* commit 'e6b0c566762dbea1c45198d15ecc5e8a59378d73': Add comment to discourage use of cutils/atomic.h.
This commit is contained in:
commit
4b9f899bf1
1 changed files with 33 additions and 2 deletions
|
@ -25,8 +25,20 @@ extern "C" {
|
|||
#endif
|
||||
|
||||
/*
|
||||
* A handful of basic atomic operations. The appropriate pthread
|
||||
* functions should be used instead of these whenever possible.
|
||||
* A handful of basic atomic operations.
|
||||
* THESE ARE HERE FOR LEGACY REASONS ONLY. AVOID.
|
||||
*
|
||||
* PREFERRED ALTERNATIVES:
|
||||
* - Use C++/C/pthread locks/mutexes whenever there is not a
|
||||
* convincing reason to do otherwise. Note that very clever and
|
||||
* complicated, but correct, lock-free code is often slower than
|
||||
* using locks, especially where nontrivial data structures
|
||||
* are involved.
|
||||
* - C11 stdatomic.h.
|
||||
* - Where supported, C++11 std::atomic<T> .
|
||||
*
|
||||
* PLEASE STOP READING HERE UNLESS YOU ARE TRYING TO UNDERSTAND
|
||||
* OR UPDATE OLD CODE.
|
||||
*
|
||||
* The "acquire" and "release" terms can be defined intuitively in terms
|
||||
* of the placement of memory barriers in a simple lock implementation:
|
||||
|
@ -74,6 +86,17 @@ int32_t android_atomic_or(int32_t value, volatile int32_t* addr);
|
|||
/*
|
||||
* Perform an atomic load with "acquire" or "release" ordering.
|
||||
*
|
||||
* Note that the notion of a "release" ordering for a load does not
|
||||
* really fit into the C11 or C++11 memory model. The extra ordering
|
||||
* is normally observable only by code using memory_order_relaxed
|
||||
* atomics, or data races. In the rare cases in which such ordering
|
||||
* is called for, use memory_order_relaxed atomics and a leading
|
||||
* atomic_thread_fence (typically with memory_order_acquire,
|
||||
* not memory_order_release!) instead. If you do not understand
|
||||
* this comment, you are in the vast majority, and should not be
|
||||
* using release loads or replacing them with anything other than
|
||||
* locks or default sequentially consistent atomics.
|
||||
*
|
||||
* This is only necessary if you need the memory barrier. A 32-bit read
|
||||
* from a 32-bit aligned address is atomic on all supported platforms.
|
||||
*/
|
||||
|
@ -88,6 +111,14 @@ int64_t android_atomic_release_load64(volatile const int64_t* addr);
|
|||
/*
|
||||
* Perform an atomic store with "acquire" or "release" ordering.
|
||||
*
|
||||
* Note that the notion of a "acquire" ordering for a store does not
|
||||
* really fit into the C11 or C++11 memory model. The extra ordering
|
||||
* is normally observable only by code using memory_order_relaxed
|
||||
* atomics, or data races. In the rare cases in which such ordering
|
||||
* is called for, use memory_order_relaxed atomics and a trailing
|
||||
* atomic_thread_fence (typically with memory_order_release,
|
||||
* not memory_order_acquire!) instead.
|
||||
*
|
||||
* This is only necessary if you need the memory barrier. A 32-bit write
|
||||
* to a 32-bit aligned address is atomic on all supported platforms.
|
||||
*/
|
||||
|
|
Loading…
Reference in a new issue