Merge changes from topic "libsnapshot_prep"

* changes:
  libsnapshot: MapPartitionWithSnapshot cleanup itself if failed
  libsnapshot: MapPartitionWithSnapshot: fix timeout
  libsnapshot: require ex lock for {Create}{CowImage,Snapshot} / DeleteSnapshot
  libsnapshot: Refactor: add {Create,Map,Unmap}CowImage
This commit is contained in:
Yifan Hong 2019-09-06 19:28:09 +00:00 committed by Gerrit Code Review
commit 233c32a454
6 changed files with 385 additions and 108 deletions

View file

@ -49,6 +49,7 @@ filegroup {
name: "libsnapshot_sources",
srcs: [
"snapshot.cpp",
"utility.cpp",
],
}

View file

@ -211,25 +211,44 @@ class SnapshotManager final {
std::unique_ptr<LockedFile> OpenFile(const std::string& file, int open_flags, int lock_flags);
bool Truncate(LockedFile* file);
enum class SnapshotState : int { None, Created, Merging, MergeCompleted };
static std::string to_string(SnapshotState state);
// This state is persisted per-snapshot in /metadata/ota/snapshots/.
struct SnapshotStatus {
SnapshotState state = SnapshotState::None;
uint64_t device_size = 0;
uint64_t snapshot_size = 0;
uint64_t cow_partition_size = 0;
uint64_t cow_file_size = 0;
// These are non-zero when merging.
uint64_t sectors_allocated = 0;
uint64_t metadata_sectors = 0;
};
// Create a new snapshot record. This creates the backing COW store and
// persists information needed to map the device. The device can be mapped
// with MapSnapshot().
//
// |device_size| should be the size of the base_device that will be passed
// via MapDevice(). |snapshot_size| should be the number of bytes in the
// base device, starting from 0, that will be snapshotted. The cow_size
// |status|.device_size should be the size of the base_device that will be passed
// via MapDevice(). |status|.snapshot_size should be the number of bytes in the
// base device, starting from 0, that will be snapshotted. |status|.cow_file_size
// should be the amount of space that will be allocated to store snapshot
// deltas.
//
// If |snapshot_size| < device_size, then the device will always
// If |status|.snapshot_size < |status|.device_size, then the device will always
// be mapped with two table entries: a dm-snapshot range covering
// snapshot_size, and a dm-linear range covering the remainder.
//
// All sizes are specified in bytes, and the device and snapshot sizes
// must be a multiple of the sector size (512 bytes). |cow_size| will
// be rounded up to the nearest sector.
bool CreateSnapshot(LockedFile* lock, const std::string& name, uint64_t device_size,
uint64_t snapshot_size, uint64_t cow_size);
// All sizes are specified in bytes, and the device, snapshot and COW partition sizes
// must be a multiple of the sector size (512 bytes). COW file size will be rounded up
// to the nearest sector.
bool CreateSnapshot(LockedFile* lock, const std::string& name, SnapshotStatus status);
// |name| should be the base partition name (e.g. "system_a"). Create the
// backing COW image using the size previously passed to CreateSnapshot().
bool CreateCowImage(LockedFile* lock, const std::string& name);
// Map a snapshot device that was previously created with CreateSnapshot.
// If a merge was previously initiated, the device-mapper table will have a
@ -239,15 +258,23 @@ class SnapshotManager final {
// timeout_ms is 0, then no wait will occur and |dev_path| may not yet
// exist on return.
bool MapSnapshot(LockedFile* lock, const std::string& name, const std::string& base_device,
const std::chrono::milliseconds& timeout_ms, std::string* dev_path);
const std::string& cow_device, const std::chrono::milliseconds& timeout_ms,
std::string* dev_path);
// Remove the backing copy-on-write image for the named snapshot. The
// Map a COW image that was previous created with CreateCowImage.
bool MapCowImage(const std::string& name, const std::chrono::milliseconds& timeout_ms,
std::string* cow_image_device);
// Remove the backing copy-on-write image and snapshot states for the named snapshot. The
// caller is responsible for ensuring that the snapshot is unmapped.
bool DeleteSnapshot(LockedFile* lock, const std::string& name);
// Unmap a snapshot device previously mapped with MapSnapshotDevice().
bool UnmapSnapshot(LockedFile* lock, const std::string& name);
// Unmap a COW image device previously mapped with MapCowImage().
bool UnmapCowImage(const std::string& name);
// Unmap and remove all known snapshots.
bool RemoveAllSnapshots(LockedFile* lock);
@ -270,22 +297,6 @@ class SnapshotManager final {
bool WriteUpdateState(LockedFile* file, UpdateState state);
std::string GetStateFilePath() const;
enum class SnapshotState : int { Created, Merging, MergeCompleted };
static std::string to_string(SnapshotState state);
// This state is persisted per-snapshot in /metadata/ota/snapshots/.
struct SnapshotStatus {
SnapshotState state;
uint64_t device_size;
uint64_t snapshot_size;
uint64_t cow_partition_size;
uint64_t cow_file_size;
// These are non-zero when merging.
uint64_t sectors_allocated = 0;
uint64_t metadata_sectors = 0;
};
// Helpers for merging.
bool SwitchSnapshotToMerge(LockedFile* lock, const std::string& name);
bool RewriteSnapshotDeviceTable(const std::string& dm_name);

View file

@ -36,6 +36,8 @@
#include <libfiemap/image_manager.h>
#include <liblp/liblp.h>
#include "utility.h"
namespace android {
namespace snapshot {
@ -54,6 +56,7 @@ using android::fs_mgr::CreateLogicalPartitionParams;
using android::fs_mgr::GetPartitionName;
using android::fs_mgr::LpMetadata;
using android::fs_mgr::SlotNumberForSlotSuffix;
using std::chrono::duration_cast;
using namespace std::chrono_literals;
using namespace std::string_literals;
@ -99,10 +102,14 @@ SnapshotManager::SnapshotManager(IDeviceInfo* device) : device_(device) {
metadata_dir_ = device_->GetMetadataDir();
}
static std::string GetCowName(const std::string& snapshot_name) {
[[maybe_unused]] static std::string GetCowName(const std::string& snapshot_name) {
return snapshot_name + "-cow";
}
static std::string GetCowImageDeviceName(const std::string& snapshot_name) {
return snapshot_name + "-cow-img";
}
static std::string GetBaseDeviceName(const std::string& partition_name) {
return partition_name + "-base";
}
@ -177,49 +184,60 @@ bool SnapshotManager::FinishedSnapshotWrites() {
}
bool SnapshotManager::CreateSnapshot(LockedFile* lock, const std::string& name,
uint64_t device_size, uint64_t snapshot_size,
uint64_t cow_size) {
SnapshotManager::SnapshotStatus status) {
CHECK(lock);
if (!EnsureImageManager()) return false;
CHECK(lock->lock_mode() == LOCK_EX);
// Sanity check these sizes. Like liblp, we guarantee the partition size
// is respected, which means it has to be sector-aligned. (This guarantee
// is useful for locating avb footers correctly). The COW size, however,
// can be arbitrarily larger than specified, so we can safely round it up.
if (device_size % kSectorSize != 0) {
if (status.device_size % kSectorSize != 0) {
LOG(ERROR) << "Snapshot " << name
<< " device size is not a multiple of the sector size: " << device_size;
<< " device size is not a multiple of the sector size: " << status.device_size;
return false;
}
if (snapshot_size % kSectorSize != 0) {
LOG(ERROR) << "Snapshot " << name
<< " snapshot size is not a multiple of the sector size: " << snapshot_size;
if (status.snapshot_size % kSectorSize != 0) {
LOG(ERROR) << "Snapshot " << name << " snapshot size is not a multiple of the sector size: "
<< status.snapshot_size;
return false;
}
// Round the COW size up to the nearest sector.
cow_size += kSectorSize - 1;
cow_size &= ~(kSectorSize - 1);
status.cow_file_size += kSectorSize - 1;
status.cow_file_size &= ~(kSectorSize - 1);
LOG(INFO) << "Snapshot " << name << " will have COW size " << cow_size;
status.state = SnapshotState::Created;
status.sectors_allocated = 0;
status.metadata_sectors = 0;
// Note, we leave the status file hanging around if we fail to create the
// actual backing image. This is harmless, since it'll get removed when
// CancelUpdate is called.
SnapshotStatus status = {
.state = SnapshotState::Created,
.device_size = device_size,
.snapshot_size = snapshot_size,
.cow_file_size = cow_size,
};
if (!WriteSnapshotStatus(lock, name, status)) {
PLOG(ERROR) << "Could not write snapshot status: " << name;
return false;
}
return true;
}
auto cow_name = GetCowName(name);
bool SnapshotManager::CreateCowImage(LockedFile* lock, const std::string& name) {
CHECK(lock);
CHECK(lock->lock_mode() == LOCK_EX);
if (!EnsureImageManager()) return false;
SnapshotStatus status;
if (!ReadSnapshotStatus(lock, name, &status)) {
return false;
}
// The COW file size should have been rounded up to the nearest sector in CreateSnapshot.
// Sanity check this.
if (status.cow_file_size % kSectorSize != 0) {
LOG(ERROR) << "Snapshot " << name << " COW file size is not a multiple of the sector size: "
<< status.cow_file_size;
return false;
}
std::string cow_image_name = GetCowImageDeviceName(name);
int cow_flags = IImageManager::CREATE_IMAGE_DEFAULT;
if (!images_->CreateBackingImage(cow_name, cow_size, cow_flags)) {
if (!images_->CreateBackingImage(cow_image_name, status.cow_file_size, cow_flags)) {
return false;
}
@ -238,11 +256,11 @@ bool SnapshotManager::CreateSnapshot(LockedFile* lock, const std::string& name,
// workaround that will be discussed again when the kernel API gets
// consolidated.
ssize_t dm_snap_magic_size = 4; // 32 bit
return images_->ZeroFillNewImage(cow_name, dm_snap_magic_size);
return images_->ZeroFillNewImage(cow_image_name, dm_snap_magic_size);
}
bool SnapshotManager::MapSnapshot(LockedFile* lock, const std::string& name,
const std::string& base_device,
const std::string& base_device, const std::string& cow_device,
const std::chrono::milliseconds& timeout_ms,
std::string* dev_path) {
CHECK(lock);
@ -288,22 +306,7 @@ bool SnapshotManager::MapSnapshot(LockedFile* lock, const std::string& name,
uint64_t snapshot_sectors = status.snapshot_size / kSectorSize;
uint64_t linear_sectors = (status.device_size - status.snapshot_size) / kSectorSize;
auto cow_name = GetCowName(name);
bool ok;
std::string cow_dev;
if (has_local_image_manager_) {
// If we forced a local image manager, it means we don't have binder,
// which means first-stage init. We must use device-mapper.
const auto& opener = device_->GetPartitionOpener();
ok = images_->MapImageWithDeviceMapper(opener, cow_name, &cow_dev);
} else {
ok = images_->MapImageDevice(cow_name, timeout_ms, &cow_dev);
}
if (!ok) {
LOG(ERROR) << "Could not map image device: " << cow_name;
return false;
}
auto& dm = DeviceMapper::Instance();
@ -335,11 +338,10 @@ bool SnapshotManager::MapSnapshot(LockedFile* lock, const std::string& name,
auto snap_name = (linear_sectors > 0) ? GetSnapshotExtraDeviceName(name) : name;
DmTable table;
table.Emplace<DmTargetSnapshot>(0, snapshot_sectors, base_device, cow_dev, mode,
table.Emplace<DmTargetSnapshot>(0, snapshot_sectors, base_device, cow_device, mode,
kSnapshotChunkSize);
if (!dm.CreateDevice(snap_name, table, dev_path, timeout_ms)) {
LOG(ERROR) << "Could not create snapshot device: " << snap_name;
images_->UnmapImageDevice(cow_name);
return false;
}
@ -355,7 +357,6 @@ bool SnapshotManager::MapSnapshot(LockedFile* lock, const std::string& name,
if (!dm.CreateDevice(name, table, dev_path, timeout_ms)) {
LOG(ERROR) << "Could not create outer snapshot device: " << name;
dm.DeleteDevice(snap_name);
images_->UnmapImageDevice(cow_name);
return false;
}
}
@ -366,9 +367,29 @@ bool SnapshotManager::MapSnapshot(LockedFile* lock, const std::string& name,
return true;
}
bool SnapshotManager::MapCowImage(const std::string& name,
const std::chrono::milliseconds& timeout_ms,
std::string* cow_dev) {
if (!EnsureImageManager()) return false;
auto cow_image_name = GetCowImageDeviceName(name);
bool ok;
if (has_local_image_manager_) {
// If we forced a local image manager, it means we don't have binder,
// which means first-stage init. We must use device-mapper.
const auto& opener = device_->GetPartitionOpener();
ok = images_->MapImageWithDeviceMapper(opener, cow_image_name, cow_dev);
} else {
ok = images_->MapImageDevice(cow_image_name, timeout_ms, cow_dev);
}
if (!ok) {
LOG(ERROR) << "Could not map image device: " << cow_image_name;
}
return ok;
}
bool SnapshotManager::UnmapSnapshot(LockedFile* lock, const std::string& name) {
CHECK(lock);
if (!EnsureImageManager()) return false;
SnapshotStatus status;
if (!ReadSnapshotStatus(lock, name, &status)) {
@ -389,23 +410,25 @@ bool SnapshotManager::UnmapSnapshot(LockedFile* lock, const std::string& name) {
return false;
}
auto cow_name = GetCowName(name);
if (images_->IsImageMapped(cow_name) && !images_->UnmapImageDevice(cow_name)) {
return false;
}
return true;
}
bool SnapshotManager::UnmapCowImage(const std::string& name) {
if (!EnsureImageManager()) return false;
return images_->UnmapImageIfExists(GetCowImageDeviceName(name));
}
bool SnapshotManager::DeleteSnapshot(LockedFile* lock, const std::string& name) {
CHECK(lock);
CHECK(lock->lock_mode() == LOCK_EX);
if (!EnsureImageManager()) return false;
auto cow_name = GetCowName(name);
if (images_->BackingImageExists(cow_name)) {
if (images_->IsImageMapped(cow_name) && !images_->UnmapImageDevice(cow_name)) {
auto cow_image_name = GetCowImageDeviceName(name);
if (images_->BackingImageExists(cow_image_name)) {
if (!images_->UnmapImageIfExists(cow_image_name)) {
return false;
}
if (!images_->DeleteBackingImage(cow_name)) {
if (!images_->DeleteBackingImage(cow_image_name)) {
return false;
}
}
@ -1153,9 +1176,28 @@ bool SnapshotManager::CreateLogicalAndSnapshotPartitions(const std::string& supe
return true;
}
static std::chrono::milliseconds GetRemainingTime(
const std::chrono::milliseconds& timeout,
const std::chrono::time_point<std::chrono::steady_clock>& begin) {
// If no timeout is specified, execute all commands without specifying any timeout.
if (timeout.count() == 0) return std::chrono::milliseconds(0);
auto passed_time = std::chrono::steady_clock::now() - begin;
auto remaining_time = timeout - duration_cast<std::chrono::milliseconds>(passed_time);
if (remaining_time.count() <= 0) {
LOG(ERROR) << "MapPartitionWithSnapshot has reached timeout " << timeout.count() << "ms ("
<< remaining_time.count() << "ms remaining)";
// Return min() instead of remaining_time here because 0 is treated as a special value for
// no timeout, where the rest of the commands will still be executed.
return std::chrono::milliseconds::min();
}
return remaining_time;
}
bool SnapshotManager::MapPartitionWithSnapshot(LockedFile* lock,
CreateLogicalPartitionParams params,
std::string* path) {
auto begin = std::chrono::steady_clock::now();
CHECK(lock);
path->clear();
@ -1207,6 +1249,11 @@ bool SnapshotManager::MapPartitionWithSnapshot(LockedFile* lock,
params.device_name = GetBaseDeviceName(params.GetPartitionName());
}
AutoDeviceList created_devices;
// Create the base device for the snapshot, or if there is no snapshot, the
// device itself. This device consists of the real blocks in the super
// partition that this logical partition occupies.
auto& dm = DeviceMapper::Instance();
std::string ignore_path;
if (!CreateLogicalPartition(params, &ignore_path)) {
@ -1214,7 +1261,10 @@ bool SnapshotManager::MapPartitionWithSnapshot(LockedFile* lock,
<< " as device " << params.GetDeviceName();
return false;
}
created_devices.EmplaceBack<AutoUnmapDevice>(&dm, params.GetDeviceName());
if (!live_snapshot_status.has_value()) {
created_devices.Release();
return true;
}
@ -1225,10 +1275,35 @@ bool SnapshotManager::MapPartitionWithSnapshot(LockedFile* lock,
LOG(ERROR) << "Could not determine major/minor for: " << params.GetDeviceName();
return false;
}
if (!MapSnapshot(lock, params.GetPartitionName(), base_device, {}, path)) {
// If there is a timeout specified, compute the remaining time to call Map* functions.
// init calls CreateLogicalAndSnapshotPartitions, which has no timeout specified. Still call
// Map* functions in this case.
auto remaining_time = GetRemainingTime(params.timeout_ms, begin);
if (remaining_time.count() < 0) return false;
std::string cow_image_device;
if (!MapCowImage(params.GetPartitionName(), remaining_time, &cow_image_device)) {
LOG(ERROR) << "Could not map cow image for partition: " << params.GetPartitionName();
return false;
}
created_devices.EmplaceBack<AutoUnmapImage>(images_.get(),
GetCowImageDeviceName(params.partition_name));
// TODO: map cow linear device here
std::string cow_device = cow_image_device;
remaining_time = GetRemainingTime(params.timeout_ms, begin);
if (remaining_time.count() < 0) return false;
if (!MapSnapshot(lock, params.GetPartitionName(), base_device, cow_device, remaining_time,
path)) {
LOG(ERROR) << "Could not map snapshot for partition: " << params.GetPartitionName();
return false;
}
// No need to add params.GetPartitionName() to created_devices since it is immediately released.
created_devices.Release();
LOG(INFO) << "Mapped " << params.GetPartitionName() << " as snapshot device at " << *path;
@ -1373,7 +1448,9 @@ bool SnapshotManager::ReadSnapshotStatus(LockedFile* lock, const std::string& na
return false;
}
if (pieces[0] == "created") {
if (pieces[0] == "none") {
status->state = SnapshotState::None;
} else if (pieces[0] == "created") {
status->state = SnapshotState::Created;
} else if (pieces[0] == "merging") {
status->state = SnapshotState::Merging;
@ -1381,6 +1458,7 @@ bool SnapshotManager::ReadSnapshotStatus(LockedFile* lock, const std::string& na
status->state = SnapshotState::MergeCompleted;
} else {
LOG(ERROR) << "Unrecognized state " << pieces[0] << " for snapshot: " << name;
return false;
}
if (!android::base::ParseUint(pieces[1], &status->device_size)) {
@ -1412,6 +1490,8 @@ bool SnapshotManager::ReadSnapshotStatus(LockedFile* lock, const std::string& na
std::string SnapshotManager::to_string(SnapshotState state) {
switch (state) {
case SnapshotState::None:
return "none";
case SnapshotState::Created:
return "created";
case SnapshotState::Merging:

View file

@ -106,7 +106,7 @@ class SnapshotTest : public ::testing::Test {
"test_partition_b"};
for (const auto& snapshot : snapshots) {
DeleteSnapshotDevice(snapshot);
DeleteBackingImage(image_manager_, snapshot + "-cow");
DeleteBackingImage(image_manager_, snapshot + "-cow-img");
auto status_file = sm->GetSnapshotStatusFilePath(snapshot);
android::base::RemoveFileIfExists(status_file);
@ -214,6 +214,7 @@ class SnapshotTest : public ::testing::Test {
void DeleteSnapshotDevice(const std::string& snapshot) {
DeleteDevice(snapshot);
DeleteDevice(snapshot + "-inner");
ASSERT_TRUE(image_manager_->UnmapImageIfExists(snapshot + "-cow-img"));
}
void DeleteDevice(const std::string& device) {
if (dm_.GetState(device) != DmDeviceState::INVALID) {
@ -231,8 +232,11 @@ TEST_F(SnapshotTest, CreateSnapshot) {
ASSERT_TRUE(AcquireLock());
static const uint64_t kDeviceSize = 1024 * 1024;
ASSERT_TRUE(sm->CreateSnapshot(lock_.get(), "test-snapshot", kDeviceSize, kDeviceSize,
kDeviceSize));
ASSERT_TRUE(sm->CreateSnapshot(lock_.get(), "test-snapshot",
{.device_size = kDeviceSize,
.snapshot_size = kDeviceSize,
.cow_file_size = kDeviceSize}));
ASSERT_TRUE(sm->CreateCowImage(lock_.get(), "test-snapshot"));
std::vector<std::string> snapshots;
ASSERT_TRUE(sm->ListSnapshots(lock_.get(), &snapshots));
@ -249,6 +253,7 @@ TEST_F(SnapshotTest, CreateSnapshot) {
}
ASSERT_TRUE(sm->UnmapSnapshot(lock_.get(), "test-snapshot"));
ASSERT_TRUE(sm->UnmapCowImage("test-snapshot"));
ASSERT_TRUE(sm->DeleteSnapshot(lock_.get(), "test-snapshot"));
}
@ -256,14 +261,21 @@ TEST_F(SnapshotTest, MapSnapshot) {
ASSERT_TRUE(AcquireLock());
static const uint64_t kDeviceSize = 1024 * 1024;
ASSERT_TRUE(sm->CreateSnapshot(lock_.get(), "test-snapshot", kDeviceSize, kDeviceSize,
kDeviceSize));
ASSERT_TRUE(sm->CreateSnapshot(lock_.get(), "test-snapshot",
{.device_size = kDeviceSize,
.snapshot_size = kDeviceSize,
.cow_file_size = kDeviceSize}));
ASSERT_TRUE(sm->CreateCowImage(lock_.get(), "test-snapshot"));
std::string base_device;
ASSERT_TRUE(CreatePartition("base-device", kDeviceSize, &base_device));
std::string cow_device;
ASSERT_TRUE(sm->MapCowImage("test-snapshot", 10s, &cow_device));
std::string snap_device;
ASSERT_TRUE(sm->MapSnapshot(lock_.get(), "test-snapshot", base_device, 10s, &snap_device));
ASSERT_TRUE(sm->MapSnapshot(lock_.get(), "test-snapshot", base_device, cow_device, 10s,
&snap_device));
ASSERT_TRUE(android::base::StartsWith(snap_device, "/dev/block/dm-"));
}
@ -272,14 +284,21 @@ TEST_F(SnapshotTest, MapPartialSnapshot) {
static const uint64_t kSnapshotSize = 1024 * 1024;
static const uint64_t kDeviceSize = 1024 * 1024 * 2;
ASSERT_TRUE(sm->CreateSnapshot(lock_.get(), "test-snapshot", kDeviceSize, kSnapshotSize,
kSnapshotSize));
ASSERT_TRUE(sm->CreateSnapshot(lock_.get(), "test-snapshot",
{.device_size = kDeviceSize,
.snapshot_size = kSnapshotSize,
.cow_file_size = kSnapshotSize}));
ASSERT_TRUE(sm->CreateCowImage(lock_.get(), "test-snapshot"));
std::string base_device;
ASSERT_TRUE(CreatePartition("base-device", kDeviceSize, &base_device));
std::string cow_device;
ASSERT_TRUE(sm->MapCowImage("test-snapshot", 10s, &cow_device));
std::string snap_device;
ASSERT_TRUE(sm->MapSnapshot(lock_.get(), "test-snapshot", base_device, 10s, &snap_device));
ASSERT_TRUE(sm->MapSnapshot(lock_.get(), "test-snapshot", base_device, cow_device, 10s,
&snap_device));
ASSERT_TRUE(android::base::StartsWith(snap_device, "/dev/block/dm-"));
}
@ -317,13 +336,18 @@ TEST_F(SnapshotTest, Merge) {
static const uint64_t kDeviceSize = 1024 * 1024;
std::string base_device, snap_device;
std::string base_device, cow_device, snap_device;
ASSERT_TRUE(CreatePartition("test_partition_a", kDeviceSize));
ASSERT_TRUE(MapUpdatePartitions());
ASSERT_TRUE(dm_.GetDmDevicePathByName("test_partition_b-base", &base_device));
ASSERT_TRUE(sm->CreateSnapshot(lock_.get(), "test_partition_b", kDeviceSize, kDeviceSize,
kDeviceSize));
ASSERT_TRUE(sm->MapSnapshot(lock_.get(), "test_partition_b", base_device, 10s, &snap_device));
ASSERT_TRUE(sm->CreateSnapshot(lock_.get(), "test_partition_b",
{.device_size = kDeviceSize,
.snapshot_size = kDeviceSize,
.cow_file_size = kDeviceSize}));
ASSERT_TRUE(sm->CreateCowImage(lock_.get(), "test_partition_b"));
ASSERT_TRUE(sm->MapCowImage("test_partition_b", 10s, &cow_device));
ASSERT_TRUE(sm->MapSnapshot(lock_.get(), "test_partition_b", base_device, cow_device, 10s,
&snap_device));
std::string test_string = "This is a test string.";
{
@ -375,16 +399,21 @@ TEST_F(SnapshotTest, MergeCannotRemoveCow) {
ASSERT_TRUE(AcquireLock());
static const uint64_t kDeviceSize = 1024 * 1024;
ASSERT_TRUE(sm->CreateSnapshot(lock_.get(), "test-snapshot", kDeviceSize, kDeviceSize,
kDeviceSize));
ASSERT_TRUE(sm->CreateSnapshot(lock_.get(), "test-snapshot",
{.device_size = kDeviceSize,
.snapshot_size = kDeviceSize,
.cow_file_size = kDeviceSize}));
ASSERT_TRUE(sm->CreateCowImage(lock_.get(), "test-snapshot"));
std::string base_device, snap_device;
std::string base_device, cow_device, snap_device;
ASSERT_TRUE(CreatePartition("base-device", kDeviceSize, &base_device));
ASSERT_TRUE(sm->MapSnapshot(lock_.get(), "test-snapshot", base_device, 10s, &snap_device));
ASSERT_TRUE(sm->MapCowImage("test-snapshot", 10s, &cow_device));
ASSERT_TRUE(sm->MapSnapshot(lock_.get(), "test-snapshot", base_device, cow_device, 10s,
&snap_device));
// Keep an open handle to the cow device. This should cause the merge to
// be incomplete.
auto cow_path = android::base::GetProperty("gsid.mapped_image.test-snapshot-cow", "");
auto cow_path = android::base::GetProperty("gsid.mapped_image.test-snapshot-cow-img", "");
unique_fd fd(open(cow_path.c_str(), O_RDONLY | O_CLOEXEC));
ASSERT_GE(fd, 0);
@ -399,12 +428,18 @@ TEST_F(SnapshotTest, MergeCannotRemoveCow) {
// COW cannot be removed due to open fd, so expect a soft failure.
ASSERT_EQ(sm->ProcessUpdateState(), UpdateState::MergeNeedsReboot);
// Release the handle to the COW device to fake a reboot.
fd.reset();
// Wait 1s, otherwise DeleteSnapshotDevice may fail with EBUSY.
sleep(1);
// Forcefully delete the snapshot device, so it looks like we just rebooted.
DeleteSnapshotDevice("test-snapshot");
// Map snapshot should fail now, because we're in a merge-complete state.
ASSERT_TRUE(AcquireLock());
ASSERT_FALSE(sm->MapSnapshot(lock_.get(), "test-snapshot", base_device, 10s, &snap_device));
ASSERT_TRUE(sm->MapCowImage("test-snapshot", 10s, &cow_device));
ASSERT_FALSE(sm->MapSnapshot(lock_.get(), "test-snapshot", base_device, cow_device, 10s,
&snap_device));
// Release everything and now the merge should complete.
fd = {};
@ -423,8 +458,11 @@ TEST_F(SnapshotTest, FirstStageMountAndMerge) {
ASSERT_TRUE(CreatePartition("test_partition_a", kDeviceSize));
ASSERT_TRUE(MapUpdatePartitions());
ASSERT_TRUE(sm->CreateSnapshot(lock_.get(), "test_partition_b", kDeviceSize, kDeviceSize,
kDeviceSize));
ASSERT_TRUE(sm->CreateSnapshot(lock_.get(), "test_partition_b",
{.device_size = kDeviceSize,
.snapshot_size = kDeviceSize,
.cow_file_size = kDeviceSize}));
ASSERT_TRUE(sm->CreateCowImage(lock_.get(), "test_partition_b"));
// Simulate a reboot into the new slot.
lock_ = nullptr;
@ -462,8 +500,11 @@ TEST_F(SnapshotTest, FlashSuperDuringUpdate) {
ASSERT_TRUE(CreatePartition("test_partition_a", kDeviceSize));
ASSERT_TRUE(MapUpdatePartitions());
ASSERT_TRUE(sm->CreateSnapshot(lock_.get(), "test_partition_b", kDeviceSize, kDeviceSize,
kDeviceSize));
ASSERT_TRUE(sm->CreateSnapshot(lock_.get(), "test_partition_b",
{.device_size = kDeviceSize,
.snapshot_size = kDeviceSize,
.cow_file_size = kDeviceSize}));
ASSERT_TRUE(sm->CreateCowImage(lock_.get(), "test_partition_b"));
// Simulate a reboot into the new slot.
lock_ = nullptr;
@ -507,8 +548,11 @@ TEST_F(SnapshotTest, FlashSuperDuringMerge) {
ASSERT_TRUE(CreatePartition("test_partition_a", kDeviceSize));
ASSERT_TRUE(MapUpdatePartitions());
ASSERT_TRUE(sm->CreateSnapshot(lock_.get(), "test_partition_b", kDeviceSize, kDeviceSize,
kDeviceSize));
ASSERT_TRUE(sm->CreateSnapshot(lock_.get(), "test_partition_b",
{.device_size = kDeviceSize,
.snapshot_size = kDeviceSize,
.cow_file_size = kDeviceSize}));
ASSERT_TRUE(sm->CreateCowImage(lock_.get(), "test_partition_b"));
// Simulate a reboot into the new slot.
lock_ = nullptr;
@ -527,7 +571,7 @@ TEST_F(SnapshotTest, FlashSuperDuringMerge) {
// Now, reflash super. Note that we haven't called ProcessUpdateState, so the
// status is still Merging.
DeleteSnapshotDevice("test_partition_b");
ASSERT_TRUE(init->image_manager()->UnmapImageDevice("test_partition_b-cow"));
ASSERT_TRUE(init->image_manager()->UnmapImageIfExists("test_partition_b-cow-img"));
FormatFakeSuper();
ASSERT_TRUE(CreatePartition("test_partition_b", kDeviceSize));
ASSERT_TRUE(init->NeedSnapshotsInFirstStageMount());

View file

@ -0,0 +1,56 @@
// Copyright (C) 2019 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "utility.h"
#include <android-base/logging.h>
#include <android-base/strings.h>
namespace android {
namespace snapshot {
void AutoDevice::Release() {
name_.clear();
}
AutoDeviceList::~AutoDeviceList() {
// Destroy devices in the reverse order because newer devices may have dependencies
// on older devices.
for (auto it = devices_.rbegin(); it != devices_.rend(); ++it) {
it->reset();
}
}
void AutoDeviceList::Release() {
for (auto&& p : devices_) {
p->Release();
}
}
AutoUnmapDevice::~AutoUnmapDevice() {
if (name_.empty()) return;
if (!dm_->DeleteDeviceIfExists(name_)) {
LOG(ERROR) << "Failed to auto unmap device " << name_;
}
}
AutoUnmapImage::~AutoUnmapImage() {
if (name_.empty()) return;
if (!images_->UnmapImageIfExists(name_)) {
LOG(ERROR) << "Failed to auto unmap cow image " << name_;
}
}
} // namespace snapshot
} // namespace android

View file

@ -0,0 +1,85 @@
// Copyright (C) 2019 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <android-base/macros.h>
#include <libdm/dm.h>
#include <libfiemap/image_manager.h>
namespace android {
namespace snapshot {
struct AutoDevice {
virtual ~AutoDevice(){};
void Release();
protected:
AutoDevice(const std::string& name) : name_(name) {}
std::string name_;
private:
DISALLOW_COPY_AND_ASSIGN(AutoDevice);
AutoDevice(AutoDevice&& other) = delete;
};
// A list of devices we created along the way.
// - Whenever a device is created that is subject to GC'ed at the end of
// this function, add it to this list.
// - If any error has occurred, the list is destroyed, and all these devices
// are cleaned up.
// - Upon success, Release() should be called so that the created devices
// are kept.
struct AutoDeviceList {
~AutoDeviceList();
template <typename T, typename... Args>
void EmplaceBack(Args&&... args) {
devices_.emplace_back(std::make_unique<T>(std::forward<Args>(args)...));
}
void Release();
private:
std::vector<std::unique_ptr<AutoDevice>> devices_;
};
// Automatically unmap a device upon deletion.
struct AutoUnmapDevice : AutoDevice {
// On destruct, delete |name| from device mapper.
AutoUnmapDevice(android::dm::DeviceMapper* dm, const std::string& name)
: AutoDevice(name), dm_(dm) {}
AutoUnmapDevice(AutoUnmapDevice&& other) = default;
~AutoUnmapDevice();
private:
DISALLOW_COPY_AND_ASSIGN(AutoUnmapDevice);
android::dm::DeviceMapper* dm_ = nullptr;
};
// Automatically unmap an image upon deletion.
struct AutoUnmapImage : AutoDevice {
// On destruct, delete |name| from image manager.
AutoUnmapImage(android::fiemap::IImageManager* images, const std::string& name)
: AutoDevice(name), images_(images) {}
AutoUnmapImage(AutoUnmapImage&& other) = default;
~AutoUnmapImage();
private:
DISALLOW_COPY_AND_ASSIGN(AutoUnmapImage);
android::fiemap::IImageManager* images_ = nullptr;
};
} // namespace snapshot
} // namespace android