fastboot: add UDP protocol.

Implements a UDP protocol for fastboot, documented in
fastboot_protocol.txt.

This version of the protocol does not include multi-packet windowing,
which will likely be needed to achieve reasonable speeds over WiFi.
Since we don't have any WiFi use cases yet, we'd like to get this in
now and update the protocol later if it becomes necessary.

Usage:
  fastboot -s udp:<hostname>[:port] <command>

Bug: http://b/26154914
Change-Id: Ia5bbae6bcd6405671f594d7120b3994746d234d3
This commit is contained in:
David Pursell 2016-02-05 15:35:09 -08:00
parent 37adf180c7
commit 4601c978ca
6 changed files with 1262 additions and 12 deletions

View file

@ -32,6 +32,7 @@ LOCAL_SRC_FILES := \
protocol.cpp \
socket.cpp \
tcp.cpp \
udp.cpp \
util.cpp \
LOCAL_MODULE := fastboot
@ -114,6 +115,8 @@ LOCAL_SRC_FILES := \
socket_test.cpp \
tcp.cpp \
tcp_test.cpp \
udp.cpp \
udp_test.cpp \
LOCAL_STATIC_LIBRARIES := libbase libcutils

View file

@ -59,6 +59,7 @@
#include "fs.h"
#include "tcp.h"
#include "transport.h"
#include "udp.h"
#include "usb.h"
#ifndef O_BINARY
@ -243,22 +244,41 @@ static Transport* open_device() {
return transport;
}
Socket::Protocol protocol = Socket::Protocol::kTcp;
std::string host;
int port = tcp::kDefaultPort;
if (serial != nullptr && android::base::StartsWith(serial, "tcp:")) {
std::string error;
const char* address = serial + strlen("tcp:");
int port = 0;
if (serial != nullptr) {
const char* net_address = nullptr;
if (!android::base::ParseNetAddress(address, &host, &port, nullptr, &error)) {
fprintf(stderr, "error: Invalid network address '%s': %s\n", address, error.c_str());
return nullptr;
if (android::base::StartsWith(serial, "tcp:")) {
protocol = Socket::Protocol::kTcp;
port = tcp::kDefaultPort;
net_address = serial + strlen("tcp:");
} else if (android::base::StartsWith(serial, "udp:")) {
protocol = Socket::Protocol::kUdp;
port = udp::kDefaultPort;
net_address = serial + strlen("udp:");
}
if (net_address != nullptr) {
std::string error;
if (!android::base::ParseNetAddress(net_address, &host, &port, nullptr, &error)) {
fprintf(stderr, "error: Invalid network address '%s': %s\n", net_address,
error.c_str());
return nullptr;
}
}
}
while (true) {
if (!host.empty()) {
std::string error;
transport = tcp::Connect(host, port, &error).release();
if (protocol == Socket::Protocol::kTcp) {
transport = tcp::Connect(host, port, &error).release();
} else if (protocol == Socket::Protocol::kUdp) {
transport = udp::Connect(host, port, &error).release();
}
if (transport == nullptr && announce) {
fprintf(stderr, "error: %s\n", error.c_str());
}
@ -335,8 +355,9 @@ static void usage() {
" formatting.\n"
" -s <specific device> Specify a device. For USB, provide either\n"
" a serial number or path to device port.\n"
" For TCP, provide an address in the form\n"
" tcp:<hostname>[:port].\n"
" For ethernet, provide an address in the"
" form <protocol>:<hostname>[:port] where"
" <protocol> is either tcp or udp.\n"
" -p <product> Specify product name.\n"
" -c <cmdline> Override kernel commandline.\n"
" -i <vendor id> Specify a custom USB vendor id.\n"

View file

@ -17,9 +17,9 @@ Basic Requirements
* The protocol is entirely host-driven and synchronous (unlike the
multi-channel, bi-directional, asynchronous ADB protocol)
* TCP
* TCP or UDP
* Device must be reachable via IP.
* Device will act as the TCP server, fastboot will be the client.
* Device will act as the server, fastboot will be the client.
* Fastboot data is wrapped in a simple protocol; see below for details.
@ -217,3 +217,226 @@ Device [0x00][0x00][0x00][0x00][0x00][0x00][0x00][0x07]OKAY0.4
Host [0x00][0x00][0x00][0x00][0x00][0x00][0x00][0x0B]getvar:none
Device [0x00][0x00][0x00][0x00][0x00][0x00][0x00][0x04]OKAY
Host <disconnect>
UDP Protocol v1
---------------
The UDP protocol is more complex than TCP since we must implement reliability
to ensure no packets are lost, but the general concept of wrapping the fastboot
protocol is the same.
Overview:
1. As with TCP, the device will listen on UDP port 5554.
2. Maximum UDP packet size is negotiated during initialization.
3. The host drives all communication; the device may only send a packet as a
response to a host packet.
4. If the host does not receive a response in 500ms it will re-transmit.
-- UDP Packet format --
+----------+----+-------+-------+--------------------+
| Byte # | 0 | 1 | 2 - 3 | 4+ |
+----------+----+-------+-------+--------------------+
| Contents | ID | Flags | Seq # | Data |
+----------+----+-------+-------+--------------------+
ID Packet ID:
0x00: Error.
0x01: Query.
0x02: Initialization.
0x03: Fastboot.
Packet types are described in more detail below.
Flags Packet flags: 0 0 0 0 0 0 0 C
C=1 indicates a continuation packet; the data is too large and will
continue in the next packet.
Remaining bits are reserved for future use and must be set to 0.
Seq # 2-byte packet sequence number (big-endian). The host will increment
this by 1 with each new packet, and the device must provide the
corresponding sequence number in the response packets.
Data Packet data, not present in all packets.
-- Packet Types --
Query The host sends a query packet once on startup to sync with the device.
The host will not know the current sequence number, so the device must
respond to all query packets regardless of sequence number.
The response data field should contain a 2-byte big-endian value
giving the next expected sequence number.
Init The host sends an init packet once the query response is returned. The
device must abort any in-progress operation and prepare for a new
fastboot session. This message is meant to allow recovery if a
previous session failed, e.g. due to network error or user Ctrl+C.
The data field contains two big-endian 2-byte values, a protocol
version and the max UDP packet size (including the 4-byte header).
Both the host and device will send these values, and in each case
the minimum of the sent values must be used.
Fastboot These packets wrap the fastboot protocol. To write, the host will
send a packet with fastboot data, and the device will reply with an
empty packet as an ACK. To read, the host will send an empty packet,
and the device will reply with fastboot data. The device may not give
any data in the ACK packet.
Error The device may respond to any packet with an error packet to indicate
a UDP protocol error. The data field should contain an ASCII string
describing the error. This is the only case where a device is allowed
to return a packet ID other than the one sent by the host.
-- Packet Size --
The maximum packet size is negotiated by the host and device in the Init packet.
Devices must support at least 512-byte packets, but packet size has a direct
correlation with download speed, so devices are strongly suggested to support at
least 1024-byte packets. On a local network with 0.5ms round-trip time this will
provide transfer rates of ~2MB/s. Over WiFi it will likely be significantly
less.
Query and Initialization packets, which are sent before size negotiation is
complete, must always be 512 bytes or less.
-- Packet Re-Transmission --
The host will re-transmit any packet that does not receive a response. The
requirement of exactly one device response packet per host packet is how we
achieve reliability and in-order delivery of packets.
For simplicity of implementation, there is no windowing of multiple
unacknowledged packets in this version of the protocol. The host will continue
to send the same packet until a response is received. Windowing functionality
may be implemented in future versions if necessary to increase performance.
The first Query packet will only be attempted a small number of times, but
subsequent packets will attempt to retransmit for at least 1 minute before
giving up. This means a device may safely ignore host UDP packets for up to 1
minute during long operations, e.g. writing to flash.
-- Continuation Packets --
Any packet may set the continuation flag to indicate that the data is
incomplete. Large data such as downloading an image may require many
continuation packets. The receiver should respond to a continuation packet with
an empty packet to acknowledge receipt. See examples below.
-- Summary --
The host starts with a Query packet, then an Initialization packet, after
which only Fastboot packets are sent. Fastboot packets may contain data from
the host for writes, or from the device for reads, but not both.
Given a next expected sequence number S and a received packet P, the device
behavior should be:
if P is a Query packet:
* respond with a Query packet with S in the data field
else if P has sequence == S:
* process P and take any required action
* create a response packet R with the same ID and sequence as P, containing
any response data required.
* transmit R and save it in case of re-transmission
* increment S
else if P has sequence == S - 1:
* re-transmit the saved response packet R from above
else:
* ignore the packet
-- Examples --
In the examples below, S indicates the starting client sequence number.
Host Client
======================================================================
[Initialization, S = 0x55AA]
[Host: version 1, 2048-byte packets. Client: version 2, 1024-byte packets.]
[Resulting values to use: version = 1, max packet size = 1024]
ID Flag SeqH SeqL Data ID Flag SeqH SeqL Data
----------------------------------------------------------------------
0x01 0x00 0x00 0x00
0x01 0x00 0x00 0x00 0x55 0xAA
0x02 0x00 0x55 0xAA 0x00 0x01 0x08 0x00
0x02 0x00 0x55 0xAA 0x00 0x02 0x04 0x00
----------------------------------------------------------------------
[fastboot "getvar" commands, S = 0x0001]
ID Flags SeqH SeqL Data ID Flags SeqH SeqL Data
----------------------------------------------------------------------
0x03 0x00 0x00 0x01 getvar:version
0x03 0x00 0x00 0x01
0x03 0x00 0x00 0x02
0x03 0x00 0x00 0x02 OKAY0.4
0x03 0x00 0x00 0x03 getvar:foo
0x03 0x00 0x00 0x03
0x03 0x00 0x00 0x04
0x03 0x00 0x00 0x04 OKAY
----------------------------------------------------------------------
[fastboot "INFO" responses, S = 0x0000]
ID Flags SeqH SeqL Data ID Flags SeqH SeqL Data
----------------------------------------------------------------------
0x03 0x00 0x00 0x00 <command>
0x03 0x00 0x00 0x00
0x03 0x00 0x00 0x01
0x03 0x00 0x00 0x01 INFOWait1
0x03 0x00 0x00 0x02
0x03 0x00 0x00 0x02 INFOWait2
0x03 0x00 0x00 0x03
0x03 0x00 0x00 0x03 OKAY
----------------------------------------------------------------------
[Chunking 2100 bytes of data, max packet size = 1024, S = 0xFFFF]
ID Flag SeqH SeqL Data ID Flag SeqH SeqL Data
----------------------------------------------------------------------
0x03 0x00 0xFF 0xFF download:0000834
0x03 0x00 0xFF 0xFF
0x03 0x00 0x00 0x00
0x03 0x00 0x00 0x00 DATA0000834
0x03 0x01 0x00 0x01 <1020 bytes>
0x03 0x00 0x00 0x01
0x03 0x01 0x00 0x02 <1020 bytes>
0x03 0x00 0x00 0x02
0x03 0x00 0x00 0x03 <60 bytes>
0x03 0x00 0x00 0x03
0x03 0x00 0x00 0x04
0x03 0x00 0x00 0x04 OKAY
----------------------------------------------------------------------
[Unknown ID error, S = 0x0000]
ID Flags SeqH SeqL Data ID Flags SeqH SeqL Data
----------------------------------------------------------------------
0x10 0x00 0x00 0x00
0x00 0x00 0x00 0x00 <error message>
----------------------------------------------------------------------
[Host packet loss and retransmission, S = 0x0000]
ID Flags SeqH SeqL Data ID Flags SeqH SeqL Data
----------------------------------------------------------------------
0x03 0x00 0x00 0x00 getvar:version [lost]
0x03 0x00 0x00 0x00 getvar:version [lost]
0x03 0x00 0x00 0x00 getvar:version
0x03 0x00 0x00 0x00
0x03 0x00 0x00 0x01
0x03 0x00 0x00 0x01 OKAY0.4
----------------------------------------------------------------------
[Client packet loss and retransmission, S = 0x0000]
ID Flags SeqH SeqL Data ID Flags SeqH SeqL Data
----------------------------------------------------------------------
0x03 0x00 0x00 0x00 getvar:version
0x03 0x00 0x00 0x00 [lost]
0x03 0x00 0x00 0x00 getvar:version
0x03 0x00 0x00 0x00 [lost]
0x03 0x00 0x00 0x00 getvar:version
0x03 0x00 0x00 0x00
0x03 0x00 0x00 0x01
0x03 0x00 0x00 0x01 OKAY0.4
----------------------------------------------------------------------
[Host packet delayed, S = 0x0000]
ID Flags SeqH SeqL Data ID Flags SeqH SeqL Data
----------------------------------------------------------------------
0x03 0x00 0x00 0x00 getvar:version [delayed]
0x03 0x00 0x00 0x00 getvar:version
0x03 0x00 0x00 0x00
0x03 0x00 0x00 0x01
0x03 0x00 0x00 0x01 OKAY0.4
0x03 0x00 0x00 0x00 getvar:version [arrives late with old seq#, is ignored]

391
fastboot/udp.cpp Normal file
View file

@ -0,0 +1,391 @@
/*
* Copyright (C) 2015 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
// This file implements the fastboot UDP protocol; see fastboot_protocol.txt for documentation.
#include "udp.h"
#include <errno.h>
#include <stdio.h>
#include <list>
#include <memory>
#include <vector>
#include <android-base/macros.h>
#include <android-base/stringprintf.h>
#include "socket.h"
namespace udp {
using namespace internal;
constexpr size_t kMinPacketSize = 512;
constexpr size_t kHeaderSize = 4;
enum Index {
kIndexId = 0,
kIndexFlags = 1,
kIndexSeqH = 2,
kIndexSeqL = 3,
};
// Extracts a big-endian uint16_t from a byte array.
static uint16_t ExtractUint16(const uint8_t* bytes) {
return (static_cast<uint16_t>(bytes[0]) << 8) | bytes[1];
}
// Packet header handling.
class Header {
public:
Header();
~Header() = default;
uint8_t id() const { return bytes_[kIndexId]; }
const uint8_t* bytes() const { return bytes_; }
void Set(uint8_t id, uint16_t sequence, Flag flag);
// Checks whether |response| is a match for this header.
bool Matches(const uint8_t* response);
private:
uint8_t bytes_[kHeaderSize];
};
Header::Header() {
Set(kIdError, 0, kFlagNone);
}
void Header::Set(uint8_t id, uint16_t sequence, Flag flag) {
bytes_[kIndexId] = id;
bytes_[kIndexFlags] = flag;
bytes_[kIndexSeqH] = sequence >> 8;
bytes_[kIndexSeqL] = sequence;
}
bool Header::Matches(const uint8_t* response) {
// Sequence numbers must be the same to match, but the response ID can either be the same
// or an error response which is always accepted.
return bytes_[kIndexSeqH] == response[kIndexSeqH] &&
bytes_[kIndexSeqL] == response[kIndexSeqL] &&
(bytes_[kIndexId] == response[kIndexId] || response[kIndexId] == kIdError);
}
// Implements the Transport interface to work with the fastboot engine.
class UdpTransport : public Transport {
public:
// Factory function so we can return nullptr if initialization fails.
static std::unique_ptr<UdpTransport> NewTransport(std::unique_ptr<Socket> socket,
std::string* error);
~UdpTransport() override = default;
ssize_t Read(void* data, size_t length) override;
ssize_t Write(const void* data, size_t length) override;
int Close() override;
private:
UdpTransport(std::unique_ptr<Socket> socket) : socket_(std::move(socket)) {}
// Performs the UDP initialization procedure. Returns true on success.
bool InitializeProtocol(std::string* error);
// Sends |length| bytes from |data| and waits for the response packet up to |attempts| times.
// Continuation packets are handled automatically and any return data is written to |rx_data|.
// Excess bytes that cannot fit in |rx_data| are dropped.
// On success, returns the number of response data bytes received, which may be greater than
// |rx_length|. On failure, returns -1 and fills |error| on failure.
ssize_t SendData(Id id, const uint8_t* tx_data, size_t tx_length, uint8_t* rx_data,
size_t rx_length, int attempts, std::string* error);
// Helper for SendData(); sends a single packet and handles the response. |header| specifies
// the initial outgoing packet information but may be modified by this function.
ssize_t SendSinglePacketHelper(Header* header, const uint8_t* tx_data, size_t tx_length,
uint8_t* rx_data, size_t rx_length, int attempts,
std::string* error);
std::unique_ptr<Socket> socket_;
int sequence_ = -1;
size_t max_data_length_ = kMinPacketSize - kHeaderSize;
std::vector<uint8_t> rx_packet_;
DISALLOW_COPY_AND_ASSIGN(UdpTransport);
};
std::unique_ptr<UdpTransport> UdpTransport::NewTransport(std::unique_ptr<Socket> socket,
std::string* error) {
std::unique_ptr<UdpTransport> transport(new UdpTransport(std::move(socket)));
if (!transport->InitializeProtocol(error)) {
return nullptr;
}
return transport;
}
bool UdpTransport::InitializeProtocol(std::string* error) {
uint8_t rx_data[4];
sequence_ = 0;
rx_packet_.resize(kMinPacketSize);
// First send the query packet to sync with the target. Only attempt this a small number of
// times so we can fail out quickly if the target isn't available.
ssize_t rx_bytes = SendData(kIdDeviceQuery, nullptr, 0, rx_data, sizeof(rx_data),
kMaxConnectAttempts, error);
if (rx_bytes == -1) {
return false;
} else if (rx_bytes < 2) {
*error = "invalid query response from target";
return false;
}
// The first two bytes contain the next expected sequence number.
sequence_ = ExtractUint16(rx_data);
// Now send the initialization packet with our version and maximum packet size.
uint8_t init_data[] = {kProtocolVersion >> 8, kProtocolVersion & 0xFF,
kHostMaxPacketSize >> 8, kHostMaxPacketSize & 0xFF};
rx_bytes = SendData(kIdInitialization, init_data, sizeof(init_data), rx_data, sizeof(rx_data),
kMaxTransmissionAttempts, error);
if (rx_bytes == -1) {
return false;
} else if (rx_bytes < 4) {
*error = "invalid initialization response from target";
return false;
}
// The first two data bytes contain the version, the second two bytes contain the target max
// supported packet size, which must be at least 512 bytes.
uint16_t version = ExtractUint16(rx_data);
if (version < kProtocolVersion) {
*error = android::base::StringPrintf("target reported invalid protocol version %d",
version);
return false;
}
uint16_t packet_size = ExtractUint16(rx_data + 2);
if (packet_size < kMinPacketSize) {
*error = android::base::StringPrintf("target reported invalid packet size %d", packet_size);
return false;
}
packet_size = std::min(kHostMaxPacketSize, packet_size);
max_data_length_ = packet_size - kHeaderSize;
rx_packet_.resize(packet_size);
return true;
}
// SendData() is just responsible for chunking |data| into packets until it's all been sent.
// Per-packet timeout/retransmission logic is done in SendSinglePacketHelper().
ssize_t UdpTransport::SendData(Id id, const uint8_t* tx_data, size_t tx_length, uint8_t* rx_data,
size_t rx_length, int attempts, std::string* error) {
if (socket_ == nullptr) {
*error = "socket is closed";
return -1;
}
Header header;
size_t packet_data_length;
ssize_t ret = 0;
// We often send header-only packets with no data as part of the protocol, so always send at
// least once even if |length| == 0, then repeat until we've sent all of |data|.
do {
// Set the continuation flag and truncate packet data if needed.
if (tx_length > max_data_length_) {
packet_data_length = max_data_length_;
header.Set(id, sequence_, kFlagContinuation);
} else {
packet_data_length = tx_length;
header.Set(id, sequence_, kFlagNone);
}
ssize_t bytes = SendSinglePacketHelper(&header, tx_data, packet_data_length, rx_data,
rx_length, attempts, error);
// Advance our read and write buffers for the next packet. Keep going even if we run out
// of receive buffer space so we can detect overflows.
if (bytes == -1) {
return -1;
} else if (static_cast<size_t>(bytes) < rx_length) {
rx_data += bytes;
rx_length -= bytes;
} else {
rx_data = nullptr;
rx_length = 0;
}
tx_length -= packet_data_length;
tx_data += packet_data_length;
ret += bytes;
} while (tx_length > 0);
return ret;
}
ssize_t UdpTransport::SendSinglePacketHelper(
Header* header, const uint8_t* tx_data, size_t tx_length, uint8_t* rx_data,
size_t rx_length, const int attempts, std::string* error) {
ssize_t total_data_bytes = 0;
error->clear();
int attempts_left = attempts;
while (attempts_left > 0) {
if (!socket_->Send({{header->bytes(), kHeaderSize}, {tx_data, tx_length}})) {
*error = Socket::GetErrorMessage();
return -1;
}
// Keep receiving until we get a matching response or we timeout.
ssize_t bytes = 0;
do {
bytes = socket_->Receive(rx_packet_.data(), rx_packet_.size(), kResponseTimeoutMs);
if (bytes == -1) {
if (socket_->ReceiveTimedOut()) {
break;
}
*error = Socket::GetErrorMessage();
return -1;
} else if (bytes < static_cast<ssize_t>(kHeaderSize)) {
*error = "protocol error: incomplete header";
return -1;
}
} while (!header->Matches(rx_packet_.data()));
if (socket_->ReceiveTimedOut()) {
--attempts_left;
continue;
}
++sequence_;
// Save to |error| or |rx_data| as appropriate.
if (rx_packet_[kIndexId] == kIdError) {
error->append(rx_packet_.data() + kHeaderSize, rx_packet_.data() + bytes);
} else {
total_data_bytes += bytes - kHeaderSize;
size_t rx_data_bytes = std::min<size_t>(bytes - kHeaderSize, rx_length);
if (rx_data_bytes > 0) {
memcpy(rx_data, rx_packet_.data() + kHeaderSize, rx_data_bytes);
rx_data += rx_data_bytes;
rx_length -= rx_data_bytes;
}
}
// If the response has a continuation flag we need to prompt for more data by sending
// an empty packet.
if (rx_packet_[kIndexFlags] & kFlagContinuation) {
// We got a valid response so reset our attempt counter.
attempts_left = attempts;
header->Set(rx_packet_[kIndexId], sequence_, kFlagNone);
tx_data = nullptr;
tx_length = 0;
continue;
}
break;
}
if (attempts_left <= 0) {
*error = "no response from target";
return -1;
}
if (rx_packet_[kIndexId] == kIdError) {
*error = "target reported error: " + *error;
return -1;
}
return total_data_bytes;
}
ssize_t UdpTransport::Read(void* data, size_t length) {
// Read from the target by sending an empty packet.
std::string error;
ssize_t bytes = SendData(kIdFastboot, nullptr, 0, reinterpret_cast<uint8_t*>(data), length,
kMaxTransmissionAttempts, &error);
if (bytes == -1) {
fprintf(stderr, "UDP error: %s\n", error.c_str());
return -1;
} else if (static_cast<size_t>(bytes) > length) {
// Fastboot protocol error: the target sent more data than our fastboot engine was prepared
// to receive.
fprintf(stderr, "UDP error: receive overflow, target sent too much fastboot data\n");
return -1;
}
return bytes;
}
ssize_t UdpTransport::Write(const void* data, size_t length) {
std::string error;
ssize_t bytes = SendData(kIdFastboot, reinterpret_cast<const uint8_t*>(data), length, nullptr,
0, kMaxTransmissionAttempts, &error);
if (bytes == -1) {
fprintf(stderr, "UDP error: %s\n", error.c_str());
return -1;
} else if (bytes > 0) {
// UDP protocol error: only empty ACK packets are allowed when writing to a device.
fprintf(stderr, "UDP error: target sent fastboot data out-of-turn\n");
return -1;
}
return length;
}
int UdpTransport::Close() {
if (socket_ == nullptr) {
return 0;
}
int result = socket_->Close();
socket_.reset();
return result;
}
std::unique_ptr<Transport> Connect(const std::string& hostname, int port, std::string* error) {
return internal::Connect(Socket::NewClient(Socket::Protocol::kUdp, hostname, port, error),
error);
}
namespace internal {
std::unique_ptr<Transport> Connect(std::unique_ptr<Socket> sock, std::string* error) {
if (sock == nullptr) {
// If Socket creation failed |error| is already set.
return nullptr;
}
return UdpTransport::NewTransport(std::move(sock), error);
}
} // namespace internal
} // namespace udp

81
fastboot/udp.h Normal file
View file

@ -0,0 +1,81 @@
/*
* Copyright (C) 2015 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef UDP_H_
#define UDP_H_
#include <memory>
#include <string>
#include "socket.h"
#include "transport.h"
namespace udp {
constexpr int kDefaultPort = 5554;
// Returns a newly allocated Transport object connected to |hostname|:|port|. On failure, |error| is
// filled and nullptr is returned.
std::unique_ptr<Transport> Connect(const std::string& hostname, int port, std::string* error);
// Internal namespace for test use only.
namespace internal {
constexpr uint16_t kProtocolVersion = 1;
// This will be negotiated with the device so may end up being smaller.
constexpr uint16_t kHostMaxPacketSize = 8192;
// Retransmission constants. Retransmission timeout must be at least 500ms, and the host must
// attempt to send packets for at least 1 minute once the device has connected. See
// fastboot_protocol.txt for more information.
constexpr int kResponseTimeoutMs = 500;
constexpr int kMaxConnectAttempts = 4;
constexpr int kMaxTransmissionAttempts = 60 * 1000 / kResponseTimeoutMs;
enum Id : uint8_t {
kIdError = 0x00,
kIdDeviceQuery = 0x01,
kIdInitialization = 0x02,
kIdFastboot = 0x03
};
enum Flag : uint8_t {
kFlagNone = 0x00,
kFlagContinuation = 0x01
};
// Creates a UDP Transport object using a given Socket. Used for unit tests to create a Transport
// object that uses a SocketMock.
std::unique_ptr<Transport> Connect(std::unique_ptr<Socket> sock, std::string* error);
} // namespace internal
} // namespace udp
#endif // UDP_H_

531
fastboot/udp_test.cpp Normal file
View file

@ -0,0 +1,531 @@
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "udp.h"
#include <gtest/gtest.h>
#include "socket.h"
#include "socket_mock.h"
using namespace udp;
using namespace udp::internal;
// Some possible corner case sequence numbers we want to check.
static const uint16_t kTestSequenceNumbers[] = {0x0000, 0x0001, 0x00FF, 0x0100,
0x7FFF, 0x8000, 0xFFFF};
// Converts |value| to a binary big-endian string.
static std::string PacketValue(uint16_t value) {
return std::string{static_cast<char>(value >> 8), static_cast<char>(value)};
}
// Returns an Error packet.
static std::string ErrorPacket(uint16_t sequence, const std::string& message = "",
char flags = kFlagNone) {
return std::string{kIdError, flags} + PacketValue(sequence) + message;
}
// Returns a Query packet with no data.
static std::string QueryPacket(uint16_t sequence) {
return std::string{kIdDeviceQuery, kFlagNone} + PacketValue(sequence);
}
// Returns a Query packet with a 2-byte |new_sequence|.
static std::string QueryPacket(uint16_t sequence, uint16_t new_sequence) {
return std::string{kIdDeviceQuery, kFlagNone} + PacketValue(sequence) +
PacketValue(new_sequence);
}
// Returns an Init packet with a 2-byte |version| and |max_packet_size|.
static std::string InitPacket(uint16_t sequence, uint16_t version, uint16_t max_packet_size) {
return std::string{kIdInitialization, kFlagNone} + PacketValue(sequence) +
PacketValue(version) + PacketValue(max_packet_size);
}
// Returns a Fastboot packet with |data|.
static std::string FastbootPacket(uint16_t sequence, const std::string& data = "",
char flags = kFlagNone) {
return std::string{kIdFastboot, flags} + PacketValue(sequence) + data;
}
// Fixture class to test protocol initialization. Usage is to set up the expected calls to the
// SocketMock object then call UdpConnect() and check the result.
class UdpConnectTest : public ::testing::Test {
public:
UdpConnectTest() : mock_socket_(new SocketMock) {}
// Run the initialization, return whether it was successful or not. This passes ownership of
// the current |mock_socket_| but allocates a new one for re-use.
bool UdpConnect(std::string* error = nullptr) {
std::string local_error;
if (error == nullptr) {
error = &local_error;
}
std::unique_ptr<Transport> transport(Connect(std::move(mock_socket_), error));
mock_socket_.reset(new SocketMock);
return transport != nullptr && error->empty();
}
protected:
std::unique_ptr<SocketMock> mock_socket_;
};
// Tests a successful protocol initialization with various starting sequence numbers.
TEST_F(UdpConnectTest, InitializationSuccess) {
for (uint16_t seq : kTestSequenceNumbers) {
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceive(QueryPacket(0, seq));
mock_socket_->ExpectSend(InitPacket(seq, kProtocolVersion, kHostMaxPacketSize));
mock_socket_->AddReceive(InitPacket(seq, kProtocolVersion, 1024));
EXPECT_TRUE(UdpConnect());
}
}
// Tests continuation packets during initialization.
TEST_F(UdpConnectTest, InitializationContinuationSuccess) {
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceive(std::string{kIdDeviceQuery, kFlagContinuation, 0, 0, 0x44});
mock_socket_->ExpectSend(std::string{kIdDeviceQuery, kFlagNone, 0, 1});
mock_socket_->AddReceive(std::string{kIdDeviceQuery, kFlagNone, 0, 1, 0x55});
mock_socket_->ExpectSend(InitPacket(0x4455, kProtocolVersion, kHostMaxPacketSize));
mock_socket_->AddReceive(std::string{kIdInitialization, kFlagContinuation, 0x44, 0x55, 0});
mock_socket_->ExpectSend(std::string{kIdInitialization, kFlagNone, 0x44, 0x56});
mock_socket_->AddReceive(std::string{kIdInitialization, kFlagContinuation, 0x44, 0x56, 1});
mock_socket_->ExpectSend(std::string{kIdInitialization, kFlagNone, 0x44, 0x57});
mock_socket_->AddReceive(std::string{kIdInitialization, kFlagContinuation, 0x44, 0x57, 2});
mock_socket_->ExpectSend(std::string{kIdInitialization, kFlagNone, 0x44, 0x58});
mock_socket_->AddReceive(std::string{kIdInitialization, kFlagNone, 0x44, 0x58, 0});
EXPECT_TRUE(UdpConnect());
}
// Tests a mismatched version number; as long as the minimum of the two versions is supported
// we should allow the connection.
TEST_F(UdpConnectTest, InitializationVersionMismatch) {
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceive(QueryPacket(0, 0));
mock_socket_->ExpectSend(InitPacket(0, kProtocolVersion, kHostMaxPacketSize));
mock_socket_->AddReceive(InitPacket(0, 2, 1024));
EXPECT_TRUE(UdpConnect());
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceive(QueryPacket(0, 0));
mock_socket_->ExpectSend(InitPacket(0, kProtocolVersion, kHostMaxPacketSize));
mock_socket_->AddReceive(InitPacket(0, 0, 1024));
EXPECT_FALSE(UdpConnect());
}
TEST_F(UdpConnectTest, QueryResponseTimeoutFailure) {
for (int i = 0; i < kMaxConnectAttempts; ++i) {
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceiveTimeout();
}
EXPECT_FALSE(UdpConnect());
}
TEST_F(UdpConnectTest, QueryResponseReceiveFailure) {
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceiveFailure();
EXPECT_FALSE(UdpConnect());
}
TEST_F(UdpConnectTest, InitResponseTimeoutFailure) {
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceive(QueryPacket(0, 0));
for (int i = 0; i < kMaxTransmissionAttempts; ++i) {
mock_socket_->ExpectSend(InitPacket(0, kProtocolVersion, kHostMaxPacketSize));
mock_socket_->AddReceiveTimeout();
}
EXPECT_FALSE(UdpConnect());
}
TEST_F(UdpConnectTest, InitResponseReceiveFailure) {
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceive(QueryPacket(0, 0));
mock_socket_->ExpectSend(InitPacket(0, kProtocolVersion, kHostMaxPacketSize));
mock_socket_->AddReceiveFailure();
EXPECT_FALSE(UdpConnect());
}
// Tests that we can recover up to the maximum number of allowed retries.
TEST_F(UdpConnectTest, ResponseRecovery) {
// The device query packet can recover from up to (kMaxConnectAttempts - 1) timeouts.
for (int i = 0; i < kMaxConnectAttempts - 1; ++i) {
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceiveTimeout();
}
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceive(QueryPacket(0, 0));
// Subsequent packets try up to (kMaxTransmissionAttempts - 1) times.
for (int i = 0; i < kMaxTransmissionAttempts - 1; ++i) {
mock_socket_->ExpectSend(InitPacket(0, kProtocolVersion, kHostMaxPacketSize));
mock_socket_->AddReceiveTimeout();
}
mock_socket_->ExpectSend(InitPacket(0, kProtocolVersion, kHostMaxPacketSize));
mock_socket_->AddReceive(InitPacket(0, kProtocolVersion, 1024));
EXPECT_TRUE(UdpConnect());
}
// Tests that the host can handle receiving additional bytes for forward compatibility.
TEST_F(UdpConnectTest, ExtraResponseDataSuccess) {
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceive(QueryPacket(0, 0) + "foo");
mock_socket_->ExpectSend(InitPacket(0, kProtocolVersion, kHostMaxPacketSize));
mock_socket_->AddReceive(InitPacket(0, kProtocolVersion, 1024) + "bar");
EXPECT_TRUE(UdpConnect());
}
// Tests mismatched response sequence numbers. A wrong sequence number is interpreted as a previous
// retransmission and just ignored so we should be able to recover.
TEST_F(UdpConnectTest, WrongSequenceRecovery) {
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceive(QueryPacket(1, 0));
mock_socket_->AddReceive(QueryPacket(0, 0));
mock_socket_->ExpectSend(InitPacket(0, kProtocolVersion, kHostMaxPacketSize));
mock_socket_->AddReceive(InitPacket(1, kProtocolVersion, 1024));
mock_socket_->AddReceive(InitPacket(0, kProtocolVersion, 1024));
EXPECT_TRUE(UdpConnect());
}
// Tests mismatched response IDs. This should also be interpreted as a retransmission and ignored.
TEST_F(UdpConnectTest, WrongIdRecovery) {
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceive(FastbootPacket(0));
mock_socket_->AddReceive(QueryPacket(0, 0));
mock_socket_->ExpectSend(InitPacket(0, kProtocolVersion, kHostMaxPacketSize));
mock_socket_->AddReceive(FastbootPacket(0));
mock_socket_->AddReceive(InitPacket(0, kProtocolVersion, 1024));
EXPECT_TRUE(UdpConnect());
}
// Tests an invalid query response. Query responses must have at least 2 bytes of data.
TEST_F(UdpConnectTest, InvalidQueryResponseFailure) {
std::string error;
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceive(QueryPacket(0));
EXPECT_FALSE(UdpConnect(&error));
EXPECT_EQ("invalid query response from target", error);
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceive(QueryPacket(0) + std::string{0x00});
EXPECT_FALSE(UdpConnect(&error));
EXPECT_EQ("invalid query response from target", error);
}
// Tests an invalid initialization response. Max packet size must be at least 512 bytes.
TEST_F(UdpConnectTest, InvalidInitResponseFailure) {
std::string error;
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceive(QueryPacket(0, 0));
mock_socket_->ExpectSend(InitPacket(0, kProtocolVersion, kHostMaxPacketSize));
mock_socket_->AddReceive(InitPacket(0, kProtocolVersion, 511));
EXPECT_FALSE(UdpConnect(&error));
EXPECT_EQ("target reported invalid packet size 511", error);
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceive(QueryPacket(0, 0));
mock_socket_->ExpectSend(InitPacket(0, kProtocolVersion, kHostMaxPacketSize));
mock_socket_->AddReceive(InitPacket(0, 0, 1024));
EXPECT_FALSE(UdpConnect(&error));
EXPECT_EQ("target reported invalid protocol version 0", error);
}
TEST_F(UdpConnectTest, ErrorResponseFailure) {
std::string error;
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceive(ErrorPacket(0, "error1"));
EXPECT_FALSE(UdpConnect(&error));
EXPECT_NE(std::string::npos, error.find("error1"));
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceive(QueryPacket(0, 0));
mock_socket_->ExpectSend(InitPacket(0, kProtocolVersion, kHostMaxPacketSize));
mock_socket_->AddReceive(ErrorPacket(0, "error2"));
EXPECT_FALSE(UdpConnect(&error));
EXPECT_NE(std::string::npos, error.find("error2"));
}
// Tests an error response with continuation flag.
TEST_F(UdpConnectTest, ErrorContinuationFailure) {
std::string error;
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceive(ErrorPacket(0, "error1", kFlagContinuation));
mock_socket_->ExpectSend(ErrorPacket(1));
mock_socket_->AddReceive(ErrorPacket(1, " ", kFlagContinuation));
mock_socket_->ExpectSend(ErrorPacket(2));
mock_socket_->AddReceive(ErrorPacket(2, "error2"));
EXPECT_FALSE(UdpConnect(&error));
EXPECT_NE(std::string::npos, error.find("error1 error2"));
}
// Fixture class to test UDP Transport read/write functionality.
class UdpTest : public ::testing::Test {
public:
void SetUp() override {
// Create |transport_| starting at sequence 0 with 512 byte max packet size. Tests can call
// InitializeTransport() again to change settings.
ASSERT_TRUE(InitializeTransport(0, 512));
}
// Sets up |mock_socket_| to correctly initialize the protocol and creates |transport_|. This
// can be called multiple times in a test if needed.
bool InitializeTransport(uint16_t starting_sequence, int device_max_packet_size = 512) {
mock_socket_ = new SocketMock;
mock_socket_->ExpectSend(QueryPacket(0));
mock_socket_->AddReceive(QueryPacket(0, starting_sequence));
mock_socket_->ExpectSend(
InitPacket(starting_sequence, kProtocolVersion, kHostMaxPacketSize));
mock_socket_->AddReceive(
InitPacket(starting_sequence, kProtocolVersion, device_max_packet_size));
std::string error;
transport_ = Connect(std::unique_ptr<Socket>(mock_socket_), &error);
return transport_ != nullptr && error.empty();
}
// Writes |message| to |transport_|, returns true on success.
bool Write(const std::string& message) {
return transport_->Write(message.data(), message.length()) ==
static_cast<ssize_t>(message.length());
}
// Reads from |transport_|, returns true if it matches |message|.
bool Read(const std::string& message) {
std::string buffer(message.length(), '\0');
return transport_->Read(&buffer[0], buffer.length()) ==
static_cast<ssize_t>(message.length()) && buffer == message;
}
protected:
// |mock_socket_| is a raw pointer here because we transfer ownership to |transport_| but we
// need to retain a pointer to set send and receive expectations.
SocketMock* mock_socket_ = nullptr;
std::unique_ptr<Transport> transport_;
};
// Tests sequence behavior with various starting sequence numbers.
TEST_F(UdpTest, SequenceIncrementCheck) {
for (uint16_t seq : kTestSequenceNumbers) {
ASSERT_TRUE(InitializeTransport(seq));
for (int i = 0; i < 10; ++i) {
mock_socket_->ExpectSend(FastbootPacket(++seq, "foo"));
mock_socket_->AddReceive(FastbootPacket(seq, ""));
mock_socket_->ExpectSend(FastbootPacket(++seq, ""));
mock_socket_->AddReceive(FastbootPacket(seq, "bar"));
EXPECT_TRUE(Write("foo"));
EXPECT_TRUE(Read("bar"));
}
}
}
// Tests sending and receiving a few small packets.
TEST_F(UdpTest, ReadAndWriteSmallPackets) {
mock_socket_->ExpectSend(FastbootPacket(1, "foo"));
mock_socket_->AddReceive(FastbootPacket(1, ""));
mock_socket_->ExpectSend(FastbootPacket(2, ""));
mock_socket_->AddReceive(FastbootPacket(2, "bar"));
EXPECT_TRUE(Write("foo"));
EXPECT_TRUE(Read("bar"));
mock_socket_->ExpectSend(FastbootPacket(3, "12345 67890"));
mock_socket_->AddReceive(FastbootPacket(3));
mock_socket_->ExpectSend(FastbootPacket(4, "\x01\x02\x03\x04\x05"));
mock_socket_->AddReceive(FastbootPacket(4));
EXPECT_TRUE(Write("12345 67890"));
EXPECT_TRUE(Write("\x01\x02\x03\x04\x05"));
// Reads are done by sending empty packets.
mock_socket_->ExpectSend(FastbootPacket(5));
mock_socket_->AddReceive(FastbootPacket(5, "foo bar baz"));
mock_socket_->ExpectSend(FastbootPacket(6));
mock_socket_->AddReceive(FastbootPacket(6, "\x01\x02\x03\x04\x05"));
EXPECT_TRUE(Read("foo bar baz"));
EXPECT_TRUE(Read("\x01\x02\x03\x04\x05"));
}
TEST_F(UdpTest, ResponseTimeoutFailure) {
for (int i = 0; i < kMaxTransmissionAttempts; ++i) {
mock_socket_->ExpectSend(FastbootPacket(1, "foo"));
mock_socket_->AddReceiveTimeout();
}
EXPECT_FALSE(Write("foo"));
}
TEST_F(UdpTest, ResponseReceiveFailure) {
mock_socket_->ExpectSend(FastbootPacket(1, "foo"));
mock_socket_->AddReceiveFailure();
EXPECT_FALSE(Write("foo"));
}
TEST_F(UdpTest, ResponseTimeoutRecovery) {
for (int i = 0; i < kMaxTransmissionAttempts - 1; ++i) {
mock_socket_->ExpectSend(FastbootPacket(1, "foo"));
mock_socket_->AddReceiveTimeout();
}
mock_socket_->ExpectSend(FastbootPacket(1, "foo"));
mock_socket_->AddReceive(FastbootPacket(1, ""));
EXPECT_TRUE(Write("foo"));
}
// Tests continuation packets for various max packet sizes.
// The important part of this test is that regardless of what kind of packet fragmentation happens
// at the socket layer, a single call to Transport::Read() and Transport::Write() is all the
// fastboot code needs to do.
TEST_F(UdpTest, ContinuationPackets) {
for (uint16_t max_packet_size : {512, 1024, 1200}) {
ASSERT_TRUE(InitializeTransport(0, max_packet_size));
// Initialize the data we want to send. Use (size - 4) to leave room for the header.
size_t max_data_size = max_packet_size - 4;
std::string data(max_data_size * 3, '\0');
for (size_t i = 0; i < data.length(); ++i) {
data[i] = i;
}
std::string chunks[] = {data.substr(0, max_data_size),
data.substr(max_data_size, max_data_size),
data.substr(max_data_size * 2, max_data_size)};
// Write data: split into 3 UDP packets, each of which will be ACKed.
mock_socket_->ExpectSend(FastbootPacket(1, chunks[0], kFlagContinuation));
mock_socket_->AddReceive(FastbootPacket(1));
mock_socket_->ExpectSend(FastbootPacket(2, chunks[1], kFlagContinuation));
mock_socket_->AddReceive(FastbootPacket(2));
mock_socket_->ExpectSend(FastbootPacket(3, chunks[2]));
mock_socket_->AddReceive(FastbootPacket(3));
EXPECT_TRUE(Write(data));
// Same thing for reading the data.
mock_socket_->ExpectSend(FastbootPacket(4));
mock_socket_->AddReceive(FastbootPacket(4, chunks[0], kFlagContinuation));
mock_socket_->ExpectSend(FastbootPacket(5));
mock_socket_->AddReceive(FastbootPacket(5, chunks[1], kFlagContinuation));
mock_socket_->ExpectSend(FastbootPacket(6));
mock_socket_->AddReceive(FastbootPacket(6, chunks[2]));
EXPECT_TRUE(Read(data));
}
}
// Tests that the continuation bit is respected even if the packet isn't max size.
TEST_F(UdpTest, SmallContinuationPackets) {
mock_socket_->ExpectSend(FastbootPacket(1));
mock_socket_->AddReceive(FastbootPacket(1, "foo", kFlagContinuation));
mock_socket_->ExpectSend(FastbootPacket(2));
mock_socket_->AddReceive(FastbootPacket(2, "bar"));
EXPECT_TRUE(Read("foobar"));
}
// Tests receiving an error packet mid-continuation.
TEST_F(UdpTest, ContinuationPacketError) {
mock_socket_->ExpectSend(FastbootPacket(1));
mock_socket_->AddReceive(FastbootPacket(1, "foo", kFlagContinuation));
mock_socket_->ExpectSend(FastbootPacket(2));
mock_socket_->AddReceive(ErrorPacket(2, "test error"));
EXPECT_FALSE(Read("foo"));
}
// Tests timeout during a continuation sequence.
TEST_F(UdpTest, ContinuationTimeoutRecovery) {
mock_socket_->ExpectSend(FastbootPacket(1));
mock_socket_->AddReceive(FastbootPacket(1, "foo", kFlagContinuation));
mock_socket_->ExpectSend(FastbootPacket(2));
mock_socket_->AddReceiveTimeout();
mock_socket_->ExpectSend(FastbootPacket(2));
mock_socket_->AddReceive(FastbootPacket(2, "bar"));
EXPECT_TRUE(Read("foobar"));
}
// Tests read overflow returns -1 to indicate the failure.
TEST_F(UdpTest, MultipleReadPacket) {
mock_socket_->ExpectSend(FastbootPacket(1));
mock_socket_->AddReceive(FastbootPacket(1, "foobarbaz"));
char buffer[3];
EXPECT_EQ(-1, transport_->Read(buffer, 3));
}
// Tests that packets arriving out-of-order are ignored.
TEST_F(UdpTest, IgnoreOutOfOrderPackets) {
mock_socket_->ExpectSend(FastbootPacket(1));
mock_socket_->AddReceive(FastbootPacket(0, "sequence too low"));
mock_socket_->AddReceive(FastbootPacket(2, "sequence too high"));
mock_socket_->AddReceive(QueryPacket(1));
mock_socket_->AddReceive(FastbootPacket(1, "correct"));
EXPECT_TRUE(Read("correct"));
}
// Tests that an error response with the correct sequence number causes immediate failure.
TEST_F(UdpTest, ErrorResponse) {
// Error packets with the wrong sequence number should be ignored like any other packet.
mock_socket_->ExpectSend(FastbootPacket(1, "foo"));
mock_socket_->AddReceive(ErrorPacket(0, "ignored error"));
mock_socket_->AddReceive(FastbootPacket(1));
EXPECT_TRUE(Write("foo"));
// Error packets with the correct sequence should abort immediately without retransmission.
mock_socket_->ExpectSend(FastbootPacket(2, "foo"));
mock_socket_->AddReceive(ErrorPacket(2, "test error"));
EXPECT_FALSE(Write("foo"));
}
// Tests that attempting to use a closed transport returns -1 without making any socket calls.
TEST_F(UdpTest, CloseTransport) {
char buffer[32];
EXPECT_EQ(0, transport_->Close());
EXPECT_EQ(-1, transport_->Write("foo", 3));
EXPECT_EQ(-1, transport_->Read(buffer, sizeof(buffer)));
}