platform_system_bpf/libbpf_android/Loader.cpp
Stephane Lee eb61b739ae Increase the log size for larger bpf programs
Test: Build passes, bpf program loads without an out of space error
Bug: 203462310
Change-Id: I5f67021a530223467662f341cdfffc4816781078
2021-10-22 19:07:05 -07:00

855 lines
28 KiB
C++

/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "LibBpfLoader"
#include <errno.h>
#include <linux/bpf.h>
#include <linux/elf.h>
#include <log/log.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/utsname.h>
#include <unistd.h>
// This is BpfLoader v0.4
#define BPFLOADER_VERSION_MAJOR 0u
#define BPFLOADER_VERSION_MINOR 4u
#define BPFLOADER_VERSION ((BPFLOADER_VERSION_MAJOR << 16) | BPFLOADER_VERSION_MINOR)
#include "../progs/include/bpf_map_def.h"
#include "bpf/BpfUtils.h"
#include "include/libbpf_android.h"
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <optional>
#include <string>
#include <vector>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#define BPF_FS_PATH "/sys/fs/bpf/"
// Size of the BPF log buffer for verifier logging
#define BPF_LOAD_LOG_SZ 0xfffff
using android::base::StartsWith;
using android::base::unique_fd;
using std::ifstream;
using std::ios;
using std::optional;
using std::string;
using std::vector;
namespace android {
namespace bpf {
static string pathToFilename(const string& path, bool noext = false) {
vector<string> spath = android::base::Split(path, "/");
string ret = spath.back();
if (noext) {
size_t lastindex = ret.find_last_of('.');
return ret.substr(0, lastindex);
}
return ret;
}
typedef struct {
const char* name;
enum bpf_prog_type type;
} sectionType;
/*
* Map section name prefixes to program types, the section name will be:
* SEC(<prefix>/<name-of-program>)
* For example:
* SEC("tracepoint/sched_switch_func") where sched_switch_funcs
* is the name of the program, and tracepoint is the type.
*/
sectionType sectionNameTypes[] = {
{"kprobe", BPF_PROG_TYPE_KPROBE},
{"tracepoint", BPF_PROG_TYPE_TRACEPOINT},
{"skfilter", BPF_PROG_TYPE_SOCKET_FILTER},
{"cgroupskb", BPF_PROG_TYPE_CGROUP_SKB},
{"schedcls", BPF_PROG_TYPE_SCHED_CLS},
{"schedact", BPF_PROG_TYPE_SCHED_ACT},
{"cgroupsock", BPF_PROG_TYPE_CGROUP_SOCK},
{"xdp", BPF_PROG_TYPE_XDP},
/* End of table */
{"END", BPF_PROG_TYPE_UNSPEC},
};
typedef struct {
enum bpf_prog_type type;
string name;
vector<char> data;
vector<char> rel_data;
optional<struct bpf_prog_def> prog_def;
unique_fd prog_fd; /* fd after loading */
} codeSection;
static int readElfHeader(ifstream& elfFile, Elf64_Ehdr* eh) {
elfFile.seekg(0);
if (elfFile.fail()) return -1;
if (!elfFile.read((char*)eh, sizeof(*eh))) return -1;
return 0;
}
/* Reads all section header tables into an Shdr array */
static int readSectionHeadersAll(ifstream& elfFile, vector<Elf64_Shdr>& shTable) {
Elf64_Ehdr eh;
int ret = 0;
ret = readElfHeader(elfFile, &eh);
if (ret) return ret;
elfFile.seekg(eh.e_shoff);
if (elfFile.fail()) return -1;
/* Read shdr table entries */
shTable.resize(eh.e_shnum);
if (!elfFile.read((char*)shTable.data(), (eh.e_shnum * eh.e_shentsize))) return -ENOMEM;
return 0;
}
/* Read a section by its index - for ex to get sec hdr strtab blob */
static int readSectionByIdx(ifstream& elfFile, int id, vector<char>& sec) {
vector<Elf64_Shdr> shTable;
int ret = readSectionHeadersAll(elfFile, shTable);
if (ret) return ret;
elfFile.seekg(shTable[id].sh_offset);
if (elfFile.fail()) return -1;
sec.resize(shTable[id].sh_size);
if (!elfFile.read(sec.data(), shTable[id].sh_size)) return -1;
return 0;
}
/* Read whole section header string table */
static int readSectionHeaderStrtab(ifstream& elfFile, vector<char>& strtab) {
Elf64_Ehdr eh;
int ret = readElfHeader(elfFile, &eh);
if (ret) return ret;
ret = readSectionByIdx(elfFile, eh.e_shstrndx, strtab);
if (ret) return ret;
return 0;
}
/* Get name from offset in strtab */
static int getSymName(ifstream& elfFile, int nameOff, string& name) {
int ret;
vector<char> secStrTab;
ret = readSectionHeaderStrtab(elfFile, secStrTab);
if (ret) return ret;
if (nameOff >= (int)secStrTab.size()) return -1;
name = string((char*)secStrTab.data() + nameOff);
return 0;
}
/* Reads a full section by name - example to get the GPL license */
static int readSectionByName(const char* name, ifstream& elfFile, vector<char>& data) {
vector<char> secStrTab;
vector<Elf64_Shdr> shTable;
int ret;
ret = readSectionHeadersAll(elfFile, shTable);
if (ret) return ret;
ret = readSectionHeaderStrtab(elfFile, secStrTab);
if (ret) return ret;
for (int i = 0; i < (int)shTable.size(); i++) {
char* secname = secStrTab.data() + shTable[i].sh_name;
if (!secname) continue;
if (!strcmp(secname, name)) {
vector<char> dataTmp;
dataTmp.resize(shTable[i].sh_size);
elfFile.seekg(shTable[i].sh_offset);
if (elfFile.fail()) return -1;
if (!elfFile.read((char*)dataTmp.data(), shTable[i].sh_size)) return -1;
data = dataTmp;
return 0;
}
}
return -2;
}
unsigned int readSectionUint(const char* name, ifstream& elfFile, unsigned int defVal) {
vector<char> theBytes;
int ret = readSectionByName(name, elfFile, theBytes);
if (ret) {
ALOGD("Couldn't find section %s (defaulting to %u [0x%x]).\n", name, defVal, defVal);
return defVal;
} else if (theBytes.size() < sizeof(unsigned int)) {
ALOGE("Section %s too short (defaulting to %u [0x%x]).\n", name, defVal, defVal);
return defVal;
} else {
// decode first 4 bytes as LE32 uint, there will likely be more bytes due to alignment.
unsigned int value = static_cast<unsigned char>(theBytes[3]);
value <<= 8;
value += static_cast<unsigned char>(theBytes[2]);
value <<= 8;
value += static_cast<unsigned char>(theBytes[1]);
value <<= 8;
value += static_cast<unsigned char>(theBytes[0]);
ALOGI("Section %s value is %u [0x%x]\n", name, value, value);
return value;
}
}
static int readSectionByType(ifstream& elfFile, int type, vector<char>& data) {
int ret;
vector<Elf64_Shdr> shTable;
ret = readSectionHeadersAll(elfFile, shTable);
if (ret) return ret;
for (int i = 0; i < (int)shTable.size(); i++) {
if ((int)shTable[i].sh_type != type) continue;
vector<char> dataTmp;
dataTmp.resize(shTable[i].sh_size);
elfFile.seekg(shTable[i].sh_offset);
if (elfFile.fail()) return -1;
if (!elfFile.read((char*)dataTmp.data(), shTable[i].sh_size)) return -1;
data = dataTmp;
return 0;
}
return -2;
}
static bool symCompare(Elf64_Sym a, Elf64_Sym b) {
return (a.st_value < b.st_value);
}
static int readSymTab(ifstream& elfFile, int sort, vector<Elf64_Sym>& data) {
int ret, numElems;
Elf64_Sym* buf;
vector<char> secData;
ret = readSectionByType(elfFile, SHT_SYMTAB, secData);
if (ret) return ret;
buf = (Elf64_Sym*)secData.data();
numElems = (secData.size() / sizeof(Elf64_Sym));
data.assign(buf, buf + numElems);
if (sort) std::sort(data.begin(), data.end(), symCompare);
return 0;
}
static enum bpf_prog_type getSectionType(string& name) {
for (int i = 0; sectionNameTypes[i].type != BPF_PROG_TYPE_UNSPEC; i++)
if (StartsWith(name, sectionNameTypes[i].name)) return sectionNameTypes[i].type;
return BPF_PROG_TYPE_UNSPEC;
}
/* If ever needed
static string getSectionName(enum bpf_prog_type type)
{
for (int i = 0; sectionNameTypes[i].type != BPF_PROG_TYPE_UNSPEC; i++)
if (sectionNameTypes[i].type == type)
return string(sectionNameTypes[i].name);
return NULL;
}
*/
static bool isRelSection(codeSection& cs, string& name) {
for (int i = 0; sectionNameTypes[i].type != BPF_PROG_TYPE_UNSPEC; i++) {
sectionType st = sectionNameTypes[i];
if (st.type != cs.type) continue;
if (StartsWith(name, string(".rel") + st.name + "/"))
return true;
else
return false;
}
return false;
}
static int readProgDefs(ifstream& elfFile, vector<struct bpf_prog_def>& pd,
size_t sizeOfBpfProgDef) {
vector<char> pdData;
int ret = readSectionByName("progs", elfFile, pdData);
// Older file formats do not require a 'progs' section at all.
// (We should probably figure out whether this is behaviour which is safe to remove now.)
if (ret == -2) return 0;
if (ret) return ret;
if (pdData.size() % sizeOfBpfProgDef) {
ALOGE("readProgDefs failed due to improper sized progs section, %zu %% %zu != 0\n",
pdData.size(), sizeOfBpfProgDef);
return -1;
};
int progCount = pdData.size() / sizeOfBpfProgDef;
pd.resize(progCount);
size_t trimmedSize = std::min(sizeOfBpfProgDef, sizeof(struct bpf_prog_def));
const char* dataPtr = pdData.data();
for (auto& p : pd) {
// First we zero initialize
memset(&p, 0, sizeof(p));
// Then we set non-zero defaults
p.bpfloader_max_ver = DEFAULT_BPFLOADER_MAX_VER; // v1.0
// Then we copy over the structure prefix from the ELF file.
memcpy(&p, dataPtr, trimmedSize);
// Move to next struct in the ELF file
dataPtr += sizeOfBpfProgDef;
}
return 0;
}
static int getSectionSymNames(ifstream& elfFile, const string& sectionName, vector<string>& names) {
int ret;
string name;
vector<Elf64_Sym> symtab;
vector<Elf64_Shdr> shTable;
ret = readSymTab(elfFile, 1 /* sort */, symtab);
if (ret) return ret;
/* Get index of section */
ret = readSectionHeadersAll(elfFile, shTable);
if (ret) return ret;
int sec_idx = -1;
for (int i = 0; i < (int)shTable.size(); i++) {
ret = getSymName(elfFile, shTable[i].sh_name, name);
if (ret) return ret;
if (!name.compare(sectionName)) {
sec_idx = i;
break;
}
}
/* No section found with matching name*/
if (sec_idx == -1) {
ALOGW("No %s section could be found in elf object\n", sectionName.c_str());
return -1;
}
for (int i = 0; i < (int)symtab.size(); i++) {
if (symtab[i].st_shndx == sec_idx) {
string s;
ret = getSymName(elfFile, symtab[i].st_name, s);
if (ret) return ret;
names.push_back(s);
}
}
return 0;
}
/* Read a section by its index - for ex to get sec hdr strtab blob */
static int readCodeSections(ifstream& elfFile, vector<codeSection>& cs, size_t sizeOfBpfProgDef) {
vector<Elf64_Shdr> shTable;
int entries, ret = 0;
ret = readSectionHeadersAll(elfFile, shTable);
if (ret) return ret;
entries = shTable.size();
vector<struct bpf_prog_def> pd;
ret = readProgDefs(elfFile, pd, sizeOfBpfProgDef);
if (ret) return ret;
vector<string> progDefNames;
ret = getSectionSymNames(elfFile, "progs", progDefNames);
if (!pd.empty() && ret) return ret;
for (int i = 0; i < entries; i++) {
string name;
codeSection cs_temp;
cs_temp.type = BPF_PROG_TYPE_UNSPEC;
ret = getSymName(elfFile, shTable[i].sh_name, name);
if (ret) return ret;
enum bpf_prog_type ptype = getSectionType(name);
if (ptype != BPF_PROG_TYPE_UNSPEC) {
string oldName = name;
// convert all slashes to underscores
std::replace(name.begin(), name.end(), '/', '_');
cs_temp.type = ptype;
cs_temp.name = name;
ret = readSectionByIdx(elfFile, i, cs_temp.data);
if (ret) return ret;
ALOGD("Loaded code section %d (%s)\n", i, name.c_str());
vector<string> csSymNames;
ret = getSectionSymNames(elfFile, oldName, csSymNames);
if (ret || !csSymNames.size()) return ret;
for (size_t i = 0; i < progDefNames.size(); ++i) {
if (!progDefNames[i].compare(csSymNames[0] + "_def")) {
cs_temp.prog_def = pd[i];
break;
}
}
}
/* Check for rel section */
if (cs_temp.data.size() > 0 && i < entries) {
ret = getSymName(elfFile, shTable[i + 1].sh_name, name);
if (ret) return ret;
if (isRelSection(cs_temp, name)) {
ret = readSectionByIdx(elfFile, i + 1, cs_temp.rel_data);
if (ret) return ret;
ALOGD("Loaded relo section %d (%s)\n", i, name.c_str());
}
}
if (cs_temp.data.size() > 0) {
cs.push_back(std::move(cs_temp));
ALOGD("Adding section %d to cs list\n", i);
}
}
return 0;
}
static int getSymNameByIdx(ifstream& elfFile, int index, string& name) {
vector<Elf64_Sym> symtab;
int ret = 0;
ret = readSymTab(elfFile, 0 /* !sort */, symtab);
if (ret) return ret;
if (index >= (int)symtab.size()) return -1;
return getSymName(elfFile, symtab[index].st_name, name);
}
static int createMaps(const char* elfPath, ifstream& elfFile, vector<unique_fd>& mapFds,
const char* prefix, size_t sizeOfBpfMapDef) {
int ret;
vector<char> mdData;
vector<struct bpf_map_def> md;
vector<string> mapNames;
string fname = pathToFilename(string(elfPath), true);
ret = readSectionByName("maps", elfFile, mdData);
if (ret == -2) return 0; // no maps to read
if (ret) return ret;
if (mdData.size() % sizeOfBpfMapDef) {
ALOGE("createMaps failed due to improper sized maps section, %zu %% %zu != 0\n",
mdData.size(), sizeOfBpfMapDef);
return -1;
};
int mapCount = mdData.size() / sizeOfBpfMapDef;
md.resize(mapCount);
size_t trimmedSize = std::min(sizeOfBpfMapDef, sizeof(struct bpf_map_def));
const char* dataPtr = mdData.data();
for (auto& m : md) {
// First we zero initialize
memset(&m, 0, sizeof(m));
// Then we set non-zero defaults
m.bpfloader_max_ver = DEFAULT_BPFLOADER_MAX_VER; // v1.0
m.max_kver = 0xFFFFFFFFu; // matches KVER_INF from bpf_helpers.h
// Then we copy over the structure prefix from the ELF file.
memcpy(&m, dataPtr, trimmedSize);
// Move to next struct in the ELF file
dataPtr += sizeOfBpfMapDef;
}
ret = getSectionSymNames(elfFile, "maps", mapNames);
if (ret) return ret;
unsigned kvers = kernelVersion();
for (int i = 0; i < (int)mapNames.size(); i++) {
if (BPFLOADER_VERSION < md[i].bpfloader_min_ver) {
ALOGI("skipping map %s which requires bpfloader min ver 0x%05x\n", mapNames[i].c_str(),
md[i].bpfloader_min_ver);
mapFds.push_back(unique_fd());
continue;
}
if (BPFLOADER_VERSION >= md[i].bpfloader_max_ver) {
ALOGI("skipping map %s which requires bpfloader max ver 0x%05x\n", mapNames[i].c_str(),
md[i].bpfloader_max_ver);
mapFds.push_back(unique_fd());
continue;
}
if (kvers < md[i].min_kver) {
ALOGI("skipping map %s which requires kernel version 0x%x >= 0x%x\n",
mapNames[i].c_str(), kvers, md[i].min_kver);
mapFds.push_back(unique_fd());
continue;
}
if (kvers >= md[i].max_kver) {
ALOGI("skipping map %s which requires kernel version 0x%x < 0x%x\n",
mapNames[i].c_str(), kvers, md[i].max_kver);
mapFds.push_back(unique_fd());
continue;
}
// Format of pin location is /sys/fs/bpf/<prefix>map_<filename>_<mapname>
string mapPinLoc =
string(BPF_FS_PATH) + prefix + "map_" + fname + "_" + string(mapNames[i]);
bool reuse = false;
unique_fd fd;
int saved_errno;
if (access(mapPinLoc.c_str(), F_OK) == 0) {
fd.reset(bpf_obj_get(mapPinLoc.c_str()));
saved_errno = errno;
ALOGD("bpf_create_map reusing map %s, ret: %d\n", mapNames[i].c_str(), fd.get());
reuse = true;
} else {
enum bpf_map_type type = md[i].type;
if (type == BPF_MAP_TYPE_DEVMAP && !isAtLeastKernelVersion(4, 14, 0)) {
// On Linux Kernels older than 4.14 this map type doesn't exist, but it can kind
// of be approximated: ARRAY has the same userspace api, though it is not usable
// by the same ebpf programs. However, that's okay because the bpf_redirect_map()
// helper doesn't exist on 4.9 anyway (so the bpf program would fail to load,
// and thus needs to be tagged as 4.14+ either way), so there's nothing useful you
// could do with a DEVMAP anyway (that isn't already provided by an ARRAY)...
// Hence using an ARRAY instead of a DEVMAP simply makes life easier for userspace.
type = BPF_MAP_TYPE_ARRAY;
}
if (type == BPF_MAP_TYPE_DEVMAP_HASH && !isAtLeastKernelVersion(5, 4, 0)) {
// On Linux Kernels older than 5.4 this map type doesn't exist, but it can kind
// of be approximated: HASH has the same userspace visible api.
// However it cannot be used by ebpf programs in the same way.
// Since bpf_redirect_map() only requires 4.14, a program using a DEVMAP_HASH map
// would fail to load (due to trying to redirect to a HASH instead of DEVMAP_HASH).
// One must thus tag any BPF_MAP_TYPE_DEVMAP_HASH + bpf_redirect_map() using
// programs as being 5.4+...
type = BPF_MAP_TYPE_HASH;
}
fd.reset(bpf_create_map(type, mapNames[i].c_str(), md[i].key_size, md[i].value_size,
md[i].max_entries, md[i].map_flags));
saved_errno = errno;
ALOGD("bpf_create_map name %s, ret: %d\n", mapNames[i].c_str(), fd.get());
}
if (fd < 0) return -saved_errno;
if (!reuse) {
ret = bpf_obj_pin(fd, mapPinLoc.c_str());
if (ret) return -errno;
ret = chown(mapPinLoc.c_str(), (uid_t)md[i].uid, (gid_t)md[i].gid);
if (ret) return -errno;
ret = chmod(mapPinLoc.c_str(), md[i].mode);
if (ret) return -errno;
}
mapFds.push_back(std::move(fd));
}
return ret;
}
/* For debugging, dump all instructions */
static void dumpIns(char* ins, int size) {
for (int row = 0; row < size / 8; row++) {
ALOGE("%d: ", row);
for (int j = 0; j < 8; j++) {
ALOGE("%3x ", ins[(row * 8) + j]);
}
ALOGE("\n");
}
}
/* For debugging, dump all code sections from cs list */
static void dumpAllCs(vector<codeSection>& cs) {
for (int i = 0; i < (int)cs.size(); i++) {
ALOGE("Dumping cs %d, name %s\n", int(i), cs[i].name.c_str());
dumpIns((char*)cs[i].data.data(), cs[i].data.size());
ALOGE("-----------\n");
}
}
static void applyRelo(void* insnsPtr, Elf64_Addr offset, int fd) {
int insnIndex;
struct bpf_insn *insn, *insns;
insns = (struct bpf_insn*)(insnsPtr);
insnIndex = offset / sizeof(struct bpf_insn);
insn = &insns[insnIndex];
ALOGD(
"applying relo to instruction at byte offset: %d, \
insn offset %d , insn %lx\n",
(int)offset, (int)insnIndex, *(unsigned long*)insn);
if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) {
ALOGE("Dumping all instructions till ins %d\n", insnIndex);
ALOGE("invalid relo for insn %d: code 0x%x\n", insnIndex, insn->code);
dumpIns((char*)insnsPtr, (insnIndex + 3) * 8);
return;
}
insn->imm = fd;
insn->src_reg = BPF_PSEUDO_MAP_FD;
}
static void applyMapRelo(ifstream& elfFile, vector<unique_fd> &mapFds, vector<codeSection>& cs) {
vector<string> mapNames;
int ret = getSectionSymNames(elfFile, "maps", mapNames);
if (ret) return;
for (int k = 0; k != (int)cs.size(); k++) {
Elf64_Rel* rel = (Elf64_Rel*)(cs[k].rel_data.data());
int n_rel = cs[k].rel_data.size() / sizeof(*rel);
for (int i = 0; i < n_rel; i++) {
int symIndex = ELF64_R_SYM(rel[i].r_info);
string symName;
ret = getSymNameByIdx(elfFile, symIndex, symName);
if (ret) return;
/* Find the map fd and apply relo */
for (int j = 0; j < (int)mapNames.size(); j++) {
if (!mapNames[j].compare(symName)) {
applyRelo(cs[k].data.data(), rel[i].r_offset, mapFds[j]);
break;
}
}
}
}
}
static int loadCodeSections(const char* elfPath, vector<codeSection>& cs, const string& license,
const char* prefix) {
unsigned kvers = kernelVersion();
int ret, fd;
if (!kvers) return -1;
string fname = pathToFilename(string(elfPath), true);
for (int i = 0; i < (int)cs.size(); i++) {
string name = cs[i].name;
unsigned bpfMinVer = DEFAULT_BPFLOADER_MIN_VER; // v0.0
unsigned bpfMaxVer = DEFAULT_BPFLOADER_MAX_VER; // v1.0
if (cs[i].prog_def.has_value()) {
unsigned min_kver = cs[i].prog_def->min_kver;
unsigned max_kver = cs[i].prog_def->max_kver;
ALOGD("cs[%d].name:%s min_kver:%x .max_kver:%x (kvers:%x)\n", i, name.c_str(), min_kver,
max_kver, kvers);
if (kvers < min_kver) continue;
if (kvers >= max_kver) continue;
bpfMinVer = cs[i].prog_def->bpfloader_min_ver;
bpfMaxVer = cs[i].prog_def->bpfloader_max_ver;
}
ALOGD("cs[%d].name:%s requires bpfloader version [0x%05x,0x%05x)\n", i, name.c_str(),
bpfMinVer, bpfMaxVer);
if (BPFLOADER_VERSION < bpfMinVer) continue;
if (BPFLOADER_VERSION >= bpfMaxVer) continue;
// strip any potential $foo suffix
// this can be used to provide duplicate programs
// conditionally loaded based on running kernel version
name = name.substr(0, name.find_last_of('$'));
bool reuse = false;
// Format of pin location is
// /sys/fs/bpf/<prefix>prog_<filename>_<mapname>
string progPinLoc = BPF_FS_PATH;
progPinLoc += prefix;
progPinLoc += "prog_";
progPinLoc += fname;
progPinLoc += '_';
progPinLoc += name;
if (access(progPinLoc.c_str(), F_OK) == 0) {
fd = retrieveProgram(progPinLoc.c_str());
ALOGD("New bpf prog load reusing prog %s, ret: %d (%s)\n", progPinLoc.c_str(), fd,
(fd < 0 ? std::strerror(errno) : "no error"));
reuse = true;
} else {
vector<char> log_buf(BPF_LOAD_LOG_SZ, 0);
fd = bpf_prog_load(cs[i].type, name.c_str(), (struct bpf_insn*)cs[i].data.data(),
cs[i].data.size(), license.c_str(), kvers, 0, log_buf.data(),
log_buf.size());
ALOGD("bpf_prog_load lib call for %s (%s) returned fd: %d (%s)\n", elfPath,
cs[i].name.c_str(), fd, (fd < 0 ? std::strerror(errno) : "no error"));
if (fd < 0) {
vector<string> lines = android::base::Split(log_buf.data(), "\n");
ALOGW("bpf_prog_load - BEGIN log_buf contents:");
for (const auto& line : lines) ALOGW("%s", line.c_str());
ALOGW("bpf_prog_load - END log_buf contents.");
if (cs[i].prog_def->optional) {
ALOGW("failed program is marked optional - continuing...");
continue;
}
ALOGE("non-optional program failed to load.");
}
}
if (fd < 0) return fd;
if (fd == 0) return -EINVAL;
if (!reuse) {
ret = bpf_obj_pin(fd, progPinLoc.c_str());
if (ret) return -errno;
if (cs[i].prog_def.has_value()) {
if (chown(progPinLoc.c_str(), (uid_t)cs[i].prog_def->uid,
(gid_t)cs[i].prog_def->gid)) {
return -errno;
}
}
if (chmod(progPinLoc.c_str(), 0440)) return -errno;
}
cs[i].prog_fd.reset(fd);
}
return 0;
}
int loadProg(const char* elfPath, bool* isCritical, const char* prefix) {
vector<char> license;
vector<char> critical;
vector<codeSection> cs;
vector<unique_fd> mapFds;
int ret;
if (!isCritical) return -1;
*isCritical = false;
ifstream elfFile(elfPath, ios::in | ios::binary);
if (!elfFile.is_open()) return -1;
ret = readSectionByName("critical", elfFile, critical);
*isCritical = !ret;
ret = readSectionByName("license", elfFile, license);
if (ret) {
ALOGE("Couldn't find license in %s\n", elfPath);
return ret;
} else {
ALOGD("Loading %s%s ELF object %s with license %s\n",
*isCritical ? "critical for " : "optional", *isCritical ? (char*)critical.data() : "",
elfPath, (char*)license.data());
}
// the following default values are for bpfloader V0.0 format which does not include them
unsigned int bpfLoaderMinVer =
readSectionUint("bpfloader_min_ver", elfFile, DEFAULT_BPFLOADER_MIN_VER);
unsigned int bpfLoaderMaxVer =
readSectionUint("bpfloader_max_ver", elfFile, DEFAULT_BPFLOADER_MAX_VER);
size_t sizeOfBpfMapDef =
readSectionUint("size_of_bpf_map_def", elfFile, DEFAULT_SIZEOF_BPF_MAP_DEF);
size_t sizeOfBpfProgDef =
readSectionUint("size_of_bpf_prog_def", elfFile, DEFAULT_SIZEOF_BPF_PROG_DEF);
// inclusive lower bound check
if (BPFLOADER_VERSION < bpfLoaderMinVer) {
ALOGI("BpfLoader version 0x%05x ignoring ELF object %s with min ver 0x%05x\n",
BPFLOADER_VERSION, elfPath, bpfLoaderMinVer);
return 0;
}
// exclusive upper bound check
if (BPFLOADER_VERSION >= bpfLoaderMaxVer) {
ALOGI("BpfLoader version 0x%05x ignoring ELF object %s with max ver 0x%05x\n",
BPFLOADER_VERSION, elfPath, bpfLoaderMaxVer);
return 0;
}
ALOGI("BpfLoader version 0x%05x processing ELF object %s with ver [0x%05x,0x%05x)\n",
BPFLOADER_VERSION, elfPath, bpfLoaderMinVer, bpfLoaderMaxVer);
if (sizeOfBpfMapDef < DEFAULT_SIZEOF_BPF_MAP_DEF) {
ALOGE("sizeof(bpf_map_def) of %zu is too small (< %d)\n", sizeOfBpfMapDef,
DEFAULT_SIZEOF_BPF_MAP_DEF);
return -1;
}
if (sizeOfBpfProgDef < DEFAULT_SIZEOF_BPF_PROG_DEF) {
ALOGE("sizeof(bpf_prog_def) of %zu is too small (< %d)\n", sizeOfBpfProgDef,
DEFAULT_SIZEOF_BPF_PROG_DEF);
return -1;
}
ret = readCodeSections(elfFile, cs, sizeOfBpfProgDef);
if (ret) {
ALOGE("Couldn't read all code sections in %s\n", elfPath);
return ret;
}
/* Just for future debugging */
if (0) dumpAllCs(cs);
ret = createMaps(elfPath, elfFile, mapFds, prefix, sizeOfBpfMapDef);
if (ret) {
ALOGE("Failed to create maps: (ret=%d) in %s\n", ret, elfPath);
return ret;
}
for (int i = 0; i < (int)mapFds.size(); i++)
ALOGD("map_fd found at %d is %d in %s\n", i, mapFds[i].get(), elfPath);
applyMapRelo(elfFile, mapFds, cs);
ret = loadCodeSections(elfPath, cs, string(license.data()), prefix);
if (ret) ALOGE("Failed to load programs, loadCodeSections ret=%d\n", ret);
return ret;
}
} // namespace bpf
} // namespace android