplays, hwc_display_contents_1_t** displays);
/*
* This field is OPTIONAL and can be NULL.
*
* If non NULL it will be called by SurfaceFlinger on dumpsys
*/
void (*dump)(struct hwc_composer_device_1* dev, char *buff, int buff_len);
/*
* This field is OPTIONAL and can be NULL.
*
* (*registerProcs)() registers a set of callbacks the h/w composer HAL
* can later use. It is FORBIDDEN to call any of the callbacks from
* within registerProcs(). registerProcs() must save the hwc_procs_t pointer
* which is needed when calling a registered callback.
* Each call to registerProcs replaces the previous set of callbacks.
* registerProcs is called with NULL to unregister all callbacks.
*
* Any of the callbacks can be NULL, in which case the corresponding
* functionality is not supported.
*/
void (*registerProcs)(struct hwc_composer_device_1* dev,
hwc_procs_t const* procs);
/*
* This field is OPTIONAL and can be NULL.
*
* Used to retrieve information about the h/w composer
*
* Returns 0 on success or -errno on error.
*/
int (*query)(struct hwc_composer_device_1* dev, int what, int* value);
/*
* Reserved for future use. Must be NULL.
*/
void* reserved_proc[4];
/*
* This field is REQUIRED and must not be NULL.
*/
hwc_methods_1_t const *methods;
} hwc_composer_device_1_t;
/** convenience API for opening and closing a device */
static inline int hwc_open_1(const struct hw_module_t* module,
hwc_composer_device_1_t** device) {
return module->methods->open(module,
HWC_HARDWARE_COMPOSER, (struct hw_device_t**)device);
}
static inline int hwc_close_1(hwc_composer_device_1_t* device) {
return device->common.close(&device->common);
}
/*****************************************************************************/
#if !HWC_REMOVE_DEPRECATED_VERSIONS
#include <hardware/hwcomposer_v0.h>
#endif
__END_DECLS
#endif /* ANDROID_INCLUDE_HARDWARE_HWCOMPOSER_H */