Merge "stats_event.h/c tests"

This commit is contained in:
Treehugger Robot 2020-01-22 20:50:09 +00:00 committed by Gerrit Code Review
commit 4169e9e47d
2 changed files with 363 additions and 0 deletions

View file

@ -75,3 +75,22 @@ cc_benchmark {
"libgtest_prod",
],
}
cc_test {
name: "libstatssocket_test",
srcs: ["tests/stats_event_test.cpp"],
cflags: [
"-Wall",
"-Werror",
],
static_libs: [
"libgmock",
"libstatssocket",
],
shared_libs: [
"libcutils",
"liblog",
"libutils",
],
test_suites: ["device_tests"],
}

View file

@ -0,0 +1,344 @@
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "stats_event.h"
#include <gtest/gtest.h>
#include <utils/SystemClock.h>
using std::string;
using std::vector;
// Side-effect: this function moves the start of the buffer past the read value
template <class T>
T readNext(uint8_t** buffer) {
T value = *(T*)(*buffer);
*buffer += sizeof(T);
return value;
}
void checkTypeHeader(uint8_t** buffer, uint8_t typeId, uint8_t numAnnotations = 0) {
uint8_t typeHeader = (numAnnotations << 4) | typeId;
EXPECT_EQ(readNext<uint8_t>(buffer), typeHeader);
}
template <class T>
void checkScalar(uint8_t** buffer, T expectedValue) {
EXPECT_EQ(readNext<T>(buffer), expectedValue);
}
void checkString(uint8_t** buffer, const string& expectedString) {
uint32_t size = readNext<uint32_t>(buffer);
string parsedString((char*)(*buffer), size);
EXPECT_EQ(parsedString, expectedString);
*buffer += size; // move buffer past string we just read
}
void checkByteArray(uint8_t** buffer, const vector<uint8_t>& expectedByteArray) {
uint32_t size = readNext<uint32_t>(buffer);
vector<uint8_t> parsedByteArray(*buffer, *buffer + size);
EXPECT_EQ(parsedByteArray, expectedByteArray);
*buffer += size; // move buffer past byte array we just read
}
template <class T>
void checkAnnotation(uint8_t** buffer, uint8_t annotationId, uint8_t typeId, T annotationValue) {
EXPECT_EQ(readNext<uint8_t>(buffer), annotationId);
EXPECT_EQ(readNext<uint8_t>(buffer), typeId);
checkScalar<T>(buffer, annotationValue);
}
void checkMetadata(uint8_t** buffer, uint8_t numElements, int64_t startTime, int64_t endTime,
uint32_t atomId) {
// All events start with OBJECT_TYPE id.
checkTypeHeader(buffer, OBJECT_TYPE);
// We increment by 2 because the number of elements listed in the
// serialization accounts for the timestamp and atom id as well.
checkScalar(buffer, static_cast<uint8_t>(numElements + 2));
// Check timestamp
checkTypeHeader(buffer, INT64_TYPE);
int64_t timestamp = readNext<int64_t>(buffer);
EXPECT_GE(timestamp, startTime);
EXPECT_LE(timestamp, endTime);
// Check atom id
checkTypeHeader(buffer, INT32_TYPE);
checkScalar(buffer, atomId);
}
TEST(StatsEventTest, TestScalars) {
uint32_t atomId = 100;
int32_t int32Value = -5;
int64_t int64Value = -2 * android::elapsedRealtimeNano();
float floatValue = 2.0;
bool boolValue = false;
int64_t startTime = android::elapsedRealtimeNano();
struct stats_event* event = stats_event_obtain();
stats_event_set_atom_id(event, atomId);
stats_event_write_int32(event, int32Value);
stats_event_write_int64(event, int64Value);
stats_event_write_float(event, floatValue);
stats_event_write_bool(event, boolValue);
stats_event_build(event);
int64_t endTime = android::elapsedRealtimeNano();
size_t bufferSize;
uint8_t* buffer = stats_event_get_buffer(event, &bufferSize);
uint8_t* bufferEnd = buffer + bufferSize;
checkMetadata(&buffer, /*numElements=*/4, startTime, endTime, atomId);
// check int32 element
checkTypeHeader(&buffer, INT32_TYPE);
checkScalar(&buffer, int32Value);
// check int64 element
checkTypeHeader(&buffer, INT64_TYPE);
checkScalar(&buffer, int64Value);
// check float element
checkTypeHeader(&buffer, FLOAT_TYPE);
checkScalar(&buffer, floatValue);
// check bool element
checkTypeHeader(&buffer, BOOL_TYPE);
checkScalar(&buffer, boolValue);
EXPECT_EQ(buffer, bufferEnd); // ensure that we have read the entire buffer
EXPECT_EQ(stats_event_get_errors(event), 0);
stats_event_release(event);
}
TEST(StatsEventTest, TestStrings) {
uint32_t atomId = 100;
string str = "test_string";
int64_t startTime = android::elapsedRealtimeNano();
struct stats_event* event = stats_event_obtain();
stats_event_set_atom_id(event, atomId);
stats_event_write_string8(event, str.c_str());
stats_event_build(event);
int64_t endTime = android::elapsedRealtimeNano();
size_t bufferSize;
uint8_t* buffer = stats_event_get_buffer(event, &bufferSize);
uint8_t* bufferEnd = buffer + bufferSize;
checkMetadata(&buffer, /*numElements=*/1, startTime, endTime, atomId);
checkTypeHeader(&buffer, STRING_TYPE);
checkString(&buffer, str);
EXPECT_EQ(buffer, bufferEnd); // ensure that we have read the entire buffer
EXPECT_EQ(stats_event_get_errors(event), 0);
stats_event_release(event);
}
TEST(StatsEventTest, TestByteArrays) {
uint32_t atomId = 100;
vector<uint8_t> message = {'b', 'y', 't', '\0', 'e', 's'};
int64_t startTime = android::elapsedRealtimeNano();
struct stats_event* event = stats_event_obtain();
stats_event_set_atom_id(event, atomId);
stats_event_write_byte_array(event, message.data(), message.size());
stats_event_build(event);
int64_t endTime = android::elapsedRealtimeNano();
size_t bufferSize;
uint8_t* buffer = stats_event_get_buffer(event, &bufferSize);
uint8_t* bufferEnd = buffer + bufferSize;
checkMetadata(&buffer, /*numElements=*/1, startTime, endTime, atomId);
checkTypeHeader(&buffer, BYTE_ARRAY_TYPE);
checkByteArray(&buffer, message);
EXPECT_EQ(buffer, bufferEnd); // ensure that we have read the entire buffer
EXPECT_EQ(stats_event_get_errors(event), 0);
stats_event_release(event);
}
TEST(StatsEventTest, TestAttributionChains) {
uint32_t atomId = 100;
uint8_t numNodes = 50;
uint32_t uids[numNodes];
vector<string> tags(numNodes); // storage that cTag elements point to
const char* cTags[numNodes];
for (int i = 0; i < (int)numNodes; i++) {
uids[i] = i;
tags.push_back("test" + std::to_string(i));
cTags[i] = tags[i].c_str();
}
int64_t startTime = android::elapsedRealtimeNano();
struct stats_event* event = stats_event_obtain();
stats_event_set_atom_id(event, atomId);
stats_event_write_attribution_chain(event, uids, cTags, numNodes);
stats_event_build(event);
int64_t endTime = android::elapsedRealtimeNano();
size_t bufferSize;
uint8_t* buffer = stats_event_get_buffer(event, &bufferSize);
uint8_t* bufferEnd = buffer + bufferSize;
checkMetadata(&buffer, /*numElements=*/1, startTime, endTime, atomId);
checkTypeHeader(&buffer, ATTRIBUTION_CHAIN_TYPE);
checkScalar(&buffer, numNodes);
for (int i = 0; i < numNodes; i++) {
checkScalar(&buffer, uids[i]);
checkString(&buffer, tags[i]);
}
EXPECT_EQ(buffer, bufferEnd); // ensure that we have read the entire buffer
EXPECT_EQ(stats_event_get_errors(event), 0);
stats_event_release(event);
}
TEST(StatsEventTest, TestKeyValuePairs) {
uint32_t atomId = 100;
uint8_t numPairs = 4;
struct key_value_pair pairs[numPairs];
pairs[0] = {.key = 0, .valueType = INT32_TYPE, .int32Value = -1};
pairs[1] = {.key = 1, .valueType = INT64_TYPE, .int64Value = 0x123456789};
pairs[2] = {.key = 2, .valueType = FLOAT_TYPE, .floatValue = 5.5};
string str = "test_key_value_pair_string";
pairs[3] = {.key = 3, .valueType = STRING_TYPE, .stringValue = str.c_str()};
int64_t startTime = android::elapsedRealtimeNano();
struct stats_event* event = stats_event_obtain();
stats_event_set_atom_id(event, atomId);
stats_event_write_key_value_pairs(event, pairs, numPairs);
stats_event_build(event);
int64_t endTime = android::elapsedRealtimeNano();
size_t bufferSize;
uint8_t* buffer = stats_event_get_buffer(event, &bufferSize);
uint8_t* bufferEnd = buffer + bufferSize;
checkMetadata(&buffer, /*numElements=*/1, startTime, endTime, atomId);
checkTypeHeader(&buffer, KEY_VALUE_PAIRS_TYPE);
checkScalar(&buffer, numPairs);
// first pair
checkScalar(&buffer, pairs[0].key);
checkTypeHeader(&buffer, pairs[0].valueType);
checkScalar(&buffer, pairs[0].int32Value);
// second pair
checkScalar(&buffer, pairs[1].key);
checkTypeHeader(&buffer, pairs[1].valueType);
checkScalar(&buffer, pairs[1].int64Value);
// third pair
checkScalar(&buffer, pairs[2].key);
checkTypeHeader(&buffer, pairs[2].valueType);
checkScalar(&buffer, pairs[2].floatValue);
// fourth pair
checkScalar(&buffer, pairs[3].key);
checkTypeHeader(&buffer, pairs[3].valueType);
checkString(&buffer, str);
EXPECT_EQ(buffer, bufferEnd); // ensure that we have read the entire buffer
EXPECT_EQ(stats_event_get_errors(event), 0);
stats_event_release(event);
}
TEST(StatsEventTest, TestAnnotations) {
uint32_t atomId = 100;
// first element information
bool boolValue = false;
uint8_t boolAnnotation1Id = 1;
uint8_t boolAnnotation2Id = 2;
bool boolAnnotation1Value = true;
int32_t boolAnnotation2Value = 3;
// second element information
float floatValue = -5.0;
uint8_t floatAnnotation1Id = 3;
uint8_t floatAnnotation2Id = 4;
int32_t floatAnnotation1Value = 8;
bool floatAnnotation2Value = false;
int64_t startTime = android::elapsedRealtimeNano();
struct stats_event* event = stats_event_obtain();
stats_event_set_atom_id(event, 100);
stats_event_write_bool(event, boolValue);
stats_event_add_bool_annotation(event, boolAnnotation1Id, boolAnnotation1Value);
stats_event_add_int32_annotation(event, boolAnnotation2Id, boolAnnotation2Value);
stats_event_write_float(event, floatValue);
stats_event_add_int32_annotation(event, floatAnnotation1Id, floatAnnotation1Value);
stats_event_add_bool_annotation(event, floatAnnotation2Id, floatAnnotation2Value);
stats_event_build(event);
int64_t endTime = android::elapsedRealtimeNano();
size_t bufferSize;
uint8_t* buffer = stats_event_get_buffer(event, &bufferSize);
uint8_t* bufferEnd = buffer + bufferSize;
checkMetadata(&buffer, /*numElements=*/2, startTime, endTime, atomId);
// check first element
checkTypeHeader(&buffer, BOOL_TYPE, /*numAnnotations=*/2);
checkScalar(&buffer, boolValue);
checkAnnotation(&buffer, boolAnnotation1Id, BOOL_TYPE, boolAnnotation1Value);
checkAnnotation(&buffer, boolAnnotation2Id, INT32_TYPE, boolAnnotation2Value);
// check second element
checkTypeHeader(&buffer, FLOAT_TYPE, /*numAnnotations=*/2);
checkScalar(&buffer, floatValue);
checkAnnotation(&buffer, floatAnnotation1Id, INT32_TYPE, floatAnnotation1Value);
checkAnnotation(&buffer, floatAnnotation2Id, BOOL_TYPE, floatAnnotation2Value);
EXPECT_EQ(buffer, bufferEnd); // ensure that we have read the entire buffer
EXPECT_EQ(stats_event_get_errors(event), 0);
stats_event_release(event);
}
TEST(StatsEventTest, TestNoAtomIdError) {
struct stats_event* event = stats_event_obtain();
// Don't set the atom id in order to trigger the error.
stats_event_build(event);
uint32_t errors = stats_event_get_errors(event);
EXPECT_NE(errors | ERROR_NO_ATOM_ID, 0);
stats_event_release(event);
}
TEST(StatsEventTest, TestOverflowError) {
struct stats_event* event = stats_event_obtain();
stats_event_set_atom_id(event, 100);
// Add 1000 int32s to the event. Each int32 takes 5 bytes so this will
// overflow the 4068 byte buffer.
for (int i = 0; i < 1000; i++) {
stats_event_write_int32(event, 0);
}
stats_event_build(event);
uint32_t errors = stats_event_get_errors(event);
EXPECT_NE(errors | ERROR_OVERFLOW, 0);
stats_event_release(event);
}