platform_system_core/rootdir/init.rc

843 lines
32 KiB
Text
Raw Normal View History

# Copyright (C) 2012 The Android Open Source Project
#
# IMPORTANT: Do not create world writable files or directories.
# This is a common source of Android security bugs.
#
import /init.environ.rc
import /init.usb.rc
import /init.${ro.hardware}.rc
import /vendor/etc/init/hw/init.${ro.hardware}.rc
import /init.usb.configfs.rc
import /init.${ro.zygote}.rc
# Cgroups are mounted right before early-init using list from /etc/cgroups.json
on early-init
# Disable sysrq from keyboard
write /proc/sys/kernel/sysrq 0
# Set the security context of /adb_keys if present.
restorecon /adb_keys
# Set the security context of /postinstall if present.
restorecon /postinstall
mkdir /acct/uid
# memory.pressure_level used by lmkd
chown root system /dev/memcg/memory.pressure_level
chmod 0040 /dev/memcg/memory.pressure_level
# app mem cgroups, used by activity manager, lmkd and zygote
mkdir /dev/memcg/apps/ 0755 system system
# cgroup for system_server and surfaceflinger
mkdir /dev/memcg/system 0550 system system
start ueventd
Activate system APEXes early Summary: Boot sequence around apexd is changed to make it possible for pre-apexd processes to use libraries from APEXes. They no longer need to wait for the apexd to finish activating APEXes, which again can be done only after /data/ is mounted. This improves overall boot performance. Detail: This change fixes the problem that processes that are started before apexd (so called pre-apexd processes) can't access libraries that are provided only by the APEXes but are not found in the system partition (e.g. libdexfile_external.so, etc.). Main idea is to activate system APEXes (/system/apex/*.apex) before /data is mounted and then activate the updated APEXes (/data/apex/*.apex) after the /data mount. Detailed boot sequence is as follows. 1) init prepares the bootstrap and default mount namespaces. A tmpfs is mounted on /apex and the propagation type of the mountpoint is set to private. 2) before any other process is started, apexd is started in bootstrap mode. When executed in the mode, apexd only activates APEXes under /system/apex. Note that APEXes activated in this phase are mounted in the bootstrap mount namespace only. 3) other pre-apexd processes are started. They are in the bootstrap mount namespace and thus are provided with the libraries from the system APEXes. 4) /data is mounted. init switches into the default mount namespace and starts apexd as a daemon as usual. 5) apexd scans both /data/apex and /system/apex, and activate latest APEXes from the directories. Note that APEXes activated in this phase are mounted in the default namespaces only and thus are not visible to the pre-apexd processes. Bug: 125549215 Test: m; device boots Change-Id: I21c60d0ebe188fa4f24d6e6861f85ca204843069
2019-02-22 14:15:25 +01:00
# Run apexd-bootstrap so that APEXes that provide critical libraries
# become available. Note that this is executed as exec_start to ensure that
# the libraries are available to the processes started after this statement.
exec_start apexd-bootstrap
on init
sysclktz 0
# Mix device-specific information into the entropy pool
copy /proc/cmdline /dev/urandom
copy /system/etc/prop.default /dev/urandom
symlink /proc/self/fd/0 /dev/stdin
symlink /proc/self/fd/1 /dev/stdout
symlink /proc/self/fd/2 /dev/stderr
symlink /system/bin /bin
symlink /system/etc /etc
# Backward compatibility.
symlink /sys/kernel/debug /d
# Link /vendor to /system/vendor for devices without a vendor partition.
symlink /system/vendor /vendor
# Create energy-aware scheduler tuning nodes
mkdir /dev/stune/foreground
mkdir /dev/stune/background
mkdir /dev/stune/top-app
mkdir /dev/stune/rt
chown system system /dev/stune
chown system system /dev/stune/foreground
chown system system /dev/stune/background
chown system system /dev/stune/top-app
chown system system /dev/stune/rt
chown system system /dev/stune/tasks
chown system system /dev/stune/foreground/tasks
chown system system /dev/stune/background/tasks
chown system system /dev/stune/top-app/tasks
chown system system /dev/stune/rt/tasks
chmod 0664 /dev/stune/tasks
chmod 0664 /dev/stune/foreground/tasks
chmod 0664 /dev/stune/background/tasks
chmod 0664 /dev/stune/top-app/tasks
chmod 0664 /dev/stune/rt/tasks
# Create blkio group and apply initial settings.
# This feature needs kernel to support it, and the
# device's init.rc must actually set the correct values.
mkdir /dev/blkio/background
chown system system /dev/blkio
chown system system /dev/blkio/background
chown system system /dev/blkio/tasks
chown system system /dev/blkio/background/tasks
chmod 0664 /dev/blkio/tasks
chmod 0664 /dev/blkio/background/tasks
write /dev/blkio/blkio.weight 1000
write /dev/blkio/background/blkio.weight 500
write /dev/blkio/blkio.group_idle 0
write /dev/blkio/background/blkio.group_idle 0
restorecon_recursive /mnt
mount configfs none /config nodev noexec nosuid
chmod 0770 /config/sdcardfs
chown system package_info /config/sdcardfs
mkdir /mnt/secure 0700 root root
mkdir /mnt/secure/asec 0700 root root
mkdir /mnt/asec 0755 root system
mkdir /mnt/obb 0755 root system
mkdir /mnt/media_rw 0750 root media_rw
mkdir /mnt/user 0755 root root
mkdir /mnt/user/0 0755 root root
mkdir /mnt/expand 0771 system system
mkdir /mnt/appfuse 0711 root root
# Storage views to support runtime permissions
mkdir /mnt/runtime 0700 root root
mkdir /mnt/runtime/default 0755 root root
mkdir /mnt/runtime/default/self 0755 root root
mkdir /mnt/runtime/read 0755 root root
mkdir /mnt/runtime/read/self 0755 root root
mkdir /mnt/runtime/write 0755 root root
mkdir /mnt/runtime/write/self 0755 root root
mkdir /mnt/runtime/full 0755 root root
mkdir /mnt/runtime/full/self 0755 root root
# Symlink to keep legacy apps working in multi-user world
symlink /storage/self/primary /sdcard
symlink /storage/self/primary /mnt/sdcard
symlink /mnt/user/0/primary /mnt/runtime/default/self/primary
write /proc/sys/kernel/panic_on_oops 1
write /proc/sys/kernel/hung_task_timeout_secs 0
write /proc/cpu/alignment 4
# scheduler tunables
# Disable auto-scaling of scheduler tunables with hotplug. The tunables
# will vary across devices in unpredictable ways if allowed to scale with
# cpu cores.
write /proc/sys/kernel/sched_tunable_scaling 0
write /proc/sys/kernel/sched_latency_ns 10000000
write /proc/sys/kernel/sched_wakeup_granularity_ns 2000000
write /proc/sys/kernel/sched_child_runs_first 0
write /proc/sys/kernel/randomize_va_space 2
write /proc/sys/vm/mmap_min_addr 32768
write /proc/sys/net/ipv4/ping_group_range "0 2147483647"
write /proc/sys/net/unix/max_dgram_qlen 600
write /proc/sys/kernel/sched_rt_runtime_us 950000
write /proc/sys/kernel/sched_rt_period_us 1000000
# Assign reasonable ceiling values for socket rcv/snd buffers.
# These should almost always be overridden by the target per the
# the corresponding technology maximums.
write /proc/sys/net/core/rmem_max 262144
write /proc/sys/net/core/wmem_max 262144
# reflect fwmark from incoming packets onto generated replies
write /proc/sys/net/ipv4/fwmark_reflect 1
write /proc/sys/net/ipv6/fwmark_reflect 1
# set fwmark on accepted sockets
write /proc/sys/net/ipv4/tcp_fwmark_accept 1
# disable icmp redirects
write /proc/sys/net/ipv4/conf/all/accept_redirects 0
write /proc/sys/net/ipv6/conf/all/accept_redirects 0
# /proc/net/fib_trie leaks interface IP addresses
chmod 0400 /proc/net/fib_trie
# Create cgroup mount points for process groups
chown system system /dev/cpuctl
chown system system /dev/cpuctl/tasks
chmod 0666 /dev/cpuctl/tasks
write /dev/cpuctl/cpu.rt_period_us 1000000
write /dev/cpuctl/cpu.rt_runtime_us 950000
# sets up initial cpusets for ActivityManager
# this ensures that the cpusets are present and usable, but the device's
# init.rc must actually set the correct cpus
mkdir /dev/cpuset/foreground
copy /dev/cpuset/cpus /dev/cpuset/foreground/cpus
copy /dev/cpuset/mems /dev/cpuset/foreground/mems
mkdir /dev/cpuset/background
copy /dev/cpuset/cpus /dev/cpuset/background/cpus
copy /dev/cpuset/mems /dev/cpuset/background/mems
# system-background is for system tasks that should only run on
# little cores, not on bigs
# to be used only by init, so don't change system-bg permissions
mkdir /dev/cpuset/system-background
copy /dev/cpuset/cpus /dev/cpuset/system-background/cpus
copy /dev/cpuset/mems /dev/cpuset/system-background/mems
# restricted is for system tasks that are being throttled
# due to screen off.
mkdir /dev/cpuset/restricted
copy /dev/cpuset/cpus /dev/cpuset/restricted/cpus
copy /dev/cpuset/mems /dev/cpuset/restricted/mems
mkdir /dev/cpuset/top-app
copy /dev/cpuset/cpus /dev/cpuset/top-app/cpus
copy /dev/cpuset/mems /dev/cpuset/top-app/mems
# change permissions for all cpusets we'll touch at runtime
chown system system /dev/cpuset
chown system system /dev/cpuset/foreground
chown system system /dev/cpuset/background
chown system system /dev/cpuset/system-background
chown system system /dev/cpuset/top-app
chown system system /dev/cpuset/restricted
chown system system /dev/cpuset/tasks
chown system system /dev/cpuset/foreground/tasks
chown system system /dev/cpuset/background/tasks
chown system system /dev/cpuset/system-background/tasks
chown system system /dev/cpuset/top-app/tasks
chown system system /dev/cpuset/restricted/tasks
# set system-background to 0775 so SurfaceFlinger can touch it
chmod 0775 /dev/cpuset/system-background
chmod 0664 /dev/cpuset/foreground/tasks
chmod 0664 /dev/cpuset/background/tasks
chmod 0664 /dev/cpuset/system-background/tasks
chmod 0664 /dev/cpuset/top-app/tasks
chmod 0664 /dev/cpuset/restricted/tasks
chmod 0664 /dev/cpuset/tasks
# make the PSI monitor accessible to others
chown system system /proc/pressure/memory
chmod 0664 /proc/pressure/memory
# qtaguid will limit access to specific data based on group memberships.
# net_bw_acct grants impersonation of socket owners.
# net_bw_stats grants access to other apps' detailed tagged-socket stats.
chown root net_bw_acct /proc/net/xt_qtaguid/ctrl
chown root net_bw_stats /proc/net/xt_qtaguid/stats
# Allow everybody to read the xt_qtaguid resource tracking misc dev.
# This is needed by any process that uses socket tagging.
chmod 0644 /dev/xt_qtaguid
chown root root /dev/cg2_bpf
chmod 0600 /dev/cg2_bpf
mount bpf bpf /sys/fs/bpf nodev noexec nosuid
# Create location for fs_mgr to store abbreviated output from filesystem
# checker programs.
mkdir /dev/fscklogs 0770 root system
# pstore/ramoops previous console log
mount pstore pstore /sys/fs/pstore nodev noexec nosuid
chown system log /sys/fs/pstore
chmod 0550 /sys/fs/pstore
chown system log /sys/fs/pstore/console-ramoops
chmod 0440 /sys/fs/pstore/console-ramoops
chown system log /sys/fs/pstore/console-ramoops-0
chmod 0440 /sys/fs/pstore/console-ramoops-0
chown system log /sys/fs/pstore/pmsg-ramoops-0
chmod 0440 /sys/fs/pstore/pmsg-ramoops-0
# enable armv8_deprecated instruction hooks
write /proc/sys/abi/swp 1
# Linux's execveat() syscall may construct paths containing /dev/fd
# expecting it to point to /proc/self/fd
symlink /proc/self/fd /dev/fd
export DOWNLOAD_CACHE /data/cache
# set RLIMIT_NICE to allow priorities from 19 to -20
setrlimit nice 40 40
# Allow up to 32K FDs per process
setrlimit nofile 32768 32768
# This allows the ledtrig-transient properties to be created here so
# that they can be chown'd to system:system later on boot
write /sys/class/leds/vibrator/trigger "transient"
# This is used by Bionic to select optimized routines.
write /dev/cpu_variant:${ro.bionic.arch} ${ro.bionic.cpu_variant}
chmod 0444 /dev/cpu_variant:${ro.bionic.arch}
write /dev/cpu_variant:${ro.bionic.2nd_arch} ${ro.bionic.2nd_cpu_variant}
chmod 0444 /dev/cpu_variant:${ro.bionic.2nd_arch}
# Allow system processes to read / write power state.
chown system system /sys/power/state
chown system system /sys/power/wakeup_count
chmod 0660 /sys/power/state
# Start logd before any other services run to ensure we capture all of their logs.
start logd
# Start essential services.
start servicemanager
start hwservicemanager
start vndservicemanager
# Healthd can trigger a full boot from charger mode by signaling this
# property when the power button is held.
on property:sys.boot_from_charger_mode=1
class_stop charger
trigger late-init
on load_persist_props_action
load_persist_props
start logd
start logd-reinit
# Indicate to fw loaders that the relevant mounts are up.
on firmware_mounts_complete
rm /dev/.booting
# Mount filesystems and start core system services.
on late-init
trigger early-fs
# Mount fstab in init.{$device}.rc by mount_all command. Optional parameter
# '--early' can be specified to skip entries with 'latemount'.
# /system and /vendor must be mounted by the end of the fs stage,
# while /data is optional.
trigger fs
trigger post-fs
# Mount fstab in init.{$device}.rc by mount_all with '--late' parameter
# to only mount entries with 'latemount'. This is needed if '--early' is
# specified in the previous mount_all command on the fs stage.
# With /system mounted and properties form /system + /factory available,
# some services can be started.
trigger late-fs
# Now we can mount /data. File encryption requires keymaster to decrypt
# /data, which in turn can only be loaded when system properties are present.
trigger post-fs-data
# Load persist properties and override properties (if enabled) from /data.
trigger load_persist_props_action
# Now we can start zygote for devices with file based encryption
trigger zygote-start
# Remove a file to wake up anything waiting for firmware.
trigger firmware_mounts_complete
trigger early-boot
trigger boot
on post-fs
start vold
exec - system system -- /system/bin/vdc checkpoint markBootAttempt
# Once everything is setup, no need to modify /.
# The bind+remount combination allows this to work in containers.
mount rootfs rootfs / remount bind ro nodev
# Mount default storage into root namespace
mount none /mnt/runtime/default /storage bind rec
mount none none /storage slave rec
# Make sure /sys/kernel/debug (if present) is labeled properly
# Note that tracefs may be mounted under debug, so we need to cross filesystems
restorecon --recursive --cross-filesystems /sys/kernel/debug
# We chown/chmod /cache again so because mount is run as root + defaults
chown system cache /cache
chmod 0770 /cache
# We restorecon /cache in case the cache partition has been reset.
restorecon_recursive /cache
# Create /cache/recovery in case it's not there. It'll also fix the odd
# permissions if created by the recovery system.
mkdir /cache/recovery 0770 system cache
# Backup/restore mechanism uses the cache partition
mkdir /cache/backup_stage 0700 system system
mkdir /cache/backup 0700 system system
#change permissions on vmallocinfo so we can grab it from bugreports
chown root log /proc/vmallocinfo
chmod 0440 /proc/vmallocinfo
chown root log /proc/slabinfo
chmod 0440 /proc/slabinfo
#change permissions on kmsg & sysrq-trigger so bugreports can grab kthread stacks
chown root system /proc/kmsg
chmod 0440 /proc/kmsg
chown root system /proc/sysrq-trigger
chmod 0220 /proc/sysrq-trigger
chown system log /proc/last_kmsg
chmod 0440 /proc/last_kmsg
# make the selinux kernel policy world-readable
chmod 0444 /sys/fs/selinux/policy
# create the lost+found directories, so as to enforce our permissions
mkdir /cache/lost+found 0770 root root
restorecon_recursive /metadata
mkdir /metadata/vold
chmod 0700 /metadata/vold
mkdir /metadata/password_slots 0771 root system
mkdir /metadata/apex 0700 root system
mkdir /metadata/apex/sessions 0700 root system
on late-fs
# Ensure that tracefs has the correct permissions.
# This does not work correctly if it is called in post-fs.
chmod 0755 /sys/kernel/debug/tracing
# HALs required before storage encryption can get unlocked (FBE/FDE)
class_start early_hal
on post-fs-data
Support for stopping/starting post-data-mount class subsets. On devices that use FDE and APEX at the same time, we need to bring up a minimal framework to be able to mount the /data partition. During this period, a tmpfs /data filesystem is created, which doesn't contain any of the updated APEXEs. As a consequence, all those processes will be using the APEXes from the /system partition. This is obviously not desired, as APEXes in /system may be old and/or contain security issues. Additionally, it would create a difference between FBE and FDE devices at runtime. Ideally, we restart all processes that have started after we created the tmpfs /data. We can't (re)start based on class names alone, because some classes (eg 'hal') contain services that are required to start apexd itself and that shouldn't be killed (eg the graphics HAL). To address this, keep track of which processes are started after /data is mounted, with a new 'mark_post_data' keyword. Additionally, create 'class_reset_post_data', which resets all services in the class that were created after the initial /data mount, and 'class_start_post_data', which starts all services in the class that were started after /data was mounted. On a device with FBE, these keywords wouldn't be used; on a device with FDE, we'd use them to bring down the right processes after the user has entered the correct secret, and restart them. Bug: 118485723 Test: manually verified process list Change-Id: I16adb776dacf1dd1feeaff9e60639b99899905eb
2019-04-23 16:26:01 +02:00
mark_post_data
# Start checkpoint before we touch data
start vold
exec - system system -- /system/bin/vdc checkpoint prepareCheckpoint
# We chown/chmod /data again so because mount is run as root + defaults
chown system system /data
chmod 0771 /data
# We restorecon /data in case the userdata partition has been reset.
restorecon /data
# Make sure we have the device encryption key.
installkey /data
# Start bootcharting as soon as possible after the data partition is
# mounted to collect more data.
mkdir /data/bootchart 0755 shell shell
bootchart start
# Load fsverity keys. This needs to happen before apexd, as post-install of
# APEXes may rely on keys.
exec -- /system/bin/fsverity_init
Activate system APEXes early Summary: Boot sequence around apexd is changed to make it possible for pre-apexd processes to use libraries from APEXes. They no longer need to wait for the apexd to finish activating APEXes, which again can be done only after /data/ is mounted. This improves overall boot performance. Detail: This change fixes the problem that processes that are started before apexd (so called pre-apexd processes) can't access libraries that are provided only by the APEXes but are not found in the system partition (e.g. libdexfile_external.so, etc.). Main idea is to activate system APEXes (/system/apex/*.apex) before /data is mounted and then activate the updated APEXes (/data/apex/*.apex) after the /data mount. Detailed boot sequence is as follows. 1) init prepares the bootstrap and default mount namespaces. A tmpfs is mounted on /apex and the propagation type of the mountpoint is set to private. 2) before any other process is started, apexd is started in bootstrap mode. When executed in the mode, apexd only activates APEXes under /system/apex. Note that APEXes activated in this phase are mounted in the bootstrap mount namespace only. 3) other pre-apexd processes are started. They are in the bootstrap mount namespace and thus are provided with the libraries from the system APEXes. 4) /data is mounted. init switches into the default mount namespace and starts apexd as a daemon as usual. 5) apexd scans both /data/apex and /system/apex, and activate latest APEXes from the directories. Note that APEXes activated in this phase are mounted in the default namespaces only and thus are not visible to the pre-apexd processes. Bug: 125549215 Test: m; device boots Change-Id: I21c60d0ebe188fa4f24d6e6861f85ca204843069
2019-02-22 14:15:25 +01:00
# Make sure that apexd is started in the default namespace
enter_default_mount_ns
# /data/apex is now available. Start apexd to scan and activate APEXes.
mkdir /data/apex 0750 root system
mkdir /data/apex/active 0750 root system
mkdir /data/apex/backup 0700 root system
mkdir /data/apex/sessions 0700 root system
mkdir /data/app-staging 0750 system system
Activate system APEXes early Summary: Boot sequence around apexd is changed to make it possible for pre-apexd processes to use libraries from APEXes. They no longer need to wait for the apexd to finish activating APEXes, which again can be done only after /data/ is mounted. This improves overall boot performance. Detail: This change fixes the problem that processes that are started before apexd (so called pre-apexd processes) can't access libraries that are provided only by the APEXes but are not found in the system partition (e.g. libdexfile_external.so, etc.). Main idea is to activate system APEXes (/system/apex/*.apex) before /data is mounted and then activate the updated APEXes (/data/apex/*.apex) after the /data mount. Detailed boot sequence is as follows. 1) init prepares the bootstrap and default mount namespaces. A tmpfs is mounted on /apex and the propagation type of the mountpoint is set to private. 2) before any other process is started, apexd is started in bootstrap mode. When executed in the mode, apexd only activates APEXes under /system/apex. Note that APEXes activated in this phase are mounted in the bootstrap mount namespace only. 3) other pre-apexd processes are started. They are in the bootstrap mount namespace and thus are provided with the libraries from the system APEXes. 4) /data is mounted. init switches into the default mount namespace and starts apexd as a daemon as usual. 5) apexd scans both /data/apex and /system/apex, and activate latest APEXes from the directories. Note that APEXes activated in this phase are mounted in the default namespaces only and thus are not visible to the pre-apexd processes. Bug: 125549215 Test: m; device boots Change-Id: I21c60d0ebe188fa4f24d6e6861f85ca204843069
2019-02-22 14:15:25 +01:00
start apexd
# Avoid predictable entropy pool. Carry over entropy from previous boot.
copy /data/system/entropy.dat /dev/urandom
# create basic filesystem structure
mkdir /data/misc 01771 system misc
mkdir /data/misc/recovery 0770 system log
copy /data/misc/recovery/ro.build.fingerprint /data/misc/recovery/ro.build.fingerprint.1
chmod 0440 /data/misc/recovery/ro.build.fingerprint.1
chown system log /data/misc/recovery/ro.build.fingerprint.1
write /data/misc/recovery/ro.build.fingerprint ${ro.build.fingerprint}
chmod 0440 /data/misc/recovery/ro.build.fingerprint
chown system log /data/misc/recovery/ro.build.fingerprint
mkdir /data/misc/recovery/proc 0770 system log
copy /data/misc/recovery/proc/version /data/misc/recovery/proc/version.1
chmod 0440 /data/misc/recovery/proc/version.1
chown system log /data/misc/recovery/proc/version.1
copy /proc/version /data/misc/recovery/proc/version
chmod 0440 /data/misc/recovery/proc/version
chown system log /data/misc/recovery/proc/version
mkdir /data/misc/bluedroid 02770 bluetooth bluetooth
# Fix the access permissions and group ownership for 'bt_config.conf'
chmod 0660 /data/misc/bluedroid/bt_config.conf
chown bluetooth bluetooth /data/misc/bluedroid/bt_config.conf
mkdir /data/misc/bluetooth 0770 bluetooth bluetooth
mkdir /data/misc/bluetooth/logs 0770 bluetooth bluetooth
mkdir /data/misc/keystore 0700 keystore keystore
mkdir /data/misc/gatekeeper 0700 system system
mkdir /data/misc/keychain 0771 system system
mkdir /data/misc/net 0750 root shell
mkdir /data/misc/radio 0770 system radio
mkdir /data/misc/sms 0770 system radio
mkdir /data/misc/carrierid 0770 system radio
mkdir /data/misc/apns 0770 system radio
mkdir /data/misc/zoneinfo 0775 system system
mkdir /data/misc/network_watchlist 0774 system system
mkdir /data/misc/textclassifier 0771 system system
mkdir /data/misc/vpn 0770 system vpn
mkdir /data/misc/shared_relro 0771 shared_relro shared_relro
mkdir /data/misc/systemkeys 0700 system system
mkdir /data/misc/wifi 0770 wifi wifi
mkdir /data/misc/wifi/sockets 0770 wifi wifi
mkdir /data/misc/wifi/wpa_supplicant 0770 wifi wifi
mkdir /data/misc/ethernet 0770 system system
mkdir /data/misc/dhcp 0770 dhcp dhcp
mkdir /data/misc/user 0771 root root
mkdir /data/misc/perfprofd 0775 root root
# give system access to wpa_supplicant.conf for backup and restore
chmod 0660 /data/misc/wifi/wpa_supplicant.conf
mkdir /data/local 0751 root root
mkdir /data/misc/media 0700 media media
mkdir /data/misc/audioserver 0700 audioserver audioserver
mkdir /data/misc/cameraserver 0700 cameraserver cameraserver
mkdir /data/misc/vold 0700 root root
mkdir /data/misc/boottrace 0771 system shell
mkdir /data/misc/update_engine 0700 root root
mkdir /data/misc/update_engine_log 02750 root log
mkdir /data/misc/trace 0700 root root
# create location to store surface and window trace files
mkdir /data/misc/wmtrace 0700 system system
# profile file layout
mkdir /data/misc/profiles 0771 system system
mkdir /data/misc/profiles/cur 0771 system system
mkdir /data/misc/profiles/ref 0771 system system
mkdir /data/misc/profman 0770 system shell
mkdir /data/misc/gcov 0770 root root
mkdir /data/preloads 0775 system system
mkdir /data/vendor 0771 root root
mkdir /data/vendor_ce 0771 root root
mkdir /data/vendor_de 0771 root root
mkdir /data/vendor/hardware 0771 root root
# For security reasons, /data/local/tmp should always be empty.
# Do not place files or directories in /data/local/tmp
mkdir /data/local/tmp 0771 shell shell
mkdir /data/local/traces 0777 shell shell
mkdir /data/data 0771 system system
mkdir /data/app-private 0771 system system
mkdir /data/app-ephemeral 0771 system system
mkdir /data/app-asec 0700 root root
mkdir /data/app-lib 0771 system system
mkdir /data/app 0771 system system
mkdir /data/property 0700 root root
mkdir /data/tombstones 0771 system system
mkdir /data/vendor/tombstones 0771 root root
mkdir /data/vendor/tombstones/wifi 0771 wifi wifi
# create dalvik-cache, so as to enforce our permissions
mkdir /data/dalvik-cache 0771 root root
# create the A/B OTA directory, so as to enforce our permissions
mkdir /data/ota 0771 root root
# create the OTA package directory. It will be accessed by GmsCore (cache
# group), update_engine and update_verifier.
mkdir /data/ota_package 0770 system cache
# create resource-cache and double-check the perms
mkdir /data/resource-cache 0771 system system
chown system system /data/resource-cache
chmod 0771 /data/resource-cache
# create the lost+found directories, so as to enforce our permissions
mkdir /data/lost+found 0770 root root
# create directory for DRM plug-ins - give drm the read/write access to
# the following directory.
mkdir /data/drm 0770 drm drm
# create directory for MediaDrm plug-ins - give drm the read/write access to
# the following directory.
mkdir /data/mediadrm 0770 mediadrm mediadrm
mkdir /data/anr 0775 system system
# NFC: create data/nfc for nv storage
mkdir /data/nfc 0770 nfc nfc
mkdir /data/nfc/param 0770 nfc nfc
# Create all remaining /data root dirs so that they are made through init
# and get proper encryption policy installed
mkdir /data/backup 0700 system system
mkdir /data/ss 0700 system system
mkdir /data/system 0775 system system
mkdir /data/system/dropbox 0700 system system
mkdir /data/system/heapdump 0700 system system
mkdir /data/system/users 0775 system system
mkdir /data/system_de 0770 system system
mkdir /data/system_ce 0770 system system
mkdir /data/misc_de 01771 system misc
mkdir /data/misc_ce 01771 system misc
mkdir /data/user 0711 system system
mkdir /data/user_de 0711 system system
symlink /data/data /data/user/0
mkdir /data/media 0770 media_rw media_rw
mkdir /data/media/obb 0770 media_rw media_rw
mkdir /data/cache 0770 system cache
mkdir /data/cache/recovery 0770 system cache
mkdir /data/cache/backup_stage 0700 system system
mkdir /data/cache/backup 0700 system system
Activate system APEXes early Summary: Boot sequence around apexd is changed to make it possible for pre-apexd processes to use libraries from APEXes. They no longer need to wait for the apexd to finish activating APEXes, which again can be done only after /data/ is mounted. This improves overall boot performance. Detail: This change fixes the problem that processes that are started before apexd (so called pre-apexd processes) can't access libraries that are provided only by the APEXes but are not found in the system partition (e.g. libdexfile_external.so, etc.). Main idea is to activate system APEXes (/system/apex/*.apex) before /data is mounted and then activate the updated APEXes (/data/apex/*.apex) after the /data mount. Detailed boot sequence is as follows. 1) init prepares the bootstrap and default mount namespaces. A tmpfs is mounted on /apex and the propagation type of the mountpoint is set to private. 2) before any other process is started, apexd is started in bootstrap mode. When executed in the mode, apexd only activates APEXes under /system/apex. Note that APEXes activated in this phase are mounted in the bootstrap mount namespace only. 3) other pre-apexd processes are started. They are in the bootstrap mount namespace and thus are provided with the libraries from the system APEXes. 4) /data is mounted. init switches into the default mount namespace and starts apexd as a daemon as usual. 5) apexd scans both /data/apex and /system/apex, and activate latest APEXes from the directories. Note that APEXes activated in this phase are mounted in the default namespaces only and thus are not visible to the pre-apexd processes. Bug: 125549215 Test: m; device boots Change-Id: I21c60d0ebe188fa4f24d6e6861f85ca204843069
2019-02-22 14:15:25 +01:00
# Wait for apexd to finish activating APEXes before starting more processes.
wait_for_prop apexd.status ready
parse_apex_configs
init_user0
# Set SELinux security contexts on upgrade or policy update.
restorecon --recursive --skip-ce /data
# Check any timezone data in /data is newer than the copy in the time zone data
# module, delete if not.
exec - system system -- /system/bin/tzdatacheck /apex/com.android.tzdata/etc/tz /data/misc/zoneinfo
# If there is no post-fs-data action in the init.<device>.rc file, you
# must uncomment this line, otherwise encrypted filesystems
# won't work.
# Set indication (checked by vold) that we have finished this action
#setprop vold.post_fs_data_done 1
# sys.memfd_use set to false by default, which keeps it disabled
# until it is confirmed that apps and vendor processes don't make
# IOCTLs on ashmem fds any more.
setprop sys.use_memfd false
# Set fscklog permission
chown root system /dev/fscklogs/log
chmod 0770 /dev/fscklogs/log
# It is recommended to put unnecessary data/ initialization from post-fs-data
# to start-zygote in device's init.rc to unblock zygote start.
on zygote-start && property:ro.crypto.state=unencrypted
# A/B update verifier that marks a successful boot.
exec_start update_verifier_nonencrypted
start netd
start zygote
start zygote_secondary
on zygote-start && property:ro.crypto.state=unsupported
# A/B update verifier that marks a successful boot.
exec_start update_verifier_nonencrypted
start netd
start zygote
start zygote_secondary
on zygote-start && property:ro.crypto.state=encrypted && property:ro.crypto.type=file
# A/B update verifier that marks a successful boot.
exec_start update_verifier_nonencrypted
start netd
start zygote
start zygote_secondary
on boot
# basic network init
ifup lo
hostname localhost
domainname localdomain
# IPsec SA default expiration length
write /proc/sys/net/core/xfrm_acq_expires 3600
# Memory management. Basic kernel parameters, and allow the high
# level system server to be able to adjust the kernel OOM driver
# parameters to match how it is managing things.
write /proc/sys/vm/overcommit_memory 1
write /proc/sys/vm/min_free_order_shift 4
chown root system /sys/module/lowmemorykiller/parameters/adj
chmod 0664 /sys/module/lowmemorykiller/parameters/adj
chown root system /sys/module/lowmemorykiller/parameters/minfree
chmod 0664 /sys/module/lowmemorykiller/parameters/minfree
# Tweak background writeout
write /proc/sys/vm/dirty_expire_centisecs 200
write /proc/sys/vm/dirty_background_ratio 5
# F2FS tuning. Set cp_interval larger than dirty_expire_centisecs
# to avoid power consumption when system becomes mostly idle. Be careful
# to make it too large, since it may bring userdata loss, if they
# are not aware of using fsync()/sync() to prepare sudden power-cut.
write /sys/fs/f2fs/${dev.mnt.blk.data}/cp_interval 200
# Permissions for System Server and daemons.
chown radio system /sys/android_power/state
chown radio system /sys/android_power/request_state
chown radio system /sys/android_power/acquire_full_wake_lock
chown radio system /sys/android_power/acquire_partial_wake_lock
chown radio system /sys/android_power/release_wake_lock
chown system system /sys/power/autosleep
chown radio wakelock /sys/power/wake_lock
chown radio wakelock /sys/power/wake_unlock
chmod 0660 /sys/power/wake_lock
chmod 0660 /sys/power/wake_unlock
chown system system /sys/devices/system/cpu/cpufreq/interactive/timer_rate
chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/timer_rate
chown system system /sys/devices/system/cpu/cpufreq/interactive/timer_slack
chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/timer_slack
chown system system /sys/devices/system/cpu/cpufreq/interactive/min_sample_time
chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/min_sample_time
chown system system /sys/devices/system/cpu/cpufreq/interactive/hispeed_freq
chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/hispeed_freq
chown system system /sys/devices/system/cpu/cpufreq/interactive/target_loads
chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/target_loads
chown system system /sys/devices/system/cpu/cpufreq/interactive/go_hispeed_load
chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/go_hispeed_load
chown system system /sys/devices/system/cpu/cpufreq/interactive/above_hispeed_delay
chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/above_hispeed_delay
chown system system /sys/devices/system/cpu/cpufreq/interactive/boost
chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/boost
chown system system /sys/devices/system/cpu/cpufreq/interactive/boostpulse
chown system system /sys/devices/system/cpu/cpufreq/interactive/input_boost
chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/input_boost
chown system system /sys/devices/system/cpu/cpufreq/interactive/boostpulse_duration
chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/boostpulse_duration
chown system system /sys/devices/system/cpu/cpufreq/interactive/io_is_busy
chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/io_is_busy
# Assume SMP uses shared cpufreq policy for all CPUs
chown system system /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq
chmod 0660 /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq
chown system system /sys/class/leds/vibrator/trigger
chown system system /sys/class/leds/vibrator/activate
chown system system /sys/class/leds/vibrator/brightness
chown system system /sys/class/leds/vibrator/duration
chown system system /sys/class/leds/vibrator/state
chown system system /sys/class/timed_output/vibrator/enable
chown system system /sys/class/leds/keyboard-backlight/brightness
chown system system /sys/class/leds/lcd-backlight/brightness
chown system system /sys/class/leds/button-backlight/brightness
chown system system /sys/class/leds/jogball-backlight/brightness
chown system system /sys/class/leds/red/brightness
chown system system /sys/class/leds/green/brightness
chown system system /sys/class/leds/blue/brightness
chown system system /sys/class/leds/red/device/grpfreq
chown system system /sys/class/leds/red/device/grppwm
chown system system /sys/class/leds/red/device/blink
chown system system /sys/module/sco/parameters/disable_esco
chown system system /sys/kernel/ipv4/tcp_wmem_min
chown system system /sys/kernel/ipv4/tcp_wmem_def
chown system system /sys/kernel/ipv4/tcp_wmem_max
chown system system /sys/kernel/ipv4/tcp_rmem_min
chown system system /sys/kernel/ipv4/tcp_rmem_def
chown system system /sys/kernel/ipv4/tcp_rmem_max
chown root radio /proc/cmdline
# Define default initial receive window size in segments.
setprop net.tcp.default_init_rwnd 60
# Start standard binderized HAL daemons
class_start hal
class_start core
on nonencrypted
class_start main
class_start late_start
on property:sys.init_log_level=*
loglevel ${sys.init_log_level}
on charger
class_start charger
on property:vold.decrypt=trigger_load_persist_props
load_persist_props
start logd
start logd-reinit
on property:vold.decrypt=trigger_post_fs_data
trigger post-fs-data
trigger zygote-start
on property:vold.decrypt=trigger_restart_min_framework
# A/B update verifier that marks a successful boot.
exec_start update_verifier
class_start main
on property:vold.decrypt=trigger_restart_framework
# A/B update verifier that marks a successful boot.
exec_start update_verifier
Support for stopping/starting post-data-mount class subsets. On devices that use FDE and APEX at the same time, we need to bring up a minimal framework to be able to mount the /data partition. During this period, a tmpfs /data filesystem is created, which doesn't contain any of the updated APEXEs. As a consequence, all those processes will be using the APEXes from the /system partition. This is obviously not desired, as APEXes in /system may be old and/or contain security issues. Additionally, it would create a difference between FBE and FDE devices at runtime. Ideally, we restart all processes that have started after we created the tmpfs /data. We can't (re)start based on class names alone, because some classes (eg 'hal') contain services that are required to start apexd itself and that shouldn't be killed (eg the graphics HAL). To address this, keep track of which processes are started after /data is mounted, with a new 'mark_post_data' keyword. Additionally, create 'class_reset_post_data', which resets all services in the class that were created after the initial /data mount, and 'class_start_post_data', which starts all services in the class that were started after /data was mounted. On a device with FBE, these keywords wouldn't be used; on a device with FDE, we'd use them to bring down the right processes after the user has entered the correct secret, and restart them. Bug: 118485723 Test: manually verified process list Change-Id: I16adb776dacf1dd1feeaff9e60639b99899905eb
2019-04-23 16:26:01 +02:00
class_start_post_data hal
class_start_post_data core
class_start main
class_start late_start
setprop service.bootanim.exit 0
start bootanim
on property:vold.decrypt=trigger_shutdown_framework
class_reset late_start
class_reset main
Support for stopping/starting post-data-mount class subsets. On devices that use FDE and APEX at the same time, we need to bring up a minimal framework to be able to mount the /data partition. During this period, a tmpfs /data filesystem is created, which doesn't contain any of the updated APEXEs. As a consequence, all those processes will be using the APEXes from the /system partition. This is obviously not desired, as APEXes in /system may be old and/or contain security issues. Additionally, it would create a difference between FBE and FDE devices at runtime. Ideally, we restart all processes that have started after we created the tmpfs /data. We can't (re)start based on class names alone, because some classes (eg 'hal') contain services that are required to start apexd itself and that shouldn't be killed (eg the graphics HAL). To address this, keep track of which processes are started after /data is mounted, with a new 'mark_post_data' keyword. Additionally, create 'class_reset_post_data', which resets all services in the class that were created after the initial /data mount, and 'class_start_post_data', which starts all services in the class that were started after /data was mounted. On a device with FBE, these keywords wouldn't be used; on a device with FDE, we'd use them to bring down the right processes after the user has entered the correct secret, and restart them. Bug: 118485723 Test: manually verified process list Change-Id: I16adb776dacf1dd1feeaff9e60639b99899905eb
2019-04-23 16:26:01 +02:00
class_reset_post_data core
class_reset_post_data hal
on property:sys.boot_completed=1
bootchart stop
# system server cannot write to /proc/sys files,
# and chown/chmod does not work for /proc/sys/ entries.
# So proxy writes through init.
on property:sys.sysctl.extra_free_kbytes=*
write /proc/sys/vm/extra_free_kbytes ${sys.sysctl.extra_free_kbytes}
# "tcp_default_init_rwnd" Is too long!
on property:sys.sysctl.tcp_def_init_rwnd=*
write /proc/sys/net/ipv4/tcp_default_init_rwnd ${sys.sysctl.tcp_def_init_rwnd}
on property:security.perf_harden=0
write /proc/sys/kernel/perf_event_paranoid 1
write /proc/sys/kernel/perf_event_max_sample_rate ${debug.perf_event_max_sample_rate:-100000}
write /proc/sys/kernel/perf_cpu_time_max_percent ${debug.perf_cpu_time_max_percent:-25}
write /proc/sys/kernel/perf_event_mlock_kb ${debug.perf_event_mlock_kb:-516}
on property:security.perf_harden=1
write /proc/sys/kernel/perf_event_paranoid 3
# on shutdown
# In device's init.rc, this trigger can be used to do device-specific actions
# before shutdown. e.g disable watchdog and mask error handling
## Daemon processes to be run by init.
##
service ueventd /system/bin/ueventd
class core
critical
seclabel u:r:ueventd:s0
shutdown critical
service console /system/bin/sh
class core
console
disabled
user shell
group shell log readproc
seclabel u:r:shell:s0
setenv HOSTNAME console
on property:ro.debuggable=1
# Give writes to anyone for the trace folder on debug builds.
# The folder is used to store method traces.
chmod 0773 /data/misc/trace
# Give reads to anyone for the window trace folder on debug builds.
chmod 0775 /data/misc/wmtrace
start console
service flash_recovery /system/bin/install-recovery.sh
class main
oneshot