#include "wifi_hal.h" #ifndef __WIFI_HAL_GSCAN_H__ #define __WIFI_HAL_GSCAN_H__ /* AP Scans */ typedef enum { WIFI_BAND_UNSPECIFIED, WIFI_BAND_BG = 1, // 2.4 GHz WIFI_BAND_A = 2, // 5 GHz without DFS WIFI_BAND_A_DFS = 4, // 5 GHz DFS only WIFI_BAND_A_WITH_DFS = 6, // 5 GHz with DFS WIFI_BAND_ABG = 3, // 2.4 GHz + 5 GHz; no DFS WIFI_BAND_ABG_WITH_DFS = 7, // 2.4 GHz + 5 GHz with DFS } wifi_band; const unsigned MAX_CHANNELS = 16; const unsigned MAX_BUCKETS = 16; const unsigned MAX_HOTLIST_APS = 128; const unsigned MAX_SIGNIFICANT_CHANGE_APS = 64; const unsigned MAX_PNO_SSID = 64; const unsigned MAX_HOTLIST_SSID = 8; const unsigned MAX_BLACKLIST_BSSID = 16; const unsigned MAX_AP_CACHE_PER_SCAN = 32; wifi_error wifi_get_valid_channels(wifi_interface_handle handle, int band, int max_channels, wifi_channel *channels, int *num_channels); typedef struct { int max_scan_cache_size; // total space allocated for scan (in bytes) int max_scan_buckets; // maximum number of channel buckets int max_ap_cache_per_scan; // maximum number of APs that can be stored per scan int max_rssi_sample_size; // number of RSSI samples used for averaging RSSI int max_scan_reporting_threshold; // max possible report_threshold as described // in wifi_scan_cmd_params int max_hotlist_bssids; // maximum number of entries for hotlist BSSIDs int max_hotlist_ssids; // maximum number of entries for hotlist SSIDs int max_significant_wifi_change_aps; // maximum number of entries for // significant wifi change APs int max_bssid_history_entries; // number of BSSID/RSSI entries that device can hold int max_number_epno_networks; // max number of epno entries int max_number_epno_networks_by_ssid; // max number of epno entries if ssid is specified, // that is, epno entries for which an exact match is // required, or entries corresponding to hidden ssids int max_number_of_white_listed_ssid; // max number of white listed SSIDs, M target is 2 to 4 } wifi_gscan_capabilities; wifi_error wifi_get_gscan_capabilities(wifi_interface_handle handle, wifi_gscan_capabilities *capabilities); typedef enum { WIFI_SCAN_BUFFER_FULL, WIFI_SCAN_COMPLETE, } wifi_scan_event; /* Format of information elements found in the beacon */ typedef struct { byte id; // element identifier byte len; // number of bytes to follow byte data[]; } wifi_information_element; typedef struct { wifi_timestamp ts; // time since boot (in microsecond) when the result was // retrieved char ssid[32+1]; // null terminated mac_addr bssid; wifi_channel channel; // channel frequency in MHz wifi_rssi rssi; // in db wifi_timespan rtt; // in nanoseconds wifi_timespan rtt_sd; // standard deviation in rtt unsigned short beacon_period; // period advertised in the beacon unsigned short capability; // capabilities advertised in the beacon unsigned int ie_length; // size of the ie_data blob char ie_data[1]; // blob of all the information elements found in the // beacon; this data should be a packed list of // wifi_information_element objects, one after the other. // other fields } wifi_scan_result; typedef struct { /* reported when report_threshold is reached in scan cache */ void (*on_scan_results_available) (wifi_request_id id, unsigned num_results_available); /* reported when each probe response is received, if report_events * enabled in wifi_scan_cmd_params */ void (*on_full_scan_result) (wifi_request_id id, wifi_scan_result *result); /* optional event - indicates progress of scanning statemachine */ void (*on_scan_event) (wifi_scan_event event, unsigned status); } wifi_scan_result_handler; typedef struct { wifi_channel channel; // frequency int dwellTimeMs; // dwell time hint int passive; // 0 => active, 1 => passive scan; ignored for DFS /* Add channel class */ } wifi_scan_channel_spec; #define REPORT_EVENTS_BUFFER_FULL 0 #define REPORT_EVENTS_EACH_SCAN 1 #define REPORT_EVENTS_FULL_RESULTS 2 #define REPORT_EVENTS_NO_BATCH 4 typedef struct { int bucket; // bucket index, 0 based wifi_band band; // when UNSPECIFIED, use channel list int period; // desired period, in millisecond; if this is too // low, the firmware should choose to generate results as // fast as it can instead of failing the command. // for exponential backoff bucket this is the min_period /* report_events semantics - * This is a bit field; which defines following bits - * REPORT_EVENTS_BUFFER_FULL => report only when scan history is % full * REPORT_EVENTS_EACH_SCAN => report a scan completion event after scan * REPORT_EVENTS_FULL_RESULTS => forward scan results (beacons/probe responses + IEs) * in real time to HAL, in addition to completion events * Note: To keep backward compatibility, fire completion * events regardless of REPORT_EVENTS_EACH_SCAN. * REPORT_EVENTS_NO_BATCH => controls batching, 0 => batching, 1 => no batching */ byte report_events; int max_period; // if max_period is non zero or different than period, then this bucket is // an exponential backoff bucket and the scan period will grow exponentially // as per formula: actual_period(N) = period * (base ^ (N/step_count)) // to a maximum period of max_period int base; // for exponential back off bucket: multiplier: new_period=old_period*base int step_count; // for exponential back off bucket, number of scans to perform for a given // period int num_channels; // channels to scan; these may include DFS channels // Note that a given channel may appear in multiple buckets wifi_scan_channel_spec channels[MAX_CHANNELS]; } wifi_scan_bucket_spec; typedef struct { int base_period; // base timer period in ms int max_ap_per_scan; // number of access points to store in each scan entry in // the BSSID/RSSI history buffer (keep the highest RSSI // access points) int report_threshold_percent; // in %, when scan buffer is this much full, wake up apps // processor int report_threshold_num_scans; // in number of scans, wake up AP after these many scans int num_buckets; wifi_scan_bucket_spec buckets[MAX_BUCKETS]; } wifi_scan_cmd_params; /* Start periodic GSCAN */ wifi_error wifi_start_gscan(wifi_request_id id, wifi_interface_handle iface, wifi_scan_cmd_params params, wifi_scan_result_handler handler); /* Stop periodic GSCAN */ wifi_error wifi_stop_gscan(wifi_request_id id, wifi_interface_handle iface); typedef enum { WIFI_SCAN_FLAG_INTERRUPTED = 1 // Indicates that scan results are not complete because // probes were not sent on some channels } wifi_scan_flags; /* Get the GSCAN cached scan results */ typedef struct { int scan_id; // a unique identifier for the scan unit int flags; // a bitmask with additional // information about scan int num_results; // number of bssids retrieved by the scan wifi_scan_result results[MAX_AP_CACHE_PER_SCAN]; // scan results - one for each bssid } wifi_cached_scan_results; wifi_error wifi_get_cached_gscan_results(wifi_interface_handle iface, byte flush, int max, wifi_cached_scan_results *results, int *num); /* BSSID Hotlist */ typedef struct { void (*on_hotlist_ap_found)(wifi_request_id id, unsigned num_results, wifi_scan_result *results); void (*on_hotlist_ap_lost)(wifi_request_id id, unsigned num_results, wifi_scan_result *results); } wifi_hotlist_ap_found_handler; typedef struct { mac_addr bssid; // AP BSSID wifi_rssi low; // low threshold wifi_rssi high; // high threshold } ap_threshold_param; typedef struct { int lost_ap_sample_size; int num_bssid; // number of hotlist APs ap_threshold_param ap[MAX_HOTLIST_APS]; // hotlist APs } wifi_bssid_hotlist_params; /* Set the BSSID Hotlist */ wifi_error wifi_set_bssid_hotlist(wifi_request_id id, wifi_interface_handle iface, wifi_bssid_hotlist_params params, wifi_hotlist_ap_found_handler handler); /* Clear the BSSID Hotlist */ wifi_error wifi_reset_bssid_hotlist(wifi_request_id id, wifi_interface_handle iface); /* SSID Hotlist */ typedef struct { void (*on_hotlist_ssid_found)(wifi_request_id id, unsigned num_results, wifi_scan_result *results); void (*on_hotlist_ssid_lost)(wifi_request_id id, unsigned num_results, wifi_scan_result *results); } wifi_hotlist_ssid_handler; typedef struct { char ssid[32+1]; // SSID wifi_band band; // band for this set of threshold params wifi_rssi low; // low threshold wifi_rssi high; // high threshold } ssid_threshold_param; typedef struct { int lost_ssid_sample_size; int num_ssid; // number of hotlist SSIDs ssid_threshold_param ssid[MAX_HOTLIST_SSID]; // hotlist SSIDs } wifi_ssid_hotlist_params; /* Set the SSID Hotlist */ wifi_error wifi_set_ssid_hotlist(wifi_request_id id, wifi_interface_handle iface, wifi_ssid_hotlist_params params, wifi_hotlist_ssid_handler handler); /* Clear the SSID Hotlist */ wifi_error wifi_reset_ssid_hotlist(wifi_request_id id, wifi_interface_handle iface); /* BSSID blacklist */ typedef struct { int num_bssid; // number of blacklisted BSSIDs mac_addr bssids[MAX_BLACKLIST_BSSID]; // blacklisted BSSIDs } wifi_bssid_params; /* Set the BSSID blacklist */ wifi_error wifi_set_bssid_blacklist(wifi_request_id id, wifi_interface_handle iface, wifi_bssid_params params); /* Significant wifi change */ typedef struct { mac_addr bssid; // BSSID wifi_channel channel; // channel frequency in MHz int num_rssi; // number of rssi samples wifi_rssi rssi[]; // RSSI history in db } wifi_significant_change_result; typedef struct { void (*on_significant_change)(wifi_request_id id, unsigned num_results, wifi_significant_change_result **results); } wifi_significant_change_handler; // The sample size parameters in the wifi_significant_change_params structure // represent the number of occurence of a g-scan where the BSSID was seen and RSSI was // collected for that BSSID, or, the BSSID was expected to be seen and didn't. // for instance: lost_ap_sample_size : number of time a g-scan was performed on the // channel the BSSID was seen last, and the BSSID was not seen during those g-scans typedef struct { int rssi_sample_size; // number of samples for averaging RSSI int lost_ap_sample_size; // number of samples to confirm AP loss int min_breaching; // number of APs breaching threshold int num_bssid; // max 64 ap_threshold_param ap[MAX_SIGNIFICANT_CHANGE_APS]; } wifi_significant_change_params; /* Set the Signifcant AP change list */ wifi_error wifi_set_significant_change_handler(wifi_request_id id, wifi_interface_handle iface, wifi_significant_change_params params, wifi_significant_change_handler handler); /* Clear the Signifcant AP change list */ wifi_error wifi_reset_significant_change_handler(wifi_request_id id, wifi_interface_handle iface); /* Random MAC OUI for PNO */ wifi_error wifi_set_scanning_mac_oui(wifi_interface_handle handle, oui scan_oui); // Whether directed scan needs to be performed (for hidden SSIDs) #define WIFI_PNO_FLAG_DIRECTED_SCAN = 1 // Whether PNO event shall be triggered if the network is found on A band #define WIFI_PNO_FLAG_A_BAND = 2 // Whether PNO event shall be triggered if the network is found on G band #define WIFI_PNO_FLAG_G_BAND = 4 // Whether strict matching is required (i.e. firmware shall not match on the entire SSID) #define WIFI_PNO_FLAG_STRICT_MATCH = 8 // Code for matching the beacon AUTH IE - additional codes TBD #define WIFI_PNO_AUTH_CODE_OPEN 1 // open #define WIFI_PNO_AUTH_CODE_PSK 2 // WPA_PSK or WPA2PSK #define WIFI_PNO_AUTH_CODE_EAPOL 4 // any EAPOL // Enhanced PNO: // Enhanced PNO feature is expected to be enabled all of the time (e.g. screen lit) and may thus // requires firmware to store a large number of networks, covering the whole list of known network. // Therefore, it is acceptable for firmware to store a crc24, crc32 or other short hash of the SSID, // such that a low but non-zero probability of collision exist. With that scheme it should be // possible for firmware to keep an entry as small as 4 bytes for each pno network. // For instance, a firmware pn0 entry can be implemented in the form of: // PNO ENTRY = crc24(3 bytes) | RSSI_THRESHOLD>>3 (5 bits) | auth flags(3 bits) // // A PNO network shall be reported once, that is, once a network is reported by firmware // its entry shall be marked as "done" until framework calls wifi_set_epno_list again. // Calling wifi_set_epno_list shall reset the "done" status of pno networks in firmware. typedef struct { char ssid[32+1]; byte rssi_threshold; // threshold for considering this SSID as found, required granularity for // this threshold is 4dBm to 8dBm byte flags; // WIFI_PNO_FLAG_XXX byte auth_bit_field; // auth bit field for matching WPA IE } wifi_epno_network; /* PNO list */ typedef struct { int num_networks; // number of SSIDs wifi_epno_network networks[]; // PNO networks } wifi_epno_params; typedef struct { // on results void (*on_network_found)(wifi_request_id id, unsigned num_results, wifi_scan_result *results); } wifi_epno_handler; /* Set the PNO list */ wifi_error wifi_set_epno_list(wifi_request_id id, wifi_interface_handle iface, int num_networks, wifi_epno_network *networks, wifi_epno_handler handler); /* SSID white list */ /* Note that this feature requires firmware to be able to indicate to kernel sme and wpa_supplicant * that the SSID of the network has changed * and thus requires further changed in cfg80211 stack, for instance, * the below function would change: void __cfg80211_roamed(struct wireless_dev *wdev, struct cfg80211_bss *bss, const u8 *req_ie, size_t req_ie_len, const u8 *resp_ie, size_t resp_ie_len) * when firmware roam to a new SSID the corresponding link layer stats info need to be updated: struct wifi_interface_link_layer_info; */ typedef struct { char ssid[32+1]; // null terminated } wifi_ssid; wifi_error wifi_set_ssid_white_list(wifi_request_id id, wifi_interface_handle iface, int num_networks, wifi_ssid *ssids); /* Set G-SCAN roam parameters */ /** * Firmware roaming is implemented with two modes: * 1- "Alert" mode roaming, (Note: alert roaming is the pre-L roaming, whereas firmware is * "urgently" hunting for another BSSID because the RSSI is low, or because many successive * beacons have been lost or other bad link conditions). * 2- "Lazy" mode, where firmware is hunting for a better BSSID or white listed SSID even though * the RSSI of the link is good. * Lazy mode is configured thru G-scan, that is, the results of G-scans are compared to the * current RSSI and fed thru the roaming engine. * Lazy scan will be enabled (and or throttled down by reducing the number of G-scans) by * framework only in certain conditions, such as: * - no real time (VO/VI) traffic at the interface * - low packet rate for BE/BK packets a the interface * - system conditions (screen lit/dark) etc... * * For consistency, the roam parameters will always be configured by framework such that: * * condition 1- A_band_boost_threshold >= (alert_roam_rssi_trigger + 10) * This condition ensures that Lazy roam doesn't cause the device to roam to a 5GHz BSSID whose RSSI * is lower than the alert threshold, which would consequently trigger a roam to a low RSSI BSSID, * hence triggering alert mode roaming. * In other words, in alert mode, the A_band parameters may safely be ignored by WiFi chipset. * * condition 2- A_band_boost_threshold > A_band_penalty_factor * */ /** * Example: * A_band_boost_threshold = -65 * A_band_penalty_threshold = -75 * A_band_boost_factor = 4 * A_band_penalty_factor = 2 * A_band_max_boost = 50 * * a 5GHz RSSI value is transformed as below: * -20 -> -20+ 50 = 30 * -60 -> -60 + 4 * (-60 - A_band_boost_threshold) = -60 + 16 = -44 * -70 -> -70 * -80 -> -80 - 2 * (A_band_penalty_threshold - (-80)) = -80 - 10 = -90 */ typedef struct { // Lazy roam parameters // A_band_XX parameters are applied to 5GHz BSSIDs when comparing with a 2.4GHz BSSID // they may not be applied when comparing two 5GHz BSSIDs int A_band_boost_threshold; // RSSI threshold above which 5GHz RSSI is favored int A_band_penalty_threshold; // RSSI threshold below which 5GHz RSSI is penalized int A_band_boost_factor; // factor by which 5GHz RSSI is boosted // boost=RSSI_measured-5GHz_boost_threshold)*5GHz_boost_factor int A_band_penalty_factor; // factor by which 5GHz RSSI is penalized // penalty=(5GHz_penalty_factor-RSSI_measured)*5GHz_penalty_factor int A_band_max_boost; // maximum boost that can be applied to a 5GHz RSSI // Hysteresis: ensuring the currently associated BSSID is favored // so as to prevent ping-pong situations int lazy_roam_hysteresis; // boost applied to current BSSID // Alert mode enable, i.e. configuring when firmware enters alert mode int alert_roam_rssi_trigger; // RSSI below which "Alert" roam is enabled } wifi_roam_params; wifi_error wifi_set_gscan_roam_params(wifi_request_id id, wifi_interface_handle iface, wifi_roam_params * params); /** * Enable/Disable "Lazy" roam */ wifi_error wifi_enable_lazy_roam(wifi_request_id id, wifi_interface_handle iface, int enable); /** * Per BSSID preference */ typedef struct { mac_addr bssid; int rssi_modifier; // modifier applied to the RSSI of the BSSID for the purpose of comparing // it with other roam candidate } wifi_bssid_preference; wifi_error wifi_set_bssid_preference(wifi_request_id id, wifi_interface_handle iface, int num_bssid, wifi_bssid_preference *prefs); typedef struct { int id; // identifier of this network block, report this in event char realm[256]; // null terminated UTF8 encoded realm, 0 if unspecified int64_t roamingConsortiumIds[16]; // roaming consortium ids to match, 0s if unspecified byte plmn[3]; // mcc/mnc combination as per rules, 0s if unspecified } wifi_passpoint_network; typedef struct { void (*on_passpoint_network_found)( wifi_request_id id, int net_id, // network block identifier for the matched network wifi_scan_result *result, // scan result, with channel and beacon information int anqp_len, // length of ANQP blob byte *anqp // ANQP data, in the information_element format ); } wifi_passpoint_event_handler; /* Sets a list for passpoint networks for PNO purposes; it should be matched * against any passpoint networks (designated by Interworking element) found * during regular PNO scan. */ wifi_error wifi_set_passpoint_list(wifi_request_id id, wifi_interface_handle iface, int num, wifi_passpoint_network *networks, wifi_passpoint_event_handler handler); /* Reset passpoint network list - no Passpoint networks should be matched after this */ wifi_error wifi_reset_passpoint_list(wifi_request_id id, wifi_interface_handle iface); #endif