platform_hardware_tequila_i.../light/2.0-aw2013/Light.cpp
Michael Bestas 1951e03f95 lineage/interfaces: Add aw2013 lights HIDL HAL implementation
* Based on hardware/cyanogen aw2013 light HAL

Change-Id: I334f532681010b9e9e3cde4aa74d65b5b65c607a
2018-06-21 19:48:10 +02:00

352 lines
10 KiB
C++

/*
* Copyright (C) 2018 The LineageOS Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "LightService"
#include "Light.h"
#include <android-base/logging.h>
namespace {
using android::hardware::light::V2_0::LightState;
static constexpr int DEFAULT_MAX_BRIGHTNESS = 255;
static uint32_t rgbToBrightness(const LightState& state) {
uint32_t color = state.color & 0x00ffffff;
return ((77 * ((color >> 16) & 0xff)) + (150 * ((color >> 8) & 0xff)) +
(29 * (color & 0xff))) >> 8;
}
static bool isLit(const LightState& state) {
return (state.color & 0x00ffffff);
}
struct color {
unsigned int r, g, b;
float _L, _a, _b;
};
// This hardware only allows primary colors
static struct color colors[] = {
{ 255, 0, 0, 0, 0, 0 }, // red
{ 255, 255, 0, 0, 0, 0 }, // yellow
{ 0, 255, 0, 0, 0, 0 }, // green
{ 0, 255, 255, 0, 0, 0 }, // cyan
{ 0, 0, 255, 0, 0, 0 }, // blue
{ 255, 0, 255, 0, 0, 0 }, // magenta
{ 255, 255, 255, 0, 0, 0 }, // white
{ 127, 127, 127, 0, 0, 0 }, // grey
{ 0, 0, 0, 0, 0, 0 }, // black
};
static constexpr int MAX_COLOR = 9;
// Convert RGB to L*a*b colorspace
// from http://www.brucelindbloom.com
static void rgb2lab(unsigned int R, unsigned int G, unsigned int B,
float *_L, float *_a, float *_b) {
float r, g, b, X, Y, Z, fx, fy, fz, xr, yr, zr;
float Ls, as, bs;
float eps = 216.f / 24389.f;
float k = 24389.f / 27.f;
float Xr = 0.964221f; // reference white D50
float Yr = 1.0f;
float Zr = 0.825211f;
// RGB to XYZ
r = R / 255.f; //R 0..1
g = G / 255.f; //G 0..1
b = B / 255.f; //B 0..1
// assuming sRGB (D65)
if (r <= 0.04045)
r = r / 12;
else
r = (float) pow((r + 0.055) / 1.055, 2.4);
if (g <= 0.04045)
g = g / 12;
else
g = (float) pow((g + 0.055) / 1.055, 2.4);
if (b <= 0.04045)
b = b / 12;
else
b = (float) pow((b + 0.055) / 1.055, 2.4);
X = 0.436052025f * r + 0.385081593f * g + 0.143087414f * b;
Y = 0.222491598f * r + 0.71688606f * g + 0.060621486f * b;
Z = 0.013929122f * r + 0.097097002f * g + 0.71418547f * b;
// XYZ to Lab
xr = X / Xr;
yr = Y / Yr;
zr = Z / Zr;
if (xr > eps)
fx = (float) pow(xr, 1 / 3.);
else
fx = (float) ((k * xr + 16.) / 116.);
if (yr > eps)
fy = (float) pow(yr, 1 / 3.);
else
fy = (float) ((k * yr + 16.) / 116.);
if (zr > eps)
fz = (float) pow(zr, 1 / 3.);
else
fz = (float) ((k * zr + 16.) / 116);
Ls = (116 * fy) - 16;
as = 500 * (fx - fy);
bs = 200 * (fy - fz);
*_L = (2.55 * Ls + .5);
*_a = (as + .5);
*_b = (bs + .5);
}
// find the color with the shortest distance
static struct color *
nearest_color(unsigned int r, unsigned int g, unsigned int b)
{
int i = 0;
float _L, _a, _b;
double L_dist, a_dist, b_dist, total;
double distance = 3 * 255;
struct color *nearest = NULL;
rgb2lab(r, g, b, &_L, &_a, &_b);
for (i = 0; i < MAX_COLOR; i++) {
L_dist = pow(_L - colors[i]._L, 2);
a_dist = pow(_a - colors[i]._a, 2);
b_dist = pow(_b - colors[i]._b, 2);
total = sqrt(L_dist + a_dist + b_dist);
if (total < distance) {
nearest = &colors[i];
distance = total;
}
}
return nearest;
}
} // anonymous namespace
namespace android {
namespace hardware {
namespace light {
namespace V2_0 {
namespace implementation {
Light::Light(std::pair<std::ofstream, uint32_t>&& lcd_backlight, std::ofstream&& button_backlight,
std::ofstream&& red_led, std::ofstream&& green_led, std::ofstream&& blue_led,
std::ofstream&& red_blink, std::ofstream&& green_blink, std::ofstream&& blue_blink,
std::ofstream&& red_led_time, std::ofstream&& green_led_time, std::ofstream&& blue_led_time)
: mLcdBacklight(std::move(lcd_backlight)),
mButtonBacklight(std::move(button_backlight)),
mRedLed(std::move(red_led)),
mGreenLed(std::move(green_led)),
mBlueLed(std::move(blue_led)),
mRedBlink(std::move(red_blink)),
mGreenBlink(std::move(green_blink)),
mBlueBlink(std::move(blue_blink)),
mRedLedTime(std::move(red_led_time)),
mGreenLedTime(std::move(green_led_time)),
mBlueLedTime(std::move(blue_led_time)) {
auto attnFn(std::bind(&Light::setAttentionLight, this, std::placeholders::_1));
auto backlightFn(std::bind(&Light::setLcdBacklight, this, std::placeholders::_1));
auto batteryFn(std::bind(&Light::setBatteryLight, this, std::placeholders::_1));
auto buttonsFn(std::bind(&Light::setButtonsBacklight, this, std::placeholders::_1));
auto notifFn(std::bind(&Light::setNotificationLight, this, std::placeholders::_1));
mLights.emplace(std::make_pair(Type::ATTENTION, attnFn));
mLights.emplace(std::make_pair(Type::BACKLIGHT, backlightFn));
mLights.emplace(std::make_pair(Type::BATTERY, batteryFn));
mLights.emplace(std::make_pair(Type::BUTTONS, buttonsFn));
mLights.emplace(std::make_pair(Type::NOTIFICATIONS, notifFn));
for (int i = 0; i < MAX_COLOR; i++) {
rgb2lab(colors[i].r, colors[i].g, colors[i].b,
&colors[i]._L, &colors[i]._a, &colors[i]._b);
}
}
// Methods from ::android::hardware::light::V2_0::ILight follow.
Return<Status> Light::setLight(Type type, const LightState& state) {
auto it = mLights.find(type);
if (it == mLights.end()) {
return Status::LIGHT_NOT_SUPPORTED;
}
it->second(state);
return Status::SUCCESS;
}
Return<void> Light::getSupportedTypes(getSupportedTypes_cb _hidl_cb) {
std::vector<Type> types;
for (auto const& light : mLights) {
types.push_back(light.first);
}
_hidl_cb(types);
return Void();
}
void Light::setAttentionLight(const LightState& state) {
std::lock_guard<std::mutex> lock(mLock);
mAttentionState = state;
setSpeakerBatteryLightLocked();
}
void Light::setLcdBacklight(const LightState& state) {
std::lock_guard<std::mutex> lock(mLock);
uint32_t brightness = rgbToBrightness(state);
// If max panel brightness is not the default (255),
// apply linear scaling across the accepted range.
if (mLcdBacklight.second != DEFAULT_MAX_BRIGHTNESS) {
int old_brightness = brightness;
brightness = brightness * mLcdBacklight.second / DEFAULT_MAX_BRIGHTNESS;
LOG(VERBOSE) << "scaling brightness " << old_brightness << " => " << brightness;
}
mLcdBacklight.first << brightness << std::endl;
}
void Light::setButtonsBacklight(const LightState& state) {
std::lock_guard<std::mutex> lock(mLock);
uint32_t brightness = rgbToBrightness(state);
mButtonBacklight << brightness << std::endl;
}
void Light::setBatteryLight(const LightState& state) {
std::lock_guard<std::mutex> lock(mLock);
mBatteryState = state;
setSpeakerBatteryLightLocked();
}
void Light::setNotificationLight(const LightState& state) {
std::lock_guard<std::mutex> lock(mLock);
mNotificationState = state;
setSpeakerBatteryLightLocked();
}
void Light::setSpeakerBatteryLightLocked() {
if (isLit(mNotificationState)) {
setSpeakerLightLocked(mNotificationState);
} else if (isLit(mAttentionState)) {
setSpeakerLightLocked(mAttentionState);
} else if (isLit(mBatteryState)) {
setSpeakerLightLocked(mBatteryState);
} else {
// Lights off
mRedLed << 0 << std::endl;
mGreenLed << 0 << std::endl;
mBlueLed << 0 << std::endl;
mRedBlink << 0 << std::endl;
mGreenBlink << 0 << std::endl;
mBlueBlink << 0 << std::endl;
}
}
void Light::setSpeakerLightLocked(const LightState& state) {
int red, green, blue, blink;
int onMs, offMs;
uint32_t colorRGB = state.color;
char breath_pattern[64] = { 0, };
struct color *nearest = NULL;
switch (state.flashMode) {
case Flash::TIMED:
onMs = state.flashOnMs;
offMs = state.flashOffMs;
break;
case Flash::NONE:
default:
onMs = 0;
offMs = 0;
break;
}
red = (colorRGB >> 16) & 0xff;
green = (colorRGB >> 8) & 0xff;
blue = colorRGB & 0xff;
blink = onMs > 0 && offMs > 0;
// Disable all blinking to start
mRedLed << 0 << std::endl;
mGreenLed << 0 << std::endl;
mBlueLed << 0 << std::endl;
if (blink) {
// Driver doesn't permit us to set individual duty cycles, so only
// pick pure colors at max brightness when blinking.
nearest = nearest_color(red, green, blue);
red = nearest->r;
green = nearest->g;
blue = nearest->b;
// Make sure the values are between 1 and 7 seconds
if (onMs < 1000)
onMs = 1000;
else if (onMs > 7000)
onMs = 7000;
if (offMs < 1000)
offMs = 1000;
else if (offMs > 7000)
offMs = 7000;
// Ramp up, lit, ramp down, unlit. in seconds.
sprintf(breath_pattern, "1 %d 1 %d", (int)(onMs / 1000), (int)(offMs / 1000));
} else {
blink = 0;
sprintf(breath_pattern, "1 2 1 2");
}
// Do everything with the lights out, then turn up the brightness
mRedLedTime << breath_pattern << std::endl;
mRedBlink << (blink && red ? 1 : 0) << std::endl;
mGreenLedTime << breath_pattern << std::endl;
mGreenBlink << (blink && green ? 1 : 0) << std::endl;
mBlueLedTime << breath_pattern << std::endl;
mBlueBlink << (blink && blue ? 1 : 0) << std::endl;
mRedLed << red << std::endl;
mGreenLed << green << std::endl;
mBlueLed << blue << std::endl;
}
} // namespace implementation
} // namespace V2_0
} // namespace light
} // namespace hardware
} // namespace android