platform_system_core/lmkd/lmkd.c

1525 lines
41 KiB
C
Raw Normal View History

/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "lowmemorykiller"
#include <errno.h>
#include <inttypes.h>
#include <sched.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <sys/cdefs.h>
#include <sys/epoll.h>
#include <sys/eventfd.h>
#include <sys/mman.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/sysinfo.h>
#include <unistd.h>
#include <cutils/properties.h>
#include <cutils/sockets.h>
#include <lmkd.h>
#include <log/log.h>
#ifdef LMKD_LOG_STATS
#include <statslog.h>
#endif
/*
* Define LMKD_TRACE_KILLS to record lmkd kills in kernel traces
* to profile and correlate with OOM kills
*/
#ifdef LMKD_TRACE_KILLS
#define ATRACE_TAG ATRACE_TAG_ALWAYS
#include <cutils/trace.h>
#define TRACE_KILL_START(pid) ATRACE_INT(__FUNCTION__, pid);
#define TRACE_KILL_END() ATRACE_INT(__FUNCTION__, 0);
#else /* LMKD_TRACE_KILLS */
#define TRACE_KILL_START(pid) ((void)(pid))
#define TRACE_KILL_END() ((void)0)
#endif /* LMKD_TRACE_KILLS */
#ifndef __unused
#define __unused __attribute__((__unused__))
#endif
#define MEMCG_SYSFS_PATH "/dev/memcg/"
#define MEMCG_MEMORY_USAGE "/dev/memcg/memory.usage_in_bytes"
#define MEMCG_MEMORYSW_USAGE "/dev/memcg/memory.memsw.usage_in_bytes"
#define ZONEINFO_PATH "/proc/zoneinfo"
#define MEMINFO_PATH "/proc/meminfo"
#define LINE_MAX 128
#define INKERNEL_MINFREE_PATH "/sys/module/lowmemorykiller/parameters/minfree"
#define INKERNEL_ADJ_PATH "/sys/module/lowmemorykiller/parameters/adj"
#define ARRAY_SIZE(x) (sizeof(x) / sizeof(*(x)))
#define EIGHT_MEGA (1 << 23)
#define STRINGIFY(x) STRINGIFY_INTERNAL(x)
#define STRINGIFY_INTERNAL(x) #x
/* default to old in-kernel interface if no memory pressure events */
static int use_inkernel_interface = 1;
static bool has_inkernel_module;
/* memory pressure levels */
enum vmpressure_level {
VMPRESS_LEVEL_LOW = 0,
VMPRESS_LEVEL_MEDIUM,
VMPRESS_LEVEL_CRITICAL,
VMPRESS_LEVEL_COUNT
};
static const char *level_name[] = {
"low",
"medium",
"critical"
};
struct mem_size {
int free_mem;
int free_swap;
};
struct {
int min_free; /* recorded but not used yet */
int max_free;
} low_pressure_mem = { -1, -1 };
static int level_oomadj[VMPRESS_LEVEL_COUNT];
static int mpevfd[VMPRESS_LEVEL_COUNT] = { -1, -1, -1 };
static bool debug_process_killing;
static bool enable_pressure_upgrade;
static int64_t upgrade_pressure;
static int64_t downgrade_pressure;
static bool low_ram_device;
static bool kill_heaviest_task;
static unsigned long kill_timeout_ms;
/* data required to handle events */
struct event_handler_info {
int data;
void (*handler)(int data, uint32_t events);
};
/* data required to handle socket events */
struct sock_event_handler_info {
int sock;
struct event_handler_info handler_info;
};
/* max supported number of data connections */
#define MAX_DATA_CONN 2
/* socket event handler data */
static struct sock_event_handler_info ctrl_sock;
static struct sock_event_handler_info data_sock[MAX_DATA_CONN];
/* vmpressure event handler data */
static struct event_handler_info vmpressure_hinfo[VMPRESS_LEVEL_COUNT];
/* 3 memory pressure levels, 1 ctrl listen socket, 2 ctrl data socket */
#define MAX_EPOLL_EVENTS (1 + MAX_DATA_CONN + VMPRESS_LEVEL_COUNT)
static int epollfd;
static int maxevents;
/* OOM score values used by both kernel and framework */
#define OOM_SCORE_ADJ_MIN (-1000)
#define OOM_SCORE_ADJ_MAX 1000
static int lowmem_adj[MAX_TARGETS];
static int lowmem_minfree[MAX_TARGETS];
static int lowmem_targets_size;
/* Fields to parse in /proc/zoneinfo */
enum zoneinfo_field {
ZI_NR_FREE_PAGES = 0,
ZI_NR_FILE_PAGES,
ZI_NR_SHMEM,
ZI_NR_UNEVICTABLE,
ZI_WORKINGSET_REFAULT,
ZI_HIGH,
ZI_FIELD_COUNT
};
static const char* const zoneinfo_field_names[ZI_FIELD_COUNT] = {
"nr_free_pages",
"nr_file_pages",
"nr_shmem",
"nr_unevictable",
"workingset_refault",
"high",
};
union zoneinfo {
struct {
int64_t nr_free_pages;
int64_t nr_file_pages;
int64_t nr_shmem;
int64_t nr_unevictable;
int64_t workingset_refault;
int64_t high;
/* fields below are calculated rather than read from the file */
int64_t totalreserve_pages;
} field;
int64_t arr[ZI_FIELD_COUNT];
};
/* Fields to parse in /proc/meminfo */
enum meminfo_field {
MI_NR_FREE_PAGES = 0,
MI_CACHED,
MI_SWAP_CACHED,
MI_BUFFERS,
MI_SHMEM,
MI_UNEVICTABLE,
MI_FREE_SWAP,
MI_DIRTY,
MI_FIELD_COUNT
};
static const char* const meminfo_field_names[MI_FIELD_COUNT] = {
"MemFree:",
"Cached:",
"SwapCached:",
"Buffers:",
"Shmem:",
"Unevictable:",
"SwapFree:",
"Dirty:",
};
union meminfo {
struct {
int64_t nr_free_pages;
int64_t cached;
int64_t swap_cached;
int64_t buffers;
int64_t shmem;
int64_t unevictable;
int64_t free_swap;
int64_t dirty;
/* fields below are calculated rather than read from the file */
int64_t nr_file_pages;
} field;
int64_t arr[MI_FIELD_COUNT];
};
enum field_match_result {
NO_MATCH,
PARSE_FAIL,
PARSE_SUCCESS
};
struct sysmeminfo {
int nr_free_pages;
int nr_file_pages;
int nr_shmem;
int totalreserve_pages;
};
struct adjslot_list {
struct adjslot_list *next;
struct adjslot_list *prev;
};
struct proc {
struct adjslot_list asl;
int pid;
uid_t uid;
int oomadj;
struct proc *pidhash_next;
};
struct reread_data {
const char* const filename;
int fd;
};
#ifdef LMKD_LOG_STATS
static bool enable_stats_log;
static android_log_context log_ctx;
#endif
#define PIDHASH_SZ 1024
static struct proc *pidhash[PIDHASH_SZ];
#define pid_hashfn(x) ((((x) >> 8) ^ (x)) & (PIDHASH_SZ - 1))
#define ADJTOSLOT(adj) ((adj) + -OOM_SCORE_ADJ_MIN)
static struct adjslot_list procadjslot_list[ADJTOSLOT(OOM_SCORE_ADJ_MAX) + 1];
/* PAGE_SIZE / 1024 */
static long page_k;
static bool parse_int64(const char* str, int64_t* ret) {
char* endptr;
long long val = strtoll(str, &endptr, 10);
if (str == endptr || val > INT64_MAX) {
return false;
}
*ret = (int64_t)val;
return true;
}
static enum field_match_result match_field(const char* cp, const char* ap,
const char* const field_names[],
int field_count, int64_t* field,
int *field_idx) {
int64_t val;
int i;
for (i = 0; i < field_count; i++) {
if (!strcmp(cp, field_names[i])) {
*field_idx = i;
return parse_int64(ap, field) ? PARSE_SUCCESS : PARSE_FAIL;
}
}
return NO_MATCH;
}
/*
* Read file content from the beginning up to max_len bytes or EOF
* whichever happens first.
*/
static ssize_t read_all(int fd, char *buf, size_t max_len)
{
ssize_t ret = 0;
off_t offset = 0;
while (max_len > 0) {
ssize_t r = TEMP_FAILURE_RETRY(pread(fd, buf, max_len, offset));
if (r == 0) {
break;
}
if (r == -1) {
return -1;
}
ret += r;
buf += r;
offset += r;
max_len -= r;
}
return ret;
}
/*
* Read a new or already opened file from the beginning.
* If the file has not been opened yet data->fd should be set to -1.
* To be used with files which are read often and possibly during high
* memory pressure to minimize file opening which by itself requires kernel
* memory allocation and might result in a stall on memory stressed system.
*/
static int reread_file(struct reread_data *data, char *buf, size_t buf_size) {
ssize_t size;
if (data->fd == -1) {
data->fd = open(data->filename, O_RDONLY | O_CLOEXEC);
if (data->fd == -1) {
ALOGE("%s open: %s", data->filename, strerror(errno));
return -1;
}
}
size = read_all(data->fd, buf, buf_size - 1);
if (size < 0) {
ALOGE("%s read: %s", data->filename, strerror(errno));
close(data->fd);
data->fd = -1;
return -1;
}
ALOG_ASSERT((size_t)size < buf_size - 1, data->filename " too large");
buf[size] = 0;
return 0;
}
static struct proc *pid_lookup(int pid) {
struct proc *procp;
for (procp = pidhash[pid_hashfn(pid)]; procp && procp->pid != pid;
procp = procp->pidhash_next)
;
return procp;
}
static void adjslot_insert(struct adjslot_list *head, struct adjslot_list *new)
{
struct adjslot_list *next = head->next;
new->prev = head;
new->next = next;
next->prev = new;
head->next = new;
}
static void adjslot_remove(struct adjslot_list *old)
{
struct adjslot_list *prev = old->prev;
struct adjslot_list *next = old->next;
next->prev = prev;
prev->next = next;
}
static struct adjslot_list *adjslot_tail(struct adjslot_list *head) {
struct adjslot_list *asl = head->prev;
return asl == head ? NULL : asl;
}
static void proc_slot(struct proc *procp) {
int adjslot = ADJTOSLOT(procp->oomadj);
adjslot_insert(&procadjslot_list[adjslot], &procp->asl);
}
static void proc_unslot(struct proc *procp) {
adjslot_remove(&procp->asl);
}
static void proc_insert(struct proc *procp) {
int hval = pid_hashfn(procp->pid);
procp->pidhash_next = pidhash[hval];
pidhash[hval] = procp;
proc_slot(procp);
}
static int pid_remove(int pid) {
int hval = pid_hashfn(pid);
struct proc *procp;
struct proc *prevp;
for (procp = pidhash[hval], prevp = NULL; procp && procp->pid != pid;
procp = procp->pidhash_next)
prevp = procp;
if (!procp)
return -1;
if (!prevp)
pidhash[hval] = procp->pidhash_next;
else
prevp->pidhash_next = procp->pidhash_next;
proc_unslot(procp);
free(procp);
return 0;
}
static void writefilestring(const char *path, char *s) {
int fd = open(path, O_WRONLY | O_CLOEXEC);
int len = strlen(s);
int ret;
if (fd < 0) {
ALOGE("Error opening %s; errno=%d", path, errno);
return;
}
ret = write(fd, s, len);
if (ret < 0) {
ALOGE("Error writing %s; errno=%d", path, errno);
} else if (ret < len) {
ALOGE("Short write on %s; length=%d", path, ret);
}
close(fd);
}
static void cmd_procprio(LMKD_CTRL_PACKET packet) {
struct proc *procp;
char path[80];
char val[20];
int soft_limit_mult;
struct lmk_procprio params;
lmkd_pack_get_procprio(packet, &params);
if (params.oomadj < OOM_SCORE_ADJ_MIN ||
params.oomadj > OOM_SCORE_ADJ_MAX) {
ALOGE("Invalid PROCPRIO oomadj argument %d", params.oomadj);
return;
}
snprintf(path, sizeof(path), "/proc/%d/oom_score_adj", params.pid);
snprintf(val, sizeof(val), "%d", params.oomadj);
writefilestring(path, val);
if (use_inkernel_interface)
return;
if (params.oomadj >= 900) {
soft_limit_mult = 0;
} else if (params.oomadj >= 800) {
soft_limit_mult = 0;
} else if (params.oomadj >= 700) {
soft_limit_mult = 0;
} else if (params.oomadj >= 600) {
// Launcher should be perceptible, don't kill it.
params.oomadj = 200;
soft_limit_mult = 1;
} else if (params.oomadj >= 500) {
soft_limit_mult = 0;
} else if (params.oomadj >= 400) {
soft_limit_mult = 0;
} else if (params.oomadj >= 300) {
soft_limit_mult = 1;
} else if (params.oomadj >= 200) {
soft_limit_mult = 2;
} else if (params.oomadj >= 100) {
soft_limit_mult = 10;
} else if (params.oomadj >= 0) {
soft_limit_mult = 20;
} else {
// Persistent processes will have a large
// soft limit 512MB.
soft_limit_mult = 64;
}
snprintf(path, sizeof(path),
"/dev/memcg/apps/uid_%d/pid_%d/memory.soft_limit_in_bytes",
params.uid, params.pid);
snprintf(val, sizeof(val), "%d", soft_limit_mult * EIGHT_MEGA);
writefilestring(path, val);
procp = pid_lookup(params.pid);
if (!procp) {
procp = malloc(sizeof(struct proc));
if (!procp) {
// Oh, the irony. May need to rebuild our state.
return;
}
procp->pid = params.pid;
procp->uid = params.uid;
procp->oomadj = params.oomadj;
proc_insert(procp);
} else {
proc_unslot(procp);
procp->oomadj = params.oomadj;
proc_slot(procp);
}
}
static void cmd_procremove(LMKD_CTRL_PACKET packet) {
struct lmk_procremove params;
if (use_inkernel_interface)
return;
lmkd_pack_get_procremove(packet, &params);
pid_remove(params.pid);
}
static void cmd_target(int ntargets, LMKD_CTRL_PACKET packet) {
int i;
struct lmk_target target;
if (ntargets > (int)ARRAY_SIZE(lowmem_adj))
return;
for (i = 0; i < ntargets; i++) {
lmkd_pack_get_target(packet, i, &target);
lowmem_minfree[i] = target.minfree;
lowmem_adj[i] = target.oom_adj_score;
}
lowmem_targets_size = ntargets;
if (has_inkernel_module) {
char minfreestr[128];
char killpriostr[128];
minfreestr[0] = '\0';
killpriostr[0] = '\0';
for (i = 0; i < lowmem_targets_size; i++) {
char val[40];
if (i) {
strlcat(minfreestr, ",", sizeof(minfreestr));
strlcat(killpriostr, ",", sizeof(killpriostr));
}
snprintf(val, sizeof(val), "%d", use_inkernel_interface ? lowmem_minfree[i] : 0);
strlcat(minfreestr, val, sizeof(minfreestr));
snprintf(val, sizeof(val), "%d", use_inkernel_interface ? lowmem_adj[i] : 0);
strlcat(killpriostr, val, sizeof(killpriostr));
}
writefilestring(INKERNEL_MINFREE_PATH, minfreestr);
writefilestring(INKERNEL_ADJ_PATH, killpriostr);
}
}
static void ctrl_data_close(int dsock_idx) {
struct epoll_event epev;
ALOGI("closing lmkd data connection");
if (epoll_ctl(epollfd, EPOLL_CTL_DEL, data_sock[dsock_idx].sock, &epev) == -1) {
// Log a warning and keep going
ALOGW("epoll_ctl for data connection socket failed; errno=%d", errno);
}
maxevents--;
close(data_sock[dsock_idx].sock);
data_sock[dsock_idx].sock = -1;
}
static int ctrl_data_read(int dsock_idx, char *buf, size_t bufsz) {
int ret = 0;
ret = TEMP_FAILURE_RETRY(read(data_sock[dsock_idx].sock, buf, bufsz));
if (ret == -1) {
ALOGE("control data socket read failed; errno=%d", errno);
} else if (ret == 0) {
ALOGE("Got EOF on control data socket");
ret = -1;
}
return ret;
}
static void ctrl_command_handler(int dsock_idx) {
LMKD_CTRL_PACKET packet;
int len;
enum lmk_cmd cmd;
int nargs;
int targets;
len = ctrl_data_read(dsock_idx, (char *)packet, CTRL_PACKET_MAX_SIZE);
if (len <= 0)
return;
if (len < (int)sizeof(int)) {
ALOGE("Wrong control socket read length len=%d", len);
return;
}
cmd = lmkd_pack_get_cmd(packet);
nargs = len / sizeof(int) - 1;
if (nargs < 0)
goto wronglen;
switch(cmd) {
case LMK_TARGET:
targets = nargs / 2;
if (nargs & 0x1 || targets > (int)ARRAY_SIZE(lowmem_adj))
goto wronglen;
cmd_target(targets, packet);
break;
case LMK_PROCPRIO:
if (nargs != 3)
goto wronglen;
cmd_procprio(packet);
break;
case LMK_PROCREMOVE:
if (nargs != 1)
goto wronglen;
cmd_procremove(packet);
break;
default:
ALOGE("Received unknown command code %d", cmd);
return;
}
return;
wronglen:
ALOGE("Wrong control socket read length cmd=%d len=%d", cmd, len);
}
static void ctrl_data_handler(int data, uint32_t events) {
if (events & EPOLLIN) {
ctrl_command_handler(data);
}
}
static int get_free_dsock() {
for (int i = 0; i < MAX_DATA_CONN; i++) {
if (data_sock[i].sock < 0) {
return i;
}
}
return -1;
}
static void ctrl_connect_handler(int data __unused, uint32_t events __unused) {
struct epoll_event epev;
int free_dscock_idx = get_free_dsock();
if (free_dscock_idx < 0) {
/*
* Number of data connections exceeded max supported. This should not
* happen but if it does we drop all existing connections and accept
* the new one. This prevents inactive connections from monopolizing
* data socket and if we drop ActivityManager connection it will
* immediately reconnect.
*/
for (int i = 0; i < MAX_DATA_CONN; i++) {
ctrl_data_close(i);
}
free_dscock_idx = 0;
}
data_sock[free_dscock_idx].sock = accept(ctrl_sock.sock, NULL, NULL);
if (data_sock[free_dscock_idx].sock < 0) {
ALOGE("lmkd control socket accept failed; errno=%d", errno);
return;
}
ALOGI("lmkd data connection established");
/* use data to store data connection idx */
data_sock[free_dscock_idx].handler_info.data = free_dscock_idx;
data_sock[free_dscock_idx].handler_info.handler = ctrl_data_handler;
epev.events = EPOLLIN;
epev.data.ptr = (void *)&(data_sock[free_dscock_idx].handler_info);
if (epoll_ctl(epollfd, EPOLL_CTL_ADD, data_sock[free_dscock_idx].sock, &epev) == -1) {
ALOGE("epoll_ctl for data connection socket failed; errno=%d", errno);
ctrl_data_close(free_dscock_idx);
return;
}
maxevents++;
}
#ifdef LMKD_LOG_STATS
static void memory_stat_parse_line(char *line, struct memory_stat *mem_st) {
char key[LINE_MAX + 1];
int64_t value;
sscanf(line, "%" STRINGIFY(LINE_MAX) "s %" SCNd64 "", key, &value);
if (strcmp(key, "total_") < 0) {
return;
}
if (!strcmp(key, "total_pgfault"))
mem_st->pgfault = value;
else if (!strcmp(key, "total_pgmajfault"))
mem_st->pgmajfault = value;
else if (!strcmp(key, "total_rss"))
mem_st->rss_in_bytes = value;
else if (!strcmp(key, "total_cache"))
mem_st->cache_in_bytes = value;
else if (!strcmp(key, "total_swap"))
mem_st->swap_in_bytes = value;
}
static int memory_stat_parse(struct memory_stat *mem_st, int pid, uid_t uid) {
FILE *fp;
char buf[PATH_MAX];
snprintf(buf, sizeof(buf), MEMCG_PROCESS_MEMORY_STAT_PATH, uid, pid);
fp = fopen(buf, "r");
if (fp == NULL) {
ALOGE("%s open failed: %s", buf, strerror(errno));
return -1;
}
while (fgets(buf, PAGE_SIZE, fp) != NULL ) {
memory_stat_parse_line(buf, mem_st);
}
fclose(fp);
return 0;
}
#endif
/* /prop/zoneinfo parsing routines */
static int64_t zoneinfo_parse_protection(char *cp) {
int64_t max = 0;
long long zoneval;
char *save_ptr;
for (cp = strtok_r(cp, "(), ", &save_ptr); cp;
cp = strtok_r(NULL, "), ", &save_ptr)) {
zoneval = strtoll(cp, &cp, 0);
if (zoneval > max) {
max = (zoneval > INT64_MAX) ? INT64_MAX : zoneval;
}
}
return max;
}
static bool zoneinfo_parse_line(char *line, union zoneinfo *zi) {
char *cp = line;
char *ap;
char *save_ptr;
int64_t val;
int field_idx;
cp = strtok_r(line, " ", &save_ptr);
if (!cp) {
return true;
}
if (!strcmp(cp, "protection:")) {
ap = strtok_r(NULL, ")", &save_ptr);
} else {
ap = strtok_r(NULL, " ", &save_ptr);
}
if (!ap) {
return true;
}
switch (match_field(cp, ap, zoneinfo_field_names,
ZI_FIELD_COUNT, &val, &field_idx)) {
case (PARSE_SUCCESS):
zi->arr[field_idx] += val;
break;
case (NO_MATCH):
if (!strcmp(cp, "protection:")) {
zi->field.totalreserve_pages +=
zoneinfo_parse_protection(ap);
}
break;
case (PARSE_FAIL):
default:
return false;
}
return true;
}
static int zoneinfo_parse(union zoneinfo *zi) {
static struct reread_data file_data = {
.filename = ZONEINFO_PATH,
.fd = -1,
};
char buf[PAGE_SIZE];
char *save_ptr;
char *line;
memset(zi, 0, sizeof(union zoneinfo));
if (reread_file(&file_data, buf, sizeof(buf)) < 0) {
return -1;
}
for (line = strtok_r(buf, "\n", &save_ptr); line;
line = strtok_r(NULL, "\n", &save_ptr)) {
if (!zoneinfo_parse_line(line, zi)) {
ALOGE("%s parse error", file_data.filename);
return -1;
}
}
zi->field.totalreserve_pages += zi->field.high;
return 0;
}
/* /prop/meminfo parsing routines */
static bool meminfo_parse_line(char *line, union meminfo *mi) {
char *cp = line;
char *ap;
char *save_ptr;
int64_t val;
int field_idx;
enum field_match_result match_res;
cp = strtok_r(line, " ", &save_ptr);
if (!cp) {
return false;
}
ap = strtok_r(NULL, " ", &save_ptr);
if (!ap) {
return false;
}
match_res = match_field(cp, ap, meminfo_field_names, MI_FIELD_COUNT,
&val, &field_idx);
if (match_res == PARSE_SUCCESS) {
mi->arr[field_idx] = val / page_k;
}
return (match_res != PARSE_FAIL);
}
static int meminfo_parse(union meminfo *mi) {
static struct reread_data file_data = {
.filename = MEMINFO_PATH,
.fd = -1,
};
char buf[PAGE_SIZE];
char *save_ptr;
char *line;
memset(mi, 0, sizeof(union meminfo));
if (reread_file(&file_data, buf, sizeof(buf)) < 0) {
return -1;
}
for (line = strtok_r(buf, "\n", &save_ptr); line;
line = strtok_r(NULL, "\n", &save_ptr)) {
if (!meminfo_parse_line(line, mi)) {
ALOGE("%s parse error", file_data.filename);
return -1;
}
}
mi->field.nr_file_pages = mi->field.cached + mi->field.swap_cached +
mi->field.buffers;
return 0;
}
static int get_free_memory(struct mem_size *ms) {
struct sysinfo si;
if (sysinfo(&si) < 0)
return -1;
ms->free_mem = (int)(si.freeram * si.mem_unit / PAGE_SIZE);
ms->free_swap = (int)(si.freeswap * si.mem_unit / PAGE_SIZE);
return 0;
}
static int proc_get_size(int pid) {
char path[PATH_MAX];
char line[LINE_MAX];
int fd;
int rss = 0;
int total;
ssize_t ret;
snprintf(path, PATH_MAX, "/proc/%d/statm", pid);
fd = open(path, O_RDONLY | O_CLOEXEC);
if (fd == -1)
return -1;
ret = read_all(fd, line, sizeof(line) - 1);
if (ret < 0) {
close(fd);
return -1;
}
sscanf(line, "%d %d ", &total, &rss);
close(fd);
return rss;
}
static char *proc_get_name(int pid) {
char path[PATH_MAX];
static char line[LINE_MAX];
int fd;
char *cp;
ssize_t ret;
snprintf(path, PATH_MAX, "/proc/%d/cmdline", pid);
fd = open(path, O_RDONLY | O_CLOEXEC);
if (fd == -1)
return NULL;
ret = read_all(fd, line, sizeof(line) - 1);
close(fd);
if (ret < 0) {
return NULL;
}
cp = strchr(line, ' ');
if (cp)
*cp = '\0';
return line;
}
static struct proc *proc_adj_lru(int oomadj) {
return (struct proc *)adjslot_tail(&procadjslot_list[ADJTOSLOT(oomadj)]);
}
static struct proc *proc_get_heaviest(int oomadj) {
struct adjslot_list *head = &procadjslot_list[ADJTOSLOT(oomadj)];
struct adjslot_list *curr = head->next;
struct proc *maxprocp = NULL;
int maxsize = 0;
while (curr != head) {
int pid = ((struct proc *)curr)->pid;
int tasksize = proc_get_size(pid);
if (tasksize <= 0) {
struct adjslot_list *next = curr->next;
pid_remove(pid);
curr = next;
} else {
if (tasksize > maxsize) {
maxsize = tasksize;
maxprocp = (struct proc *)curr;
}
curr = curr->next;
}
}
return maxprocp;
}
/* Kill one process specified by procp. Returns the size of the process killed */
static int kill_one_process(struct proc* procp, int min_score_adj,
enum vmpressure_level level) {
int pid = procp->pid;
uid_t uid = procp->uid;
char *taskname;
int tasksize;
int r;
#ifdef LMKD_LOG_STATS
struct memory_stat mem_st = {};
int memory_stat_parse_result = -1;
#endif
taskname = proc_get_name(pid);
if (!taskname) {
pid_remove(pid);
return -1;
}
tasksize = proc_get_size(pid);
if (tasksize <= 0) {
pid_remove(pid);
return -1;
}
#ifdef LMKD_LOG_STATS
if (enable_stats_log) {
memory_stat_parse_result = memory_stat_parse(&mem_st, pid, uid);
}
#endif
TRACE_KILL_START(pid);
r = kill(pid, SIGKILL);
ALOGI(
"Killing '%s' (%d), uid %d, adj %d\n"
" to free %ldkB because system is under %s memory pressure oom_adj %d\n",
taskname, pid, uid, procp->oomadj, tasksize * page_k,
level_name[level], min_score_adj);
pid_remove(pid);
TRACE_KILL_END();
if (r) {
ALOGE("kill(%d): errno=%d", pid, errno);
return -1;
} else {
#ifdef LMKD_LOG_STATS
if (memory_stat_parse_result == 0) {
stats_write_lmk_kill_occurred(log_ctx, LMK_KILL_OCCURRED, uid, taskname,
procp->oomadj, mem_st.pgfault, mem_st.pgmajfault, mem_st.rss_in_bytes,
mem_st.cache_in_bytes, mem_st.swap_in_bytes);
}
#endif
return tasksize;
}
return tasksize;
}
/*
* Find processes to kill to free required number of pages.
* If pages_to_free is set to 0 only one process will be killed.
* Returns the size of the killed processes.
*/
static int find_and_kill_processes(enum vmpressure_level level,
int pages_to_free) {
int i;
int killed_size;
int pages_freed = 0;
int min_score_adj = level_oomadj[level];
#ifdef LMKD_LOG_STATS
if (enable_stats_log) {
stats_write_lmk_state_changed(log_ctx, LMK_STATE_CHANGED, LMK_STATE_CHANGE_START);
}
#endif
for (i = OOM_SCORE_ADJ_MAX; i >= min_score_adj; i--) {
struct proc *procp;
while (true) {
procp = kill_heaviest_task ?
proc_get_heaviest(i) : proc_adj_lru(i);
if (!procp)
break;
killed_size = kill_one_process(procp, min_score_adj, level);
if (killed_size >= 0) {
pages_freed += killed_size;
if (pages_freed >= pages_to_free) {
#ifdef LMKD_LOG_STATS
if (enable_stats_log) {
stats_write_lmk_state_changed(log_ctx, LMK_STATE_CHANGED,
LMK_STATE_CHANGE_STOP);
}
#endif
return pages_freed;
}
}
}
}
#ifdef LMKD_LOG_STATS
if (enable_stats_log) {
stats_write_lmk_state_changed(log_ctx, LMK_STATE_CHANGED, LMK_STATE_CHANGE_STOP);
}
#endif
return pages_freed;
}
static int64_t get_memory_usage(struct reread_data *file_data) {
int ret;
int64_t mem_usage;
char buf[32];
if (reread_file(file_data, buf, sizeof(buf)) < 0) {
return -1;
}
if (!parse_int64(buf, &mem_usage)) {
ALOGE("%s parse error", file_data->filename);
return -1;
}
if (mem_usage == 0) {
ALOGE("No memory!");
return -1;
}
return mem_usage;
}
void record_low_pressure_levels(struct mem_size *free_mem) {
if (low_pressure_mem.min_free == -1 ||
low_pressure_mem.min_free > free_mem->free_mem) {
if (debug_process_killing) {
ALOGI("Low pressure min memory update from %d to %d",
low_pressure_mem.min_free, free_mem->free_mem);
}
low_pressure_mem.min_free = free_mem->free_mem;
}
/*
* Free memory at low vmpressure events occasionally gets spikes,
* possibly a stale low vmpressure event with memory already
* freed up (no memory pressure should have been reported).
* Ignore large jumps in max_free that would mess up our stats.
*/
if (low_pressure_mem.max_free == -1 ||
(low_pressure_mem.max_free < free_mem->free_mem &&
free_mem->free_mem - low_pressure_mem.max_free < low_pressure_mem.max_free * 0.1)) {
if (debug_process_killing) {
ALOGI("Low pressure max memory update from %d to %d",
low_pressure_mem.max_free, free_mem->free_mem);
}
low_pressure_mem.max_free = free_mem->free_mem;
}
}
enum vmpressure_level upgrade_level(enum vmpressure_level level) {
return (enum vmpressure_level)((level < VMPRESS_LEVEL_CRITICAL) ?
level + 1 : level);
}
enum vmpressure_level downgrade_level(enum vmpressure_level level) {
return (enum vmpressure_level)((level > VMPRESS_LEVEL_LOW) ?
level - 1 : level);
}
static inline unsigned long get_time_diff_ms(struct timeval *from,
struct timeval *to) {
return (to->tv_sec - from->tv_sec) * 1000 +
(to->tv_usec - from->tv_usec) / 1000;
}
static void mp_event_common(int data, uint32_t events __unused) {
int ret;
unsigned long long evcount;
int64_t mem_usage, memsw_usage;
int64_t mem_pressure;
enum vmpressure_level lvl;
struct mem_size free_mem;
static struct timeval last_report_tm;
static unsigned long skip_count = 0;
enum vmpressure_level level = (enum vmpressure_level)data;
static struct reread_data mem_usage_file_data = {
.filename = MEMCG_MEMORY_USAGE,
.fd = -1,
};
static struct reread_data memsw_usage_file_data = {
.filename = MEMCG_MEMORYSW_USAGE,
.fd = -1,
};
/*
* Check all event counters from low to critical
* and upgrade to the highest priority one. By reading
* eventfd we also reset the event counters.
*/
for (lvl = VMPRESS_LEVEL_LOW; lvl < VMPRESS_LEVEL_COUNT; lvl++) {
if (mpevfd[lvl] != -1 &&
TEMP_FAILURE_RETRY(read(mpevfd[lvl],
&evcount, sizeof(evcount))) > 0 &&
evcount > 0 && lvl > level) {
level = lvl;
}
}
if (kill_timeout_ms) {
struct timeval curr_tm;
gettimeofday(&curr_tm, NULL);
if (get_time_diff_ms(&last_report_tm, &curr_tm) < kill_timeout_ms) {
skip_count++;
return;
}
}
if (skip_count > 0) {
if (debug_process_killing) {
ALOGI("%lu memory pressure events were skipped after a kill!",
skip_count);
}
skip_count = 0;
}
if (get_free_memory(&free_mem) == 0) {
if (level == VMPRESS_LEVEL_LOW) {
record_low_pressure_levels(&free_mem);
}
} else {
ALOGE("Failed to get free memory!");
return;
}
if (level_oomadj[level] > OOM_SCORE_ADJ_MAX) {
/* Do not monitor this pressure level */
return;
}
if ((mem_usage = get_memory_usage(&mem_usage_file_data)) < 0) {
goto do_kill;
}
if ((memsw_usage = get_memory_usage(&memsw_usage_file_data)) < 0) {
goto do_kill;
}
// Calculate percent for swappinness.
mem_pressure = (mem_usage * 100) / memsw_usage;
if (enable_pressure_upgrade && level != VMPRESS_LEVEL_CRITICAL) {
// We are swapping too much.
if (mem_pressure < upgrade_pressure) {
level = upgrade_level(level);
if (debug_process_killing) {
ALOGI("Event upgraded to %s", level_name[level]);
}
}
}
// If the pressure is larger than downgrade_pressure lmk will not
// kill any process, since enough memory is available.
if (mem_pressure > downgrade_pressure) {
if (debug_process_killing) {
ALOGI("Ignore %s memory pressure", level_name[level]);
}
return;
} else if (level == VMPRESS_LEVEL_CRITICAL &&
mem_pressure > upgrade_pressure) {
if (debug_process_killing) {
ALOGI("Downgrade critical memory pressure");
}
// Downgrade event, since enough memory available.
level = downgrade_level(level);
}
do_kill:
if (low_ram_device) {
/* For Go devices kill only one task */
if (find_and_kill_processes(level, 0) == 0) {
if (debug_process_killing) {
ALOGI("Nothing to kill");
}
}
} else {
/* If pressure level is less than critical and enough free swap then ignore */
if (level < VMPRESS_LEVEL_CRITICAL && free_mem.free_swap > low_pressure_mem.max_free) {
if (debug_process_killing) {
ALOGI("Ignoring pressure since %d swap pages are available ", free_mem.free_swap);
}
return;
}
/* Free up enough memory to downgrate the memory pressure to low level */
if (free_mem.free_mem < low_pressure_mem.max_free) {
int pages_to_free = low_pressure_mem.max_free - free_mem.free_mem;
if (debug_process_killing) {
ALOGI("Trying to free %d pages", pages_to_free);
}
int pages_freed = find_and_kill_processes(level, pages_to_free);
if (pages_freed < pages_to_free) {
if (debug_process_killing) {
ALOGI("Unable to free enough memory (pages freed=%d)",
pages_freed);
}
} else {
gettimeofday(&last_report_tm, NULL);
}
}
}
}
static bool init_mp_common(enum vmpressure_level level) {
int mpfd;
int evfd;
int evctlfd;
char buf[256];
struct epoll_event epev;
int ret;
int level_idx = (int)level;
const char *levelstr = level_name[level_idx];
mpfd = open(MEMCG_SYSFS_PATH "memory.pressure_level", O_RDONLY | O_CLOEXEC);
if (mpfd < 0) {
ALOGI("No kernel memory.pressure_level support (errno=%d)", errno);
goto err_open_mpfd;
}
evctlfd = open(MEMCG_SYSFS_PATH "cgroup.event_control", O_WRONLY | O_CLOEXEC);
if (evctlfd < 0) {
ALOGI("No kernel memory cgroup event control (errno=%d)", errno);
goto err_open_evctlfd;
}
evfd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
if (evfd < 0) {
ALOGE("eventfd failed for level %s; errno=%d", levelstr, errno);
goto err_eventfd;
}
ret = snprintf(buf, sizeof(buf), "%d %d %s", evfd, mpfd, levelstr);
if (ret >= (ssize_t)sizeof(buf)) {
ALOGE("cgroup.event_control line overflow for level %s", levelstr);
goto err;
}
ret = TEMP_FAILURE_RETRY(write(evctlfd, buf, strlen(buf) + 1));
if (ret == -1) {
ALOGE("cgroup.event_control write failed for level %s; errno=%d",
levelstr, errno);
goto err;
}
epev.events = EPOLLIN;
/* use data to store event level */
vmpressure_hinfo[level_idx].data = level_idx;
vmpressure_hinfo[level_idx].handler = mp_event_common;
epev.data.ptr = (void *)&vmpressure_hinfo[level_idx];
ret = epoll_ctl(epollfd, EPOLL_CTL_ADD, evfd, &epev);
if (ret == -1) {
ALOGE("epoll_ctl for level %s failed; errno=%d", levelstr, errno);
goto err;
}
maxevents++;
mpevfd[level] = evfd;
close(evctlfd);
return true;
err:
close(evfd);
err_eventfd:
close(evctlfd);
err_open_evctlfd:
close(mpfd);
err_open_mpfd:
return false;
}
static int init(void) {
struct epoll_event epev;
int i;
int ret;
page_k = sysconf(_SC_PAGESIZE);
if (page_k == -1)
page_k = PAGE_SIZE;
page_k /= 1024;
epollfd = epoll_create(MAX_EPOLL_EVENTS);
if (epollfd == -1) {
ALOGE("epoll_create failed (errno=%d)", errno);
return -1;
}
// mark data connections as not connected
for (int i = 0; i < MAX_DATA_CONN; i++) {
data_sock[i].sock = -1;
}
ctrl_sock.sock = android_get_control_socket("lmkd");
if (ctrl_sock.sock < 0) {
ALOGE("get lmkd control socket failed");
return -1;
}
ret = listen(ctrl_sock.sock, MAX_DATA_CONN);
if (ret < 0) {
ALOGE("lmkd control socket listen failed (errno=%d)", errno);
return -1;
}
epev.events = EPOLLIN;
ctrl_sock.handler_info.handler = ctrl_connect_handler;
epev.data.ptr = (void *)&(ctrl_sock.handler_info);
if (epoll_ctl(epollfd, EPOLL_CTL_ADD, ctrl_sock.sock, &epev) == -1) {
ALOGE("epoll_ctl for lmkd control socket failed (errno=%d)", errno);
return -1;
}
maxevents++;
has_inkernel_module = !access(INKERNEL_MINFREE_PATH, W_OK);
use_inkernel_interface = has_inkernel_module;
if (use_inkernel_interface) {
ALOGI("Using in-kernel low memory killer interface");
} else {
if (!init_mp_common(VMPRESS_LEVEL_LOW) ||
!init_mp_common(VMPRESS_LEVEL_MEDIUM) ||
!init_mp_common(VMPRESS_LEVEL_CRITICAL)) {
ALOGE("Kernel does not support memory pressure events or in-kernel low memory killer");
return -1;
}
}
for (i = 0; i <= ADJTOSLOT(OOM_SCORE_ADJ_MAX); i++) {
procadjslot_list[i].next = &procadjslot_list[i];
procadjslot_list[i].prev = &procadjslot_list[i];
}
return 0;
}
static void mainloop(void) {
struct event_handler_info* handler_info;
struct epoll_event *evt;
while (1) {
struct epoll_event events[maxevents];
int nevents;
int i;
nevents = epoll_wait(epollfd, events, maxevents, -1);
if (nevents == -1) {
if (errno == EINTR)
continue;
ALOGE("epoll_wait failed (errno=%d)", errno);
continue;
}
/*
* First pass to see if any data socket connections were dropped.
* Dropped connection should be handled before any other events
* to deallocate data connection and correctly handle cases when
* connection gets dropped and reestablished in the same epoll cycle.
* In such cases it's essential to handle connection closures first.
*/
for (i = 0, evt = &events[0]; i < nevents; ++i, evt++) {
if ((evt->events & EPOLLHUP) && evt->data.ptr) {
ALOGI("lmkd data connection dropped");
handler_info = (struct event_handler_info*)evt->data.ptr;
ctrl_data_close(handler_info->data);
}
}
/* Second pass to handle all other events */
for (i = 0, evt = &events[0]; i < nevents; ++i, evt++) {
if (evt->events & EPOLLERR)
ALOGD("EPOLLERR on event #%d", i);
if (evt->events & EPOLLHUP) {
/* This case was handled in the first pass */
continue;
}
if (evt->data.ptr) {
handler_info = (struct event_handler_info*)evt->data.ptr;
handler_info->handler(handler_info->data, evt->events);
}
}
}
}
int main(int argc __unused, char **argv __unused) {
struct sched_param param = {
.sched_priority = 1,
};
/* By default disable low level vmpressure events */
level_oomadj[VMPRESS_LEVEL_LOW] =
property_get_int32("ro.lmk.low", OOM_SCORE_ADJ_MAX + 1);
level_oomadj[VMPRESS_LEVEL_MEDIUM] =
property_get_int32("ro.lmk.medium", 800);
level_oomadj[VMPRESS_LEVEL_CRITICAL] =
property_get_int32("ro.lmk.critical", 0);
debug_process_killing = property_get_bool("ro.lmk.debug", false);
/* By default disable upgrade/downgrade logic */
enable_pressure_upgrade =
property_get_bool("ro.lmk.critical_upgrade", false);
upgrade_pressure =
(int64_t)property_get_int32("ro.lmk.upgrade_pressure", 100);
downgrade_pressure =
(int64_t)property_get_int32("ro.lmk.downgrade_pressure", 100);
kill_heaviest_task =
property_get_bool("ro.lmk.kill_heaviest_task", false);
low_ram_device = property_get_bool("ro.config.low_ram", false);
kill_timeout_ms =
(unsigned long)property_get_int32("ro.lmk.kill_timeout_ms", 0);
#ifdef LMKD_LOG_STATS
statslog_init(&log_ctx, &enable_stats_log);
#endif
// MCL_ONFAULT pins pages as they fault instead of loading
// everything immediately all at once. (Which would be bad,
// because as of this writing, we have a lot of mapped pages we
// never use.) Old kernels will see MCL_ONFAULT and fail with
// EINVAL; we ignore this failure.
//
// N.B. read the man page for mlockall. MCL_CURRENT | MCL_ONFAULT
// pins ⊆ MCL_CURRENT, converging to just MCL_CURRENT as we fault
// in pages.
if (mlockall(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT) && errno != EINVAL)
ALOGW("mlockall failed: errno=%d", errno);
sched_setscheduler(0, SCHED_FIFO, &param);
if (!init())
mainloop();
#ifdef LMKD_LOG_STATS
statslog_destroy(&log_ctx);
#endif
ALOGI("exiting");
return 0;
}