am 8dfa47da: Atomic/SMP update, part 2.

This commit is contained in:
Andy McFadden 2010-05-30 21:20:45 -07:00 committed by Android Git Automerger
commit 8264358f5b
6 changed files with 576 additions and 365 deletions

View file

@ -27,6 +27,12 @@
*
* Anything that does include this file must set ANDROID_SMP to either
* 0 or 1, indicating compilation for UP or SMP, respectively.
*
* Macros defined in this header:
*
* void ANDROID_MEMBAR_FULL(void)
* Full memory barrier. Provides a compiler reordering barrier, and
* on SMP systems emits an appropriate instruction.
*/
#if !defined(ANDROID_SMP)
@ -55,17 +61,17 @@ extern "C" {
* This will fail on plain 16-bit Thumb.
*/
#if defined(__ARM_HAVE_DMB)
# define __android_membar_full_smp() \
# define _ANDROID_MEMBAR_FULL_SMP() \
do { __asm__ __volatile__ ("dmb" ::: "memory"); } while (0)
#else
# define __android_membar_full_smp() ARM_SMP_defined_but_no_DMB()
# define _ANDROID_MEMBAR_FULL_SMP() ARM_SMP_defined_but_no_DMB()
#endif
#elif defined(__i386__) || defined(__x86_64__)
/*
* For recent x86, we can use the SSE2 mfence instruction.
*/
# define __android_membar_full_smp() \
# define _ANDROID_MEMBAR_FULL_SMP() \
do { __asm__ __volatile__ ("mfence" ::: "memory"); } while (0)
#else
@ -73,7 +79,7 @@ extern "C" {
* Implementation not defined for this platform. Hopefully we're building
* in uniprocessor mode.
*/
# define __android_membar_full_smp() SMP_barrier_not_defined_for_platform()
# define _ANDROID_MEMBAR_FULL_SMP() SMP_barrier_not_defined_for_platform()
#endif
@ -88,9 +94,9 @@ extern "C" {
* be stale. Other CPUs may do less, but the end result is equivalent.
*/
#if ANDROID_SMP != 0
# define android_membar_full() __android_membar_full_smp()
# define ANDROID_MEMBAR_FULL() _ANDROID_MEMBAR_FULL_SMP()
#else
# define android_membar_full() \
# define ANDROID_MEMBAR_FULL() \
do { __asm__ __volatile__ ("" ::: "memory"); } while (0)
#endif

View file

@ -25,51 +25,102 @@ extern "C" {
#endif
/*
* Unless otherwise noted, the operations below perform a full fence before
* the atomic operation on SMP systems ("release" semantics).
* A handful of basic atomic operations. The appropriate pthread
* functions should be used instead of these whenever possible.
*
* The "acquire" and "release" terms can be defined intuitively in terms
* of the placement of memory barriers in a simple lock implementation:
* - wait until compare-and-swap(lock-is-free --> lock-is-held) succeeds
* - barrier
* - [do work]
* - barrier
* - store(lock-is-free)
* In very crude terms, the initial (acquire) barrier prevents any of the
* "work" from happening before the lock is held, and the later (release)
* barrier ensures that all of the work happens before the lock is released.
* (Think of cached writes, cache read-ahead, and instruction reordering
* around the CAS and store instructions.)
*
* The barriers must apply to both the compiler and the CPU. Note it is
* legal for instructions that occur before an "acquire" barrier to be
* moved down below it, and for instructions that occur after a "release"
* barrier to be moved up above it.
*
* The ARM-driven implementation we use here is short on subtlety,
* and actually requests a full barrier from the compiler and the CPU.
* The only difference between acquire and release is in whether they
* are issued before or after the atomic operation with which they
* are associated. To ease the transition to C/C++ atomic intrinsics,
* you should not rely on this, and instead assume that only the minimal
* acquire/release protection is provided.
*
* NOTE: all int32_t* values are expected to be aligned on 32-bit boundaries.
* If they are not, atomicity is not guaranteed.
*/
void android_atomic_write(int32_t value, volatile int32_t* addr);
/*
* all these atomic operations return the previous value
* Basic arithmetic and bitwise operations. These all provide a
* barrier with "release" ordering, and return the previous value.
*
* These have the same characteristics (e.g. what happens on overflow)
* as the equivalent non-atomic C operations.
*/
int32_t android_atomic_inc(volatile int32_t* addr);
int32_t android_atomic_dec(volatile int32_t* addr);
int32_t android_atomic_add(int32_t value, volatile int32_t* addr);
int32_t android_atomic_and(int32_t value, volatile int32_t* addr);
int32_t android_atomic_or(int32_t value, volatile int32_t* addr);
int32_t android_atomic_swap(int32_t value, volatile int32_t* addr);
/*
* cmpxchg returns zero if the new value was successfully written. This
* will only happen when *addr == oldvalue.
* Perform an atomic load with "acquire" or "release" ordering.
*
* (The return value is inverted from implementations on other platforms, but
* matches the ARM ldrex/strex sematics. Note also this is a compare-and-set
* operation, not a compare-and-exchange operation, since we don't return
* the original value.)
* This is only necessary if you need the memory barrier. A 32-bit read
* from a 32-bit aligned address is atomic on all supported platforms.
*/
int android_atomic_cmpxchg(int32_t oldvalue, int32_t newvalue,
int32_t android_atomic_acquire_load(volatile int32_t* addr);
int32_t android_atomic_release_load(volatile int32_t* addr);
/*
* Perform an atomic store with "acquire" or "release" ordering.
*
* This is only necessary if you need the memory barrier. A 32-bit write
* to a 32-bit aligned address is atomic on all supported platforms.
*/
void android_atomic_acquire_store(int32_t value, volatile int32_t* addr);
void android_atomic_release_store(int32_t value, volatile int32_t* addr);
/*
* Unconditional swap operation with "acquire" or "release" ordering.
*
* Stores the new value at *addr, and returns the previous value.
*/
int32_t android_atomic_acquire_swap(int32_t value, volatile int32_t* addr);
int32_t android_atomic_release_swap(int32_t value, volatile int32_t* addr);
/*
* Compare-and-set operation with "acquire" or "release" ordering.
*
* This returns zero if the new value was successfully stored, which will
* only happen when *addr == oldvalue.
*
* (The return value is inverted from implementations on other platforms,
* but matches the ARM ldrex/strex result.)
*
* Implementations that use the release CAS in a loop may be less efficient
* than possible, because we re-issue the memory barrier on each iteration.
*/
int android_atomic_acquire_cas(int32_t oldvalue, int32_t newvalue,
volatile int32_t* addr);
int android_atomic_release_cas(int32_t oldvalue, int32_t newvalue,
volatile int32_t* addr);
/*
* Same basic operation as android_atomic_cmpxchg, but with "acquire"
* semantics. The memory barrier, if required, is performed after the
* new value is stored. Useful for acquiring a spin lock.
* Aliases for code using an older version of this header. These are now
* deprecated and should not be used. The definitions will be removed
* in a future release.
*/
int android_atomic_acquire_cmpxchg(int32_t oldvalue, int32_t newvalue,
volatile int32_t* addr);
/*
* Perform an atomic store with "release" semantics. The memory barrier,
* if required, is performed before the store instruction. Useful for
* releasing a spin lock.
*/
#define android_atomic_release_store android_atomic_write
#define android_atomic_write android_atomic_release_store
#define android_atomic_cmpxchg android_atomic_release_cas
#ifdef __cplusplus
} // extern "C"

View file

@ -14,68 +14,353 @@
* limitations under the License.
*/
/* TODO: insert memory barriers on SMP */
#include <machine/cpu-features.h>
.text
.align
.global android_atomic_acquire_load
.type android_atomic_acquire_load, %function
.global android_atomic_release_load
.type android_atomic_release_load, %function
.global android_atomic_acquire_store
.type android_atomic_acquire_store, %function
.global android_atomic_release_store
.type android_atomic_release_store, %function
.global android_atomic_inc
.type android_atomic_inc, %function
.global android_atomic_dec
.type android_atomic_dec, %function
.global android_atomic_add
.type android_atomic_add, %function
.global android_atomic_and
.type android_atomic_and, %function
.global android_atomic_or
.type android_atomic_or, %function
.global android_atomic_release_swap
.type android_atomic_release_swap, %function
.global android_atomic_acquire_swap
.type android_atomic_acquire_swap, %function
.global android_atomic_release_cas
.type android_atomic_release_cas, %function
.global android_atomic_acquire_cas
.type android_atomic_acquire_cas, %function
/* must be on or off; cannot be left undefined */
#if !defined(ANDROID_SMP)
# error "ANDROID_SMP not defined"
#endif
#if defined(__ARM_HAVE_LDREX_STREX)
/*
* NOTE: these atomic operations are SMP safe on all architectures.
* ===========================================================================
* ARMv6+ implementation
* ===========================================================================
*
* These functions use the LDREX/STREX instructions to perform atomic
* operations ("LL/SC" approach). On an SMP build they will include
* an appropriate memory barrier.
*/
.text
.align
.global android_atomic_write
.type android_atomic_write, %function
.global android_atomic_inc
.type android_atomic_inc, %function
.global android_atomic_dec
.type android_atomic_dec, %function
.global android_atomic_add
.type android_atomic_add, %function
.global android_atomic_and
.type android_atomic_and, %function
.global android_atomic_or
.type android_atomic_or, %function
.global android_atomic_swap
.type android_atomic_swap, %function
.global android_atomic_cmpxchg
.type android_atomic_cmpxchg, %function
.global android_atomic_acquire_cmpxchg
.type android_atomic_acquire_cmpxchg, %function
/* generate the memory barrier instruction when the build requires it */
#if ANDROID_SMP == 1
# if defined(__ARM_HAVE_DMB)
# define SMP_DMB dmb
# else
/* Data Memory Barrier operation, initated by writing a value into a
specific register with the Move to Coprocessor instruction. We
arbitrarily use r0 here. */
# define SMP_DMB mcr p15, 0, r0, c7, c10, 5
# endif
#else
# define SMP_DMB
#endif
/*
* ----------------------------------------------------------------------------
* int __kernel_cmpxchg(int oldval, int newval, int *ptr)
* clobbered: r3, ip, flags
* return 0 if a swap was made, non-zero otherwise.
*/
.equ kernel_cmpxchg, 0xFFFF0FC0
.equ kernel_atomic_base, 0xFFFF0FFF
* Sidebar: do we need to use the -EX instructions for atomic load/store?
*
* Consider the following situation (time advancing downward):
*
* P1 P2
* val = LDREX(mem)
* val = val + 1
* STR(mem, otherval)
* STREX(mem, val)
*
* If these instructions issue on separate cores, the STREX will correctly
* fail because of the intervening store from the other core. If this same
* sequence of instructions executes in two threads on the same core, the
* STREX will incorrectly succeed.
*
* There are two ways to fix this:
* (1) Use LDREX/STREX for the atomic store operations. This doesn't
* prevent the program from doing a non-exclusive store, but at least
* this way if they always use atomic ops to access the memory location
* there won't be any problems.
* (2) Have the kernel clear the LDREX reservation on thread context switch.
* This will sometimes clear the reservation unnecessarily, but guarantees
* correct behavior.
*
* The Android kernel performs a CLREX (v7) or dummy STREX (pre-v7), so we
* can get away with a non-exclusive store here.
*
* -----
*
* It's worth noting that using non-exclusive LDR and STR means the "load"
* and "store" operations aren't quite the same as read-modify-write or
* swap operations. By definition those must read and write memory in a
* in a way that is coherent across all cores, whereas our non-exclusive
* load and store have no such requirement.
*
* In practice this doesn't matter, because the only guarantees we make
* about who sees what when are tied to the acquire/release semantics.
* Other cores may not see our atomic releasing store as soon as they would
* if the code used LDREX/STREX, but a store-release operation doesn't make
* any guarantees as to how soon the store will be visible. It's allowable
* for operations that happen later in program order to become visible
* before the store. For an acquring store we issue a full barrier after
* the STREX, ensuring that other processors see events in the proper order.
*/
/*
* ----------------------------------------------------------------------------
* android_atomic_write
* input: r0=value, r1=address
* android_atomic_acquire_load / android_atomic_release_load
* input: r0 = address
* output: r0 = value
*/
android_atomic_acquire_load:
.fnstart
ldr r0, [r0]
SMP_DMB
bx lr
.fnend
android_atomic_release_load:
.fnstart
SMP_DMB
ldr r0, [r0]
bx lr
.fnend
/*
* android_atomic_acquire_store / android_atomic_release_store
* input: r0 = value, r1 = address
* output: void
*/
android_atomic_write:
android_atomic_acquire_store:
.fnstart
str r0, [r1]
bx lr;
SMP_DMB
bx lr
.fnend
android_atomic_release_store:
.fnstart
SMP_DMB
str r0, [r1]
bx lr
.fnend
/*
* Common sequence for read-modify-write operations.
*
* input: r1 = address
* output: r0 = original value, returns to caller
*/
.macro RMWEX op, arg
1: ldrex r0, [r1] @ load current value into r0
\op r2, r0, \arg @ generate new value into r2
strex r3, r2, [r1] @ try to store new value; result in r3
cmp r3, #0 @ success?
bxeq lr @ yes, return
b 1b @ no, retry
.endm
/*
* android_atomic_inc
* input: r0 = address
* output: r0 = old value
*/
android_atomic_inc:
.fnstart
SMP_DMB
mov r1, r0
RMWEX add, #1
.fnend
/*
* android_atomic_dec
* input: r0 = address
* output: r0 = old value
*/
android_atomic_dec:
.fnstart
SMP_DMB
mov r1, r0
RMWEX sub, #1
.fnend
/*
* android_atomic_add
* input: r0 = value, r1 = address
* output: r0 = old value
*/
android_atomic_add:
.fnstart
SMP_DMB
mov ip, r0
RMWEX add, ip
.fnend
/*
* android_atomic_and
* input: r0 = value, r1 = address
* output: r0 = old value
*/
android_atomic_and:
.fnstart
SMP_DMB
mov ip, r0
RMWEX and, ip
.fnend
/*
* android_atomic_or
* input: r0 = value, r1 = address
* output: r0 = old value
*/
android_atomic_or:
.fnstart
SMP_DMB
mov ip, r0
RMWEX orr, ip
.fnend
/*
* android_atomic_acquire_swap / android_atomic_release_swap
* input: r0 = value, r1 = address
* output: r0 = old value
*/
android_atomic_acquire_swap:
.fnstart
1: ldrex r2, [r1] @ load current value into r2
strex r3, r0, [r1] @ store new value
teq r3, #0 @ strex success?
bne 1b @ no, loop
mov r0, r2 @ return old value
SMP_DMB
bx lr
.fnend
android_atomic_release_swap:
.fnstart
SMP_DMB
1: ldrex r2, [r1]
strex r3, r0, [r1]
teq r3, #0
bne 1b
mov r0, r2
bx lr
.fnend
/*
* android_atomic_acquire_cas / android_atomic_release_cas
* input: r0 = oldvalue, r1 = newvalue, r2 = address
* output: r0 = 0 (xchg done) or non-zero (xchg not done)
*/
android_atomic_acquire_cas:
.fnstart
1: mov ip, #2 @ ip=2 means "new != old"
ldrex r3, [r2] @ load current value into r3
teq r0, r3 @ new == old?
strexeq ip, r1, [r2] @ yes, try store, set ip to 0 or 1
teq ip, #1 @ strex failure?
beq 1b @ yes, retry
mov r0, ip @ return 0 on success, 2 on failure
SMP_DMB
bx lr
.fnend
android_atomic_release_cas:
.fnstart
SMP_DMB
1: mov ip, #2
ldrex r3, [r2]
teq r0, r3
strexeq ip, r1, [r2]
teq ip, #1
beq 1b
mov r0, ip
bx lr
.fnend
#else /*not defined __ARM_HAVE_LDREX_STREX*/
/*
* ===========================================================================
* Pre-ARMv6 implementation
* ===========================================================================
*
* These functions call through the kernel cmpxchg facility, or use the
* (now deprecated) SWP instruction. They are not SMP-safe.
*/
#if ANDROID_SMP == 1
# error "SMP defined, but LDREX/STREX not available"
#endif
/*
* int __kernel_cmpxchg(int oldval, int newval, int *ptr)
* clobbered: r3, ip, flags
* return 0 if a swap was made, non-zero otherwise.
*/
.equ kernel_cmpxchg, 0xFFFF0FC0
.equ kernel_atomic_base, 0xFFFF0FFF
/*
* android_atomic_acquire_load / android_atomic_release_load
* input: r0 = address
* output: r0 = value
*/
android_atomic_acquire_load:
android_atomic_release_load:
.fnstart
ldr r0, [r0]
bx lr
.fnend
/*
* android_atomic_acquire_store / android_atomic_release_store
* input: r0 = value, r1 = address
* output: void
*/
android_atomic_acquire_store:
android_atomic_release_store:
.fnstart
str r0, [r1]
bx lr
.fnend
/*
* ----------------------------------------------------------------------------
* android_atomic_inc
* input: r0 = address
* output: r0 = old value
*/
android_atomic_inc:
.fnstart
.save {r4, lr}
@ -99,14 +384,13 @@ android_atomic_inc:
ldmia sp!, {r4, lr}
bx lr
.fnend
/*
* ----------------------------------------------------------------------------
* android_atomic_dec
* input: r0=address
* input: r0 = address
* output: r0 = old value
*/
android_atomic_dec:
.fnstart
.save {r4, lr}
@ -130,14 +414,13 @@ android_atomic_dec:
ldmia sp!, {r4, lr}
bx lr
.fnend
/*
* ----------------------------------------------------------------------------
* android_atomic_add
* input: r0=value, r1=address
* input: r0 = value, r1 = address
* output: r0 = old value
*/
android_atomic_add:
.fnstart
.save {r4, lr}
@ -162,19 +445,17 @@ android_atomic_add:
ldmia sp!, {r4, lr}
bx lr
.fnend
/*
* ----------------------------------------------------------------------------
* android_atomic_and
* input: r0=value, r1=address
* input: r0 = value, r1 = address
* output: r0 = old value
*/
android_atomic_and:
.fnstart
.save {r4, r5, lr}
stmdb sp!, {r4, r5, lr}
.save {r4, r5, ip, lr} /* include ip for 64-bit stack alignment */
stmdb sp!, {r4, r5, ip, lr}
mov r2, r1 /* r2 = address */
mov r4, r0 /* r4 = the value */
1: @ android_atomic_and
@ -194,21 +475,20 @@ android_atomic_and:
#endif
bcc 1b
mov r0, r5
ldmia sp!, {r4, r5, lr}
ldmia sp!, {r4, r5, ip, lr}
bx lr
.fnend
/*
* ----------------------------------------------------------------------------
* android_atomic_or
* input: r0=value, r1=address
* input: r0 = value, r1 = address
* output: r0 = old value
*/
android_atomic_or:
.fnstart
.save {r4, r5, lr}
stmdb sp!, {r4, r5, lr}
.save {r4, r5, ip, lr} /* include ip for 64-bit stack alignment */
stmdb sp!, {r4, r5, ip, lr}
mov r2, r1 /* r2 = address */
mov r4, r0 /* r4 = the value */
1: @ android_atomic_or
@ -228,40 +508,31 @@ android_atomic_or:
#endif
bcc 1b
mov r0, r5
ldmia sp!, {r4, r5, lr}
ldmia sp!, {r4, r5, ip, lr}
bx lr
.fnend
/*
* ----------------------------------------------------------------------------
* android_atomic_swap
* input: r0=value, r1=address
* android_atomic_acquire_swap / android_atomic_release_swap
* input: r0 = value, r1 = address
* output: r0 = old value
*/
/* replaced swp instruction with ldrex/strex for ARMv6 & ARMv7 */
android_atomic_swap:
#if defined (__ARM_HAVE_LDREX_STREX)
1: ldrex r2, [r1]
strex r3, r0, [r1]
teq r3, #0
bne 1b
mov r0, r2
mcr p15, 0, r0, c7, c10, 5 /* or, use dmb */
#else
android_atomic_acquire_swap:
android_atomic_release_swap:
.fnstart
swp r0, r0, [r1]
#endif
bx lr
.fnend
/*
* ----------------------------------------------------------------------------
* android_atomic_cmpxchg
* input: r0=oldvalue, r1=newvalue, r2=address
* android_atomic_acquire_cas / android_atomic_release_cas
* input: r0 = oldvalue, r1 = newvalue, r2 = address
* output: r0 = 0 (xchg done) or non-zero (xchg not done)
*/
android_atomic_acquire_cmpxchg:
android_atomic_cmpxchg:
android_atomic_acquire_cas:
android_atomic_release_cas:
.fnstart
.save {r4, lr}
stmdb sp!, {r4, lr}
@ -287,3 +558,4 @@ android_atomic_cmpxchg:
bx lr
.fnend
#endif /*not defined __ARM_HAVE_LDREX_STREX*/

View file

@ -1,174 +0,0 @@
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
.text
.align
.global android_atomic_write
.type android_atomic_write, %function
.global android_atomic_inc
.type android_atomic_inc, %function
.global android_atomic_dec
.type android_atomic_dec, %function
.global android_atomic_add
.type android_atomic_add, %function
.global android_atomic_and
.type android_atomic_and, %function
.global android_atomic_or
.type android_atomic_or, %function
.global android_atomic_swap
.type android_atomic_swap, %function
.global android_atomic_cmpxchg
.type android_atomic_cmpxchg, %function
/* FIXME: On SMP systems memory barriers may be needed */
#warning "this file is not safe with SMP systems"
/*
* ----------------------------------------------------------------------------
* android_atomic_write
* input: r0=value, r1=address
* output: void
*/
android_atomic_write:
str r0, [r1]
bx lr;
/*
* ----------------------------------------------------------------------------
* android_atomic_inc
* input: r0 = address
* output: r0 = old value
*/
android_atomic_inc:
mov r12, r0
1: ldrex r0, [r12]
add r2, r0, #1
strex r1, r2, [r12]
cmp r1, #0
bxeq lr
b 1b
/*
* ----------------------------------------------------------------------------
* android_atomic_dec
* input: r0=address
* output: r0 = old value
*/
android_atomic_dec:
mov r12, r0
1: ldrex r0, [r12]
sub r2, r0, #1
strex r1, r2, [r12]
cmp r1, #0
bxeq lr
b 1b
/*
* ----------------------------------------------------------------------------
* android_atomic_add
* input: r0=value, r1=address
* output: r0 = old value
*/
android_atomic_add:
mov r12, r0
1: ldrex r0, [r1]
add r2, r0, r12
strex r3, r2, [r1]
cmp r3, #0
bxeq lr
b 1b
/*
* ----------------------------------------------------------------------------
* android_atomic_and
* input: r0=value, r1=address
* output: r0 = old value
*/
android_atomic_and:
mov r12, r0
1: ldrex r0, [r1]
and r2, r0, r12
strex r3, r2, [r1]
cmp r3, #0
bxeq lr
b 1b
/*
* ----------------------------------------------------------------------------
* android_atomic_or
* input: r0=value, r1=address
* output: r0 = old value
*/
android_atomic_or:
mov r12, r0
1: ldrex r0, [r1]
orr r2, r0, r12
strex r3, r2, [r1]
cmp r3, #0
bxeq lr
b 1b
/*
* ----------------------------------------------------------------------------
* android_atomic_swap
* input: r0=value, r1=address
* output: r0 = old value
*/
android_atomic_swap:
swp r0, r0, [r1]
bx lr
/*
* ----------------------------------------------------------------------------
* android_atomic_cmpxchg
* input: r0=oldvalue, r1=newvalue, r2=address
* output: r0 = 0 (xchg done) or non-zero (xchg not done)
*/
android_atomic_cmpxchg:
mov r12, r1
ldrex r3, [r2]
eors r0, r0, r3
strexeq r0, r12, [r2]
bx lr
/*
* ----------------------------------------------------------------------------
* android_atomic_cmpxchg_64
* input: r0-r1=oldvalue, r2-r3=newvalue, arg4 (on stack)=address
* output: r0 = 0 (xchg done) or non-zero (xchg not done)
*/
/* TODO: NEED IMPLEMENTATION FOR THIS ARCHITECTURE */

View file

@ -35,6 +35,9 @@
* ARM implementation, in this file above.
* We follow the fact that the initializer for mutex is a simple zero
* value.
*
* (3) These operations are NOT safe for SMP, as there is no currently
* no definition for a memory barrier operation.
*/
#include <pthread.h>
@ -46,18 +49,35 @@ static pthread_mutex_t _swap_locks[SWAP_LOCK_COUNT];
&_swap_locks[((unsigned)(void*)(addr) >> 3U) % SWAP_LOCK_COUNT]
void android_atomic_write(int32_t value, volatile int32_t* addr) {
int32_t android_atomic_acquire_load(volatile int32_t* addr)
{
return *addr;
}
int32_t android_atomic_release_load(volatile int32_t* addr)
{
return *addr;
}
void android_atomic_acquire_store(int32_t value, volatile int32_t* addr) {
int32_t oldValue;
do {
oldValue = *addr;
} while (android_atomic_cmpxchg(oldValue, value, addr));
} while (android_atomic_release_cas(oldValue, value, addr));
}
void android_atomic_release_store(int32_t value, volatile int32_t* addr) {
int32_t oldValue;
do {
oldValue = *addr;
} while (android_atomic_release_cas(oldValue, value, addr));
}
int32_t android_atomic_inc(volatile int32_t* addr) {
int32_t oldValue;
do {
oldValue = *addr;
} while (android_atomic_cmpxchg(oldValue, oldValue+1, addr));
} while (android_atomic_release_cas(oldValue, oldValue+1, addr));
return oldValue;
}
@ -65,7 +85,7 @@ int32_t android_atomic_dec(volatile int32_t* addr) {
int32_t oldValue;
do {
oldValue = *addr;
} while (android_atomic_cmpxchg(oldValue, oldValue-1, addr));
} while (android_atomic_release_cas(oldValue, oldValue-1, addr));
return oldValue;
}
@ -73,7 +93,7 @@ int32_t android_atomic_add(int32_t value, volatile int32_t* addr) {
int32_t oldValue;
do {
oldValue = *addr;
} while (android_atomic_cmpxchg(oldValue, oldValue+value, addr));
} while (android_atomic_release_cas(oldValue, oldValue+value, addr));
return oldValue;
}
@ -81,7 +101,7 @@ int32_t android_atomic_and(int32_t value, volatile int32_t* addr) {
int32_t oldValue;
do {
oldValue = *addr;
} while (android_atomic_cmpxchg(oldValue, oldValue&value, addr));
} while (android_atomic_release_cas(oldValue, oldValue&value, addr));
return oldValue;
}
@ -89,11 +109,15 @@ int32_t android_atomic_or(int32_t value, volatile int32_t* addr) {
int32_t oldValue;
do {
oldValue = *addr;
} while (android_atomic_cmpxchg(oldValue, oldValue|value, addr));
} while (android_atomic_release_cas(oldValue, oldValue|value, addr));
return oldValue;
}
int32_t android_atomic_swap(int32_t value, volatile int32_t* addr) {
int32_t android_atomic_acquire_swap(int32_t value, volatile int32_t* addr) {
return android_atomic_release_swap(value, addr);
}
int32_t android_atomic_release_swap(int32_t value, volatile int32_t* addr) {
int32_t oldValue;
do {
oldValue = *addr;
@ -101,7 +125,12 @@ int32_t android_atomic_swap(int32_t value, volatile int32_t* addr) {
return oldValue;
}
int android_atomic_cmpxchg(int32_t oldvalue, int32_t newvalue,
int android_atomic_acquire_cmpxchg(int32_t oldvalue, int32_t newvalue,
volatile int32_t* addr) {
return android_atomic_release_cmpxchg(oldValue, newValue, addr);
}
int android_atomic_release_cmpxchg(int32_t oldvalue, int32_t newvalue,
volatile int32_t* addr) {
int result;
pthread_mutex_t* lock = SWAP_LOCK(addr);
@ -118,8 +147,3 @@ int android_atomic_cmpxchg(int32_t oldvalue, int32_t newvalue,
return result;
}
int android_atomic_acquire_cmpxchg(int32_t oldvalue, int32_t newvalue,
volatile int32_t* addr) {
return android_atomic_cmpxchg(oldValue, newValue, addr);
}

View file

@ -27,11 +27,25 @@
#include <libkern/OSAtomic.h>
void android_atomic_write(int32_t value, volatile int32_t* addr) {
int32_t oldValue;
do {
oldValue = *addr;
} while (OSAtomicCompareAndSwap32Barrier(oldValue, value, (int32_t*)addr) == 0);
int32_t android_atomic_acquire_load(volatile int32_t* addr) {
int32_t value = *addr;
OSMemoryBarrier();
return value;
}
int32_t android_atomic_release_load(volatile int32_t* addr) {
OSMemoryBarrier();
return *addr;
}
void android_atomic_acquire_store(int32_t value, volatile int32_t* addr) {
*addr = value;
OSMemoryBarrier();
}
void android_atomic_release_store(int32_t value, volatile int32_t* addr) {
OSMemoryBarrier();
*addr = value;
}
int32_t android_atomic_inc(volatile int32_t* addr) {
@ -47,74 +61,81 @@ int32_t android_atomic_add(int32_t value, volatile int32_t* addr) {
}
int32_t android_atomic_and(int32_t value, volatile int32_t* addr) {
int32_t oldValue;
do {
oldValue = *addr;
} while (OSAtomicCompareAndSwap32Barrier(oldValue, oldValue&value, (int32_t*)addr) == 0);
return oldValue;
return OSAtomicAnd32OrigBarrier(value, (int32_t*)addr);
}
int32_t android_atomic_or(int32_t value, volatile int32_t* addr) {
return OSAtomicOr32OrigBarrier(value, (int32_t*)addr);
}
int32_t android_atomic_acquire_swap(int32_t value, volatile int32_t* addr) {
int32_t oldValue;
do {
oldValue = *addr;
} while (OSAtomicCompareAndSwap32Barrier(oldValue, oldValue|value, (int32_t*)addr) == 0);
} while (android_atomic_acquire_cas(oldValue, value, addr));
return oldValue;
}
int32_t android_atomic_swap(int32_t value, volatile int32_t* addr) {
int32_t android_atomic_release_swap(int32_t value, volatile int32_t* addr) {
int32_t oldValue;
do {
oldValue = *addr;
} while (android_atomic_cmpxchg(oldValue, value, addr));
} while (android_atomic_release_cas(oldValue, value, addr));
return oldValue;
}
int android_atomic_cmpxchg(int32_t oldvalue, int32_t newvalue, volatile int32_t* addr) {
int android_atomic_release_cas(int32_t oldvalue, int32_t newvalue, volatile int32_t* addr) {
/* OS X CAS returns zero on failure; invert to return zero on success */
return OSAtomicCompareAndSwap32Barrier(oldvalue, newvalue, (int32_t*)addr) == 0;
}
int android_atomic_acquire_cmpxchg(int32_t oldvalue, int32_t newvalue,
int android_atomic_acquire_cas(int32_t oldvalue, int32_t newvalue,
volatile int32_t* addr) {
int result = (OSAtomicCompareAndSwap32(oldvalue, newvalue, (int32_t*)addr) == 0);
if (!result) {
if (result == 0) {
/* success, perform barrier */
OSMemoryBarrier();
}
return result;
}
/*****************************************************************************/
#elif defined(__i386__) || defined(__x86_64__)
void android_atomic_write(int32_t value, volatile int32_t* addr) {
int32_t oldValue;
do {
oldValue = *addr;
} while (android_atomic_cmpxchg(oldValue, value, addr));
int32_t android_atomic_acquire_load(volatile int32_t* addr) {
int32_t value = *addr;
ANDROID_MEMBAR_FULL();
return value;
}
int32_t android_atomic_release_load(volatile int32_t* addr) {
ANDROID_MEMBAR_FULL();
return *addr;
}
void android_atomic_acquire_store(int32_t value, volatile int32_t* addr) {
*addr = value;
ANDROID_MEMBAR_FULL();
}
void android_atomic_release_store(int32_t value, volatile int32_t* addr) {
ANDROID_MEMBAR_FULL();
*addr = value;
}
int32_t android_atomic_inc(volatile int32_t* addr) {
int32_t oldValue;
do {
oldValue = *addr;
} while (android_atomic_cmpxchg(oldValue, oldValue+1, addr));
return oldValue;
return android_atomic_add(1, addr);
}
int32_t android_atomic_dec(volatile int32_t* addr) {
int32_t oldValue;
do {
oldValue = *addr;
} while (android_atomic_cmpxchg(oldValue, oldValue-1, addr));
return oldValue;
return android_atomic_add(-1, addr);
}
int32_t android_atomic_add(int32_t value, volatile int32_t* addr) {
int32_t oldValue;
do {
oldValue = *addr;
} while (android_atomic_cmpxchg(oldValue, oldValue+value, addr));
} while (android_atomic_release_cas(oldValue, oldValue+value, addr));
return oldValue;
}
@ -122,7 +143,7 @@ int32_t android_atomic_and(int32_t value, volatile int32_t* addr) {
int32_t oldValue;
do {
oldValue = *addr;
} while (android_atomic_cmpxchg(oldValue, oldValue&value, addr));
} while (android_atomic_release_cas(oldValue, oldValue&value, addr));
return oldValue;
}
@ -130,20 +151,13 @@ int32_t android_atomic_or(int32_t value, volatile int32_t* addr) {
int32_t oldValue;
do {
oldValue = *addr;
} while (android_atomic_cmpxchg(oldValue, oldValue|value, addr));
} while (android_atomic_release_cas(oldValue, oldValue|value, addr));
return oldValue;
}
int32_t android_atomic_swap(int32_t value, volatile int32_t* addr) {
int32_t oldValue;
do {
oldValue = *addr;
} while (android_atomic_cmpxchg(oldValue, value, addr));
return oldValue;
}
int android_atomic_cmpxchg(int32_t oldvalue, int32_t newvalue, volatile int32_t* addr) {
android_membar_full();
/* returns 0 on successful swap */
static inline int cas(int32_t oldvalue, int32_t newvalue,
volatile int32_t* addr) {
int xchg;
asm volatile
(
@ -156,18 +170,36 @@ int android_atomic_cmpxchg(int32_t oldvalue, int32_t newvalue, volatile int32_t*
return xchg;
}
int android_atomic_acquire_cmpxchg(int32_t oldvalue, int32_t newvalue,
int32_t android_atomic_acquire_swap(int32_t value, volatile int32_t* addr) {
int32_t oldValue;
do {
oldValue = *addr;
} while (cas(oldValue, value, addr));
ANDROID_MEMBAR_FULL();
return oldValue;
}
int32_t android_atomic_release_swap(int32_t value, volatile int32_t* addr) {
ANDROID_MEMBAR_FULL();
int32_t oldValue;
do {
oldValue = *addr;
} while (cas(oldValue, value, addr));
return oldValue;
}
int android_atomic_acquire_cas(int32_t oldvalue, int32_t newvalue,
volatile int32_t* addr) {
int xchg;
asm volatile
(
" lock; cmpxchg %%ecx, (%%edx);"
" setne %%al;"
" andl $1, %%eax"
: "=a" (xchg)
: "a" (oldvalue), "c" (newvalue), "d" (addr)
);
android_membar_full();
int xchg = cas(oldvalue, newvalue, addr);
if (xchg == 0)
ANDROID_MEMBAR_FULL();
return xchg;
}
int android_atomic_release_cas(int32_t oldvalue, int32_t newvalue,
volatile int32_t* addr) {
ANDROID_MEMBAR_FULL();
int xchg = cas(oldvalue, newvalue, addr);
return xchg;
}