trusty: add keymaster module

Change-Id: Id240b1b33e07d4cb3ea9d188014701e3d2b3c477
This commit is contained in:
Andres Morales 2015-09-08 17:56:07 -07:00 committed by Michael Ryleev
parent 1571f47f3c
commit 95989dbb0f
10 changed files with 2091 additions and 0 deletions

View file

@ -0,0 +1,67 @@
#
# Copyright (C) 2015 The Android Open-Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# WARNING: Everything listed here will be built on ALL platforms,
# including x86, the emulator, and the SDK. Modules must be uniquely
# named (liblights.panda), and must build everywhere, or limit themselves
# to only building on ARM if they include assembly. Individual makefiles
# are responsible for having their own logic, for fine-grained control.
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)
###
# trusty_keymaster is a binary used only for on-device testing. It
# runs Trusty Keymaster through a basic set of operations with RSA
# and ECDSA keys.
###
LOCAL_MODULE := trusty_keymaster_tipc
LOCAL_SRC_FILES := \
trusty_keymaster_device.cpp \
trusty_keymaster_ipc.c \
trusty_keymaster_main.cpp
LOCAL_SHARED_LIBRARIES := \
libcrypto \
libcutils \
libkeymaster1 \
libtrusty \
libkeymaster_messages \
liblog
include $(BUILD_EXECUTABLE)
###
# keystore.trusty is the HAL used by keystore on Trusty devices.
##
include $(CLEAR_VARS)
LOCAL_MODULE := keystore.trusty
LOCAL_MODULE_RELATIVE_PATH := hw
LOCAL_SRC_FILES := module.cpp \
trusty_keymaster_ipc.c \
trusty_keymaster_device.cpp
LOCAL_CLFAGS = -fvisibility=hidden -Wall -Werror
LOCAL_SHARED_LIBRARIES := \
libcrypto \
libkeymaster_messages \
libtrusty \
liblog \
libcutils
LOCAL_MODULE_TAGS := optional
include $(BUILD_SHARED_LIBRARY)

199
trusty/keymaster/Makefile Normal file
View file

@ -0,0 +1,199 @@
#####
# Local unit test Makefile
#
# This makefile builds and runs the trusty_keymaster unit tests locally on the development
# machine, not on an Android device.
#
# To build and run these tests, one pre-requisite must be manually installed: BoringSSL.
# This Makefile expects to find BoringSSL in a directory adjacent to $ANDROID_BUILD_TOP.
# To get and build it, first install the Ninja build tool (e.g. apt-get install
# ninja-build), then do:
#
# cd $ANDROID_BUILD_TOP/..
# git clone https://boringssl.googlesource.com/boringssl
# cd boringssl
# mdkir build
# cd build
# cmake -GNinja ..
# ninja
#
# Then return to $ANDROID_BUILD_TOP/system/keymaster and run "make".
#####
BASE=../../../..
SUBS=system/core \
system/keymaster \
hardware/libhardware \
external/gtest
GTEST=$(BASE)/external/gtest
KM=$(BASE)/system/keymaster
INCLUDES=$(foreach dir,$(SUBS),-I $(BASE)/$(dir)/include) \
-I $(BASE)/libnativehelper/include/nativehelper \
-I ../tipc/include \
-I $(BASE)/system/keymaster \
-I $(GTEST) \
-I$(BASE)/../boringssl/include
ifdef USE_CLANG
CC=/usr/bin/clang
CXX=/usr/bin/clang
CLANG_TEST_DEFINE=-DKEYMASTER_CLANG_TEST_BUILD
COMPILER_SPECIFIC_ARGS=-std=c++11 $(CLANG_TEST_DEFINE)
else
COMPILER_SPECIFIC_ARGS=-std=c++0x -fprofile-arcs
endif
CPPFLAGS=$(INCLUDES) -g -O0 -MD
CXXFLAGS=-Wall -Werror -Wno-unused -Winit-self -Wpointer-arith -Wunused-parameter \
-Wmissing-declarations -ftest-coverage \
-Wno-deprecated-declarations -fno-exceptions -DKEYMASTER_NAME_TAGS \
$(COMPILER_SPECIFIC_ARGS)
LDLIBS=-L$(BASE)/../boringssl/build/crypto -lcrypto -lpthread -lstdc++
CPPSRCS=\
$(KM)/aead_mode_operation.cpp \
$(KM)/aes_key.cpp \
$(KM)/aes_operation.cpp \
$(KM)/android_keymaster.cpp \
$(KM)/android_keymaster_messages.cpp \
$(KM)/android_keymaster_messages_test.cpp \
$(KM)/android_keymaster_test.cpp \
$(KM)/android_keymaster_test_utils.cpp \
$(KM)/android_keymaster_utils.cpp \
$(KM)/asymmetric_key.cpp \
$(KM)/auth_encrypted_key_blob.cpp \
$(KM)/auth_encrypted_key_blob.cpp \
$(KM)/authorization_set.cpp \
$(KM)/authorization_set_test.cpp \
$(KM)/ec_key.cpp \
$(KM)/ec_keymaster0_key.cpp \
$(KM)/ecdsa_operation.cpp \
$(KM)/hmac_key.cpp \
$(KM)/hmac_operation.cpp \
$(KM)/integrity_assured_key_blob.cpp \
$(KM)/key.cpp \
$(KM)/key_blob_test.cpp \
$(KM)/keymaster0_engine.cpp \
$(KM)/logger.cpp \
$(KM)/ocb_utils.cpp \
$(KM)/openssl_err.cpp \
$(KM)/openssl_utils.cpp \
$(KM)/operation.cpp \
$(KM)/operation_table.cpp \
$(KM)/rsa_key.cpp \
$(KM)/rsa_keymaster0_key.cpp \
$(KM)/rsa_operation.cpp \
$(KM)/serializable.cpp \
$(KM)/soft_keymaster_context.cpp \
$(KM)/symmetric_key.cpp \
$(KM)/unencrypted_key_blob.cpp \
trusty_keymaster_device.cpp \
trusty_keymaster_device_test.cpp
CCSRCS=$(GTEST)/src/gtest-all.cc
CSRCS=ocb.c
OBJS=$(CPPSRCS:.cpp=.o) $(CCSRCS:.cc=.o) $(CSRCS:.c=.o)
DEPS=$(CPPSRCS:.cpp=.d) $(CCSRCS:.cc=.d) $(CSRCS:.c=.d)
GCDA=$(CPPSRCS:.cpp=.gcda) $(CCSRCS:.cc=.gcda) $(CSRCS:.c=.gcda)
GCNO=$(CPPSRCS:.cpp=.gcno) $(CCSRCS:.cc=.gcno) $(CSRCS:.c=.gcno)
LINK.o=$(LINK.cc)
BINARIES=trusty_keymaster_device_test
ifdef TRUSTY
BINARIES += trusty_keymaster_device_test
endif # TRUSTY
.PHONY: coverage memcheck massif clean run
%.run: %
./$<
touch $@
run: $(BINARIES:=.run)
coverage: coverage.info
genhtml coverage.info --output-directory coverage
coverage.info: run
lcov --capture --directory=. --output-file coverage.info
%.coverage : %
$(MAKE) clean && $(MAKE) $<
./$<
lcov --capture --directory=. --output-file coverage.info
genhtml coverage.info --output-directory coverage
#UNINIT_OPTS=--track-origins=yes
UNINIT_OPTS=--undef-value-errors=no
MEMCHECK_OPTS=--leak-check=full \
--show-reachable=yes \
--vgdb=full \
$(UNINIT_OPTS) \
--error-exitcode=1
MASSIF_OPTS=--tool=massif \
--stacks=yes
%.memcheck : %
valgrind $(MEMCHECK_OPTS) ./$< && \
touch $@
%.massif : %
valgrind $(MASSIF_OPTS) --massif-out-file=$@ ./$<
memcheck: $(BINARIES:=.memcheck)
massif: $(BINARIES:=.massif)
trusty_keymaster_device_test: trusty_keymaster_device_test.o \
trusty_keymaster_device.o \
$(KM)/aead_mode_operation.o \
$(KM)/aes_key.o \
$(KM)/aes_operation.o \
$(KM)/android_keymaster.o \
$(KM)/android_keymaster_messages.o \
$(KM)/android_keymaster_test_utils.o \
$(KM)/android_keymaster_utils.o \
$(KM)/asymmetric_key.o \
$(KM)/auth_encrypted_key_blob.o \
$(KM)/auth_encrypted_key_blob.o \
$(KM)/authorization_set.o \
$(KM)/ec_key.o \
$(KM)/ec_keymaster0_key.cpp \
$(KM)/ecdsa_operation.o \
$(KM)/hmac_key.o \
$(KM)/hmac_operation.o \
$(KM)/integrity_assured_key_blob.o \
$(KM)/key.o \
$(KM)/keymaster0_engine.o \
$(KM)/logger.o \
$(KM)/ocb.o \
$(KM)/ocb_utils.o \
$(KM)/openssl_err.o \
$(KM)/openssl_utils.o \
$(KM)/operation.o \
$(KM)/operation_table.o \
$(KM)/rsa_key.o \
$(KM)/rsa_keymaster0_key.o \
$(KM)/rsa_operation.o \
$(KM)/serializable.o \
$(KM)/soft_keymaster_context.o \
$(KM)/symmetric_key.o \
$(GTEST)/src/gtest-all.o
$(GTEST)/src/gtest-all.o: CXXFLAGS:=$(subst -Wmissing-declarations,,$(CXXFLAGS))
ocb.o: CFLAGS=$(CLANG_TEST_DEFINE)
clean:
rm -f $(OBJS) $(DEPS) $(GCDA) $(GCNO) $(BINARIES) \
$(BINARIES:=.run) $(BINARIES:=.memcheck) $(BINARIES:=.massif) \
coverage.info
rm -rf coverage
-include $(CPPSRCS:.cpp=.d)
-include $(CCSRCS:.cc=.d)

View file

@ -0,0 +1,57 @@
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#define KEYMASTER_PORT "com.android.trusty.keymaster"
#define KEYMASTER_MAX_BUFFER_LENGTH 4096
// Commands
enum keymaster_command {
KEYMASTER_RESP_BIT = 1,
KEYMASTER_REQ_SHIFT = 1,
KM_GENERATE_KEY = (0 << KEYMASTER_REQ_SHIFT),
KM_BEGIN_OPERATION = (1 << KEYMASTER_REQ_SHIFT),
KM_UPDATE_OPERATION = (2 << KEYMASTER_REQ_SHIFT),
KM_FINISH_OPERATION = (3 << KEYMASTER_REQ_SHIFT),
KM_ABORT_OPERATION = (4 << KEYMASTER_REQ_SHIFT),
KM_IMPORT_KEY = (5 << KEYMASTER_REQ_SHIFT),
KM_EXPORT_KEY = (6 << KEYMASTER_REQ_SHIFT),
KM_GET_VERSION = (7 << KEYMASTER_REQ_SHIFT),
KM_ADD_RNG_ENTROPY = (8 << KEYMASTER_REQ_SHIFT),
KM_GET_SUPPORTED_ALGORITHMS = (9 << KEYMASTER_REQ_SHIFT),
KM_GET_SUPPORTED_BLOCK_MODES = (10 << KEYMASTER_REQ_SHIFT),
KM_GET_SUPPORTED_PADDING_MODES = (11 << KEYMASTER_REQ_SHIFT),
KM_GET_SUPPORTED_DIGESTS = (12 << KEYMASTER_REQ_SHIFT),
KM_GET_SUPPORTED_IMPORT_FORMATS = (13 << KEYMASTER_REQ_SHIFT),
KM_GET_SUPPORTED_EXPORT_FORMATS = (14 << KEYMASTER_REQ_SHIFT),
KM_GET_KEY_CHARACTERISTICS = (15 << KEYMASTER_REQ_SHIFT),
};
#ifdef __ANDROID__
/**
* keymaster_message - Serial header for communicating with KM server
* @cmd: the command, one of keymaster_command.
* @payload: start of the serialized command specific payload
*/
struct keymaster_message {
uint32_t cmd;
uint8_t payload[0];
};
#endif

View file

@ -0,0 +1,60 @@
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <string.h>
#include <hardware/hardware.h>
#include <hardware/keymaster0.h>
#include "trusty_keymaster_device.h"
using keymaster::TrustyKeymasterDevice;
/*
* Generic device handling
*/
static int trusty_keymaster_open(const hw_module_t* module, const char* name,
hw_device_t** device) {
if (strcmp(name, KEYSTORE_KEYMASTER) != 0)
return -EINVAL;
TrustyKeymasterDevice* dev = new TrustyKeymasterDevice(module);
if (dev == NULL)
return -ENOMEM;
*device = dev->hw_device();
// Do not delete dev; it will get cleaned up when the caller calls device->close(), and must
// exist until then.
return 0;
}
static struct hw_module_methods_t keystore_module_methods = {
.open = trusty_keymaster_open,
};
struct keystore_module HAL_MODULE_INFO_SYM __attribute__((visibility("default"))) = {
.common =
{
.tag = HARDWARE_MODULE_TAG,
.module_api_version = KEYMASTER_MODULE_API_VERSION_0_3,
.hal_api_version = HARDWARE_HAL_API_VERSION,
.id = KEYSTORE_HARDWARE_MODULE_ID,
.name = "Trusty Keymaster HAL",
.author = "The Android Open Source Project",
.methods = &keystore_module_methods,
.dso = 0,
.reserved = {},
},
};

View file

@ -0,0 +1,536 @@
/*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "trusty_keymaster_device.h"
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <stddef.h>
#include <type_traits>
#include <openssl/evp.h>
#include <openssl/x509.h>
#define LOG_TAG "TrustyKeymaster"
#include <cutils/log.h>
#include <hardware/keymaster0.h>
#include <keymaster/authorization_set.h>
#include "trusty_keymaster_ipc.h"
#include "keymaster_ipc.h"
const uint32_t SEND_BUF_SIZE = 8192;
const uint32_t RECV_BUF_SIZE = 8192;
namespace keymaster {
static keymaster_error_t translate_error(int err) {
switch (err) {
case 0:
return KM_ERROR_OK;
case -EPERM:
case -EACCES:
return KM_ERROR_SECURE_HW_ACCESS_DENIED;
case -ECANCELED:
return KM_ERROR_OPERATION_CANCELLED;
case -ENODEV:
return KM_ERROR_UNIMPLEMENTED;
case -ENOMEM:
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
case -EBUSY:
return KM_ERROR_SECURE_HW_BUSY;
case -EIO:
return KM_ERROR_SECURE_HW_COMMUNICATION_FAILED;
case -EOVERFLOW:
return KM_ERROR_INVALID_INPUT_LENGTH;
default:
return KM_ERROR_UNKNOWN_ERROR;
}
}
TrustyKeymasterDevice::TrustyKeymasterDevice(const hw_module_t* module) {
static_assert(std::is_standard_layout<TrustyKeymasterDevice>::value,
"TrustyKeymasterDevice must be standard layout");
static_assert(offsetof(TrustyKeymasterDevice, device_) == 0,
"device_ must be the first member of KeymasterOpenSsl");
static_assert(offsetof(TrustyKeymasterDevice, device_.common) == 0,
"common must be the first member of keymaster_device");
ALOGI("Creating device");
ALOGD("Device address: %p", this);
memset(&device_, 0, sizeof(device_));
device_.common.tag = HARDWARE_DEVICE_TAG;
device_.common.version = 1;
device_.common.module = const_cast<hw_module_t*>(module);
device_.common.close = close_device;
device_.flags = KEYMASTER_BLOBS_ARE_STANDALONE | KEYMASTER_SUPPORTS_EC;
device_.generate_keypair = generate_keypair;
device_.import_keypair = import_keypair;
device_.get_keypair_public = get_keypair_public;
device_.delete_keypair = NULL;
device_.delete_all = NULL;
device_.sign_data = sign_data;
device_.verify_data = verify_data;
device_.context = NULL;
int rc = trusty_keymaster_connect();
error_ = translate_error(rc);
if (rc < 0) {
ALOGE("failed to connect to keymaster (%d)", rc);
return;
}
GetVersionRequest version_request;
GetVersionResponse version_response;
error_ = Send(version_request, &version_response);
if (error_ == KM_ERROR_INVALID_ARGUMENT || error_ == KM_ERROR_UNIMPLEMENTED) {
ALOGI("\"Bad parameters\" error on GetVersion call. Assuming version 0.");
message_version_ = 0;
error_ = KM_ERROR_OK;
}
message_version_ = MessageVersion(version_response.major_ver, version_response.minor_ver,
version_response.subminor_ver);
if (message_version_ < 0) {
// Can't translate version? Keymaster implementation must be newer.
ALOGE("Keymaster version %d.%d.%d not supported.", version_response.major_ver,
version_response.minor_ver, version_response.subminor_ver);
error_ = KM_ERROR_VERSION_MISMATCH;
}
}
TrustyKeymasterDevice::~TrustyKeymasterDevice() {
trusty_keymaster_disconnect();
}
const uint64_t HUNDRED_YEARS = 1000LL * 60 * 60 * 24 * 365 * 100;
int TrustyKeymasterDevice::generate_keypair(const keymaster_keypair_t key_type,
const void* key_params, uint8_t** key_blob,
size_t* key_blob_length) {
ALOGD("Device received generate_keypair");
if (error_ != KM_ERROR_OK)
return error_;
GenerateKeyRequest req(message_version_);
StoreNewKeyParams(&req.key_description);
switch (key_type) {
case TYPE_RSA: {
req.key_description.push_back(TAG_ALGORITHM, KM_ALGORITHM_RSA);
const keymaster_rsa_keygen_params_t* rsa_params =
static_cast<const keymaster_rsa_keygen_params_t*>(key_params);
ALOGD("Generating RSA pair, modulus size: %u, public exponent: %lu",
rsa_params->modulus_size, rsa_params->public_exponent);
req.key_description.push_back(TAG_KEY_SIZE, rsa_params->modulus_size);
req.key_description.push_back(TAG_RSA_PUBLIC_EXPONENT, rsa_params->public_exponent);
break;
}
case TYPE_EC: {
req.key_description.push_back(TAG_ALGORITHM, KM_ALGORITHM_EC);
const keymaster_ec_keygen_params_t* ec_params =
static_cast<const keymaster_ec_keygen_params_t*>(key_params);
ALOGD("Generating ECDSA pair, key size: %u", ec_params->field_size);
req.key_description.push_back(TAG_KEY_SIZE, ec_params->field_size);
break;
}
default:
ALOGD("Received request for unsuported key type %d", key_type);
return KM_ERROR_UNSUPPORTED_ALGORITHM;
}
GenerateKeyResponse rsp(message_version_);
ALOGD("Sending generate request");
keymaster_error_t err = Send(req, &rsp);
if (err != KM_ERROR_OK) {
ALOGE("Got error %d from send", err);
return err;
}
*key_blob_length = rsp.key_blob.key_material_size;
*key_blob = static_cast<uint8_t*>(malloc(*key_blob_length));
memcpy(*key_blob, rsp.key_blob.key_material, *key_blob_length);
ALOGD("Returning %d bytes in key blob\n", (int)*key_blob_length);
return KM_ERROR_OK;
}
struct EVP_PKEY_Delete {
void operator()(EVP_PKEY* p) const { EVP_PKEY_free(p); }
};
struct PKCS8_PRIV_KEY_INFO_Delete {
void operator()(PKCS8_PRIV_KEY_INFO* p) const { PKCS8_PRIV_KEY_INFO_free(p); }
};
int TrustyKeymasterDevice::import_keypair(const uint8_t* key, const size_t key_length,
uint8_t** key_blob, size_t* key_blob_length) {
ALOGD("Device received import_keypair");
if (error_ != KM_ERROR_OK)
return error_;
if (!key)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!key_blob || !key_blob_length)
return KM_ERROR_OUTPUT_PARAMETER_NULL;
ImportKeyRequest request(message_version_);
StoreNewKeyParams(&request.key_description);
keymaster_algorithm_t algorithm;
keymaster_error_t err = GetPkcs8KeyAlgorithm(key, key_length, &algorithm);
if (err != KM_ERROR_OK)
return err;
request.key_description.push_back(TAG_ALGORITHM, algorithm);
request.SetKeyMaterial(key, key_length);
request.key_format = KM_KEY_FORMAT_PKCS8;
ImportKeyResponse response(message_version_);
err = Send(request, &response);
if (err != KM_ERROR_OK)
return err;
*key_blob_length = response.key_blob.key_material_size;
*key_blob = static_cast<uint8_t*>(malloc(*key_blob_length));
memcpy(*key_blob, response.key_blob.key_material, *key_blob_length);
printf("Returning %d bytes in key blob\n", (int)*key_blob_length);
return KM_ERROR_OK;
}
keymaster_error_t TrustyKeymasterDevice::GetPkcs8KeyAlgorithm(const uint8_t* key, size_t key_length,
keymaster_algorithm_t* algorithm) {
if (key == NULL) {
ALOGE("No key specified for import");
return KM_ERROR_UNEXPECTED_NULL_POINTER;
}
UniquePtr<PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_Delete> pkcs8(
d2i_PKCS8_PRIV_KEY_INFO(NULL, &key, key_length));
if (pkcs8.get() == NULL) {
ALOGE("Could not parse PKCS8 key blob");
return KM_ERROR_INVALID_KEY_BLOB;
}
UniquePtr<EVP_PKEY, EVP_PKEY_Delete> pkey(EVP_PKCS82PKEY(pkcs8.get()));
if (pkey.get() == NULL) {
ALOGE("Could not extract key from PKCS8 key blob");
return KM_ERROR_INVALID_KEY_BLOB;
}
switch (EVP_PKEY_type(pkey->type)) {
case EVP_PKEY_RSA:
*algorithm = KM_ALGORITHM_RSA;
break;
case EVP_PKEY_EC:
*algorithm = KM_ALGORITHM_EC;
break;
default:
ALOGE("Unsupported algorithm %d", EVP_PKEY_type(pkey->type));
return KM_ERROR_UNSUPPORTED_ALGORITHM;
}
return KM_ERROR_OK;
}
int TrustyKeymasterDevice::get_keypair_public(const uint8_t* key_blob, const size_t key_blob_length,
uint8_t** x509_data, size_t* x509_data_length) {
ALOGD("Device received get_keypair_public");
if (error_ != KM_ERROR_OK)
return error_;
ExportKeyRequest request(message_version_);
request.SetKeyMaterial(key_blob, key_blob_length);
request.key_format = KM_KEY_FORMAT_X509;
ExportKeyResponse response(message_version_);
keymaster_error_t err = Send(request, &response);
if (err != KM_ERROR_OK)
return err;
*x509_data_length = response.key_data_length;
*x509_data = static_cast<uint8_t*>(malloc(*x509_data_length));
memcpy(*x509_data, response.key_data, *x509_data_length);
printf("Returning %d bytes in x509 key\n", (int)*x509_data_length);
return KM_ERROR_OK;
}
int TrustyKeymasterDevice::sign_data(const void* signing_params, const uint8_t* key_blob,
const size_t key_blob_length, const uint8_t* data,
const size_t data_length, uint8_t** signed_data,
size_t* signed_data_length) {
ALOGD("Device received sign_data, %d", error_);
if (error_ != KM_ERROR_OK)
return error_;
BeginOperationRequest begin_request(message_version_);
begin_request.purpose = KM_PURPOSE_SIGN;
begin_request.SetKeyMaterial(key_blob, key_blob_length);
keymaster_error_t err = StoreSigningParams(signing_params, key_blob, key_blob_length,
&begin_request.additional_params);
if (err != KM_ERROR_OK) {
ALOGE("Error extracting signing params: %d", err);
return err;
}
BeginOperationResponse begin_response(message_version_);
ALOGD("Sending signing request begin");
err = Send(begin_request, &begin_response);
if (err != KM_ERROR_OK) {
ALOGE("Error sending sign begin: %d", err);
return err;
}
UpdateOperationRequest update_request(message_version_);
update_request.op_handle = begin_response.op_handle;
update_request.input.Reinitialize(data, data_length);
UpdateOperationResponse update_response(message_version_);
ALOGD("Sending signing request update");
err = Send(update_request, &update_response);
if (err != KM_ERROR_OK) {
ALOGE("Error sending sign update: %d", err);
return err;
}
FinishOperationRequest finish_request(message_version_);
finish_request.op_handle = begin_response.op_handle;
FinishOperationResponse finish_response(message_version_);
ALOGD("Sending signing request finish");
err = Send(finish_request, &finish_response);
if (err != KM_ERROR_OK) {
ALOGE("Error sending sign finish: %d", err);
return err;
}
*signed_data_length = finish_response.output.available_read();
*signed_data = static_cast<uint8_t*>(malloc(*signed_data_length));
if (!finish_response.output.read(*signed_data, *signed_data_length)) {
ALOGE("Error reading response data: %d", err);
return KM_ERROR_UNKNOWN_ERROR;
}
return KM_ERROR_OK;
}
int TrustyKeymasterDevice::verify_data(const void* signing_params, const uint8_t* key_blob,
const size_t key_blob_length, const uint8_t* signed_data,
const size_t signed_data_length, const uint8_t* signature,
const size_t signature_length) {
ALOGD("Device received verify_data");
if (error_ != KM_ERROR_OK)
return error_;
BeginOperationRequest begin_request(message_version_);
begin_request.purpose = KM_PURPOSE_VERIFY;
begin_request.SetKeyMaterial(key_blob, key_blob_length);
keymaster_error_t err = StoreSigningParams(signing_params, key_blob, key_blob_length,
&begin_request.additional_params);
if (err != KM_ERROR_OK)
return err;
BeginOperationResponse begin_response(message_version_);
err = Send(begin_request, &begin_response);
if (err != KM_ERROR_OK)
return err;
UpdateOperationRequest update_request(message_version_);
update_request.op_handle = begin_response.op_handle;
update_request.input.Reinitialize(signed_data, signed_data_length);
UpdateOperationResponse update_response(message_version_);
err = Send(update_request, &update_response);
if (err != KM_ERROR_OK)
return err;
FinishOperationRequest finish_request(message_version_);
finish_request.op_handle = begin_response.op_handle;
finish_request.signature.Reinitialize(signature, signature_length);
FinishOperationResponse finish_response(message_version_);
err = Send(finish_request, &finish_response);
if (err != KM_ERROR_OK)
return err;
return KM_ERROR_OK;
}
hw_device_t* TrustyKeymasterDevice::hw_device() {
return &device_.common;
}
static inline TrustyKeymasterDevice* convert_device(const keymaster0_device_t* dev) {
return reinterpret_cast<TrustyKeymasterDevice*>(const_cast<keymaster0_device_t*>(dev));
}
/* static */
int TrustyKeymasterDevice::close_device(hw_device_t* dev) {
delete reinterpret_cast<TrustyKeymasterDevice*>(dev);
return 0;
}
/* static */
int TrustyKeymasterDevice::generate_keypair(const keymaster0_device_t* dev,
const keymaster_keypair_t key_type,
const void* key_params, uint8_t** keyBlob,
size_t* keyBlobLength) {
ALOGD("Generate keypair, sending to device: %p", convert_device(dev));
return convert_device(dev)->generate_keypair(key_type, key_params, keyBlob, keyBlobLength);
}
/* static */
int TrustyKeymasterDevice::import_keypair(const keymaster0_device_t* dev, const uint8_t* key,
const size_t key_length, uint8_t** key_blob,
size_t* key_blob_length) {
return convert_device(dev)->import_keypair(key, key_length, key_blob, key_blob_length);
}
/* static */
int TrustyKeymasterDevice::get_keypair_public(const keymaster0_device_t* dev,
const uint8_t* key_blob, const size_t key_blob_length,
uint8_t** x509_data, size_t* x509_data_length) {
return convert_device(dev)
->get_keypair_public(key_blob, key_blob_length, x509_data, x509_data_length);
}
/* static */
int TrustyKeymasterDevice::sign_data(const keymaster0_device_t* dev, const void* params,
const uint8_t* keyBlob, const size_t keyBlobLength,
const uint8_t* data, const size_t dataLength,
uint8_t** signedData, size_t* signedDataLength) {
return convert_device(dev)
->sign_data(params, keyBlob, keyBlobLength, data, dataLength, signedData, signedDataLength);
}
/* static */
int TrustyKeymasterDevice::verify_data(const keymaster0_device_t* dev, const void* params,
const uint8_t* keyBlob, const size_t keyBlobLength,
const uint8_t* signedData, const size_t signedDataLength,
const uint8_t* signature, const size_t signatureLength) {
return convert_device(dev)->verify_data(params, keyBlob, keyBlobLength, signedData,
signedDataLength, signature, signatureLength);
}
keymaster_error_t TrustyKeymasterDevice::Send(uint32_t command, const Serializable& req,
KeymasterResponse* rsp) {
uint32_t req_size = req.SerializedSize();
if (req_size > SEND_BUF_SIZE)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
uint8_t send_buf[SEND_BUF_SIZE];
Eraser send_buf_eraser(send_buf, SEND_BUF_SIZE);
req.Serialize(send_buf, send_buf + req_size);
// Send it
uint8_t recv_buf[RECV_BUF_SIZE];
Eraser recv_buf_eraser(recv_buf, RECV_BUF_SIZE);
uint32_t rsp_size = RECV_BUF_SIZE;
printf("Sending %d byte request\n", (int)req.SerializedSize());
int rc = trusty_keymaster_call(command, send_buf, req_size, recv_buf, &rsp_size);
if (rc < 0) {
ALOGE("tipc error: %d\n", rc);
// TODO(swillden): Distinguish permanent from transient errors and set error_ appropriately.
return translate_error(rc);
} else {
ALOGV("Received %d byte response\n", rsp_size);
}
const keymaster_message* msg = (keymaster_message *) recv_buf;
const uint8_t *p = msg->payload;
if (!rsp->Deserialize(&p, p + rsp_size)) {
ALOGE("Error deserializing response of size %d\n", (int)rsp_size);
return KM_ERROR_UNKNOWN_ERROR;
} else if (rsp->error != KM_ERROR_OK) {
ALOGE("Response of size %d contained error code %d\n", (int)rsp_size, (int)rsp->error);
return rsp->error;
}
return rsp->error;
}
keymaster_error_t TrustyKeymasterDevice::StoreSigningParams(const void* signing_params,
const uint8_t* key_blob,
size_t key_blob_length,
AuthorizationSet* auth_set) {
uint8_t* pub_key_data;
size_t pub_key_data_length;
int err = get_keypair_public(&device_, key_blob, key_blob_length, &pub_key_data,
&pub_key_data_length);
if (err < 0) {
ALOGE("Error %d extracting public key to determine algorithm", err);
return KM_ERROR_INVALID_KEY_BLOB;
}
UniquePtr<uint8_t, Malloc_Delete> pub_key(pub_key_data);
const uint8_t* p = pub_key_data;
UniquePtr<EVP_PKEY, EVP_PKEY_Delete> pkey(
d2i_PUBKEY(nullptr /* allocate new struct */, &p, pub_key_data_length));
switch (EVP_PKEY_type(pkey->type)) {
case EVP_PKEY_RSA: {
const keymaster_rsa_sign_params_t* rsa_params =
reinterpret_cast<const keymaster_rsa_sign_params_t*>(signing_params);
if (rsa_params->digest_type != DIGEST_NONE)
return KM_ERROR_UNSUPPORTED_DIGEST;
if (rsa_params->padding_type != PADDING_NONE)
return KM_ERROR_UNSUPPORTED_PADDING_MODE;
if (!auth_set->push_back(TAG_DIGEST, KM_DIGEST_NONE) ||
!auth_set->push_back(TAG_PADDING, KM_PAD_NONE))
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
} break;
case EVP_PKEY_EC: {
const keymaster_ec_sign_params_t* ecdsa_params =
reinterpret_cast<const keymaster_ec_sign_params_t*>(signing_params);
if (ecdsa_params->digest_type != DIGEST_NONE)
return KM_ERROR_UNSUPPORTED_DIGEST;
if (!auth_set->push_back(TAG_DIGEST, KM_DIGEST_NONE))
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
} break;
default:
return KM_ERROR_UNSUPPORTED_ALGORITHM;
}
return KM_ERROR_OK;
}
void TrustyKeymasterDevice::StoreNewKeyParams(AuthorizationSet* auth_set) {
auth_set->push_back(TAG_PURPOSE, KM_PURPOSE_SIGN);
auth_set->push_back(TAG_PURPOSE, KM_PURPOSE_VERIFY);
auth_set->push_back(TAG_ALL_USERS);
auth_set->push_back(TAG_NO_AUTH_REQUIRED);
uint64_t now = java_time(time(NULL));
auth_set->push_back(TAG_CREATION_DATETIME, now);
auth_set->push_back(TAG_ORIGINATION_EXPIRE_DATETIME, now + HUNDRED_YEARS);
if (message_version_ == 0) {
auth_set->push_back(TAG_DIGEST_OLD, KM_DIGEST_NONE);
auth_set->push_back(TAG_PADDING_OLD, KM_PAD_NONE);
} else {
auth_set->push_back(TAG_DIGEST, KM_DIGEST_NONE);
auth_set->push_back(TAG_PADDING, KM_PAD_NONE);
}
}
} // namespace keymaster

View file

@ -0,0 +1,124 @@
/*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef EXTERNAL_KEYMASTER_TRUSTY_KEYMASTER_DEVICE_H_
#define EXTERNAL_KEYMASTER_TRUSTY_KEYMASTER_DEVICE_H_
#include <hardware/keymaster0.h>
#include <keymaster/android_keymaster_messages.h>
#include "keymaster_ipc.h"
namespace keymaster {
/**
* Software OpenSSL-based Keymaster device.
*
* IMPORTANT MAINTAINER NOTE: Pointers to instances of this class must be castable to hw_device_t
* and keymaster_device. This means it must remain a standard layout class (no virtual functions and
* no data members which aren't standard layout), and device_ must be the first data member.
* Assertions in the constructor validate compliance with those constraints.
*/
class TrustyKeymasterDevice {
public:
/*
* These are the only symbols that will be exported by libtrustykeymaster. All functionality
* can be reached via the function pointers in device_.
*/
__attribute__((visibility("default"))) TrustyKeymasterDevice(const hw_module_t* module);
__attribute__((visibility("default"))) hw_device_t* hw_device();
~TrustyKeymasterDevice();
keymaster_error_t session_error() { return error_; }
int generate_keypair(const keymaster_keypair_t key_type, const void* key_params,
uint8_t** key_blob, size_t* key_blob_length);
int import_keypair(const uint8_t* key, const size_t key_length, uint8_t** key_blob,
size_t* key_blob_length);
int get_keypair_public(const uint8_t* key_blob, const size_t key_blob_length,
uint8_t** x509_data, size_t* x509_data_length);
int sign_data(const void* signing_params, const uint8_t* key_blob, const size_t key_blob_length,
const uint8_t* data, const size_t data_length, uint8_t** signed_data,
size_t* signed_data_length);
int verify_data(const void* signing_params, const uint8_t* key_blob,
const size_t key_blob_length, const uint8_t* signed_data,
const size_t signed_data_length, const uint8_t* signature,
const size_t signature_length);
private:
keymaster_error_t Send(uint32_t command, const Serializable& request,
KeymasterResponse* response);
keymaster_error_t Send(const GenerateKeyRequest& request, GenerateKeyResponse* response) {
return Send(KM_GENERATE_KEY, request, response);
}
keymaster_error_t Send(const BeginOperationRequest& request, BeginOperationResponse* response) {
return Send(KM_BEGIN_OPERATION, request, response);
}
keymaster_error_t Send(const UpdateOperationRequest& request,
UpdateOperationResponse* response) {
return Send(KM_UPDATE_OPERATION, request, response);
}
keymaster_error_t Send(const FinishOperationRequest& request,
FinishOperationResponse* response) {
return Send(KM_FINISH_OPERATION, request, response);
}
keymaster_error_t Send(const ImportKeyRequest& request, ImportKeyResponse* response) {
return Send(KM_IMPORT_KEY, request, response);
}
keymaster_error_t Send(const ExportKeyRequest& request, ExportKeyResponse* response) {
return Send(KM_EXPORT_KEY, request, response);
}
keymaster_error_t Send(const GetVersionRequest& request, GetVersionResponse* response) {
return Send(KM_GET_VERSION, request, response);
}
keymaster_error_t StoreSigningParams(const void* signing_params, const uint8_t* key_blob,
size_t key_blob_length, AuthorizationSet* auth_set);
void StoreNewKeyParams(AuthorizationSet* auth_set);
keymaster_error_t GetPkcs8KeyAlgorithm(const uint8_t* key, size_t key_length,
keymaster_algorithm_t* algorithm);
/*
* These static methods are the functions referenced through the function pointers in
* keymaster_device. They're all trivial wrappers.
*/
static int close_device(hw_device_t* dev);
static int generate_keypair(const keymaster0_device_t* dev, const keymaster_keypair_t key_type,
const void* key_params, uint8_t** keyBlob, size_t* keyBlobLength);
static int import_keypair(const keymaster0_device_t* dev, const uint8_t* key,
const size_t key_length, uint8_t** key_blob, size_t* key_blob_length);
static int get_keypair_public(const keymaster0_device_t* dev, const uint8_t* key_blob,
const size_t key_blob_length, uint8_t** x509_data,
size_t* x509_data_length);
static int sign_data(const keymaster0_device_t* dev, const void* signing_params,
const uint8_t* key_blob, const size_t key_blob_length, const uint8_t* data,
const size_t data_length, uint8_t** signed_data,
size_t* signed_data_length);
static int verify_data(const keymaster0_device_t* dev, const void* signing_params,
const uint8_t* key_blob, const size_t key_blob_length,
const uint8_t* signed_data, const size_t signed_data_length,
const uint8_t* signature, const size_t signature_length);
keymaster0_device_t device_;
keymaster_error_t error_;
int32_t message_version_;
};
} // namespace keymaster
#endif // EXTERNAL_KEYMASTER_TRUSTY_KEYMASTER_DEVICE_H_

View file

@ -0,0 +1,562 @@
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <fstream>
#include <UniquePtr.h>
#include <gtest/gtest.h>
#include <openssl/engine.h>
#include <hardware/keymaster0.h>
#include <keymaster/android_keymaster.h>
#include <keymaster/android_keymaster_messages.h>
#include <keymaster/android_keymaster_utils.h>
#include <keymaster/keymaster_tags.h>
#include <keymaster/soft_keymaster_context.h>
#include "android_keymaster_test_utils.h"
#include "trusty_keymaster_device.h"
#include "openssl_utils.h"
using std::string;
using std::ifstream;
using std::istreambuf_iterator;
static keymaster::AndroidKeymaster *impl_ = nullptr;
extern "C" {
int __android_log_print();
}
int __android_log_print() {
return 0;
}
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
int result = RUN_ALL_TESTS();
// Clean up stuff OpenSSL leaves around, so Valgrind doesn't complain.
CRYPTO_cleanup_all_ex_data();
ERR_free_strings();
return result;
}
int trusty_keymaster_connect() {
impl_ = new keymaster::AndroidKeymaster(new keymaster::SoftKeymasterContext(nullptr), 16);
}
void trusty_keymaster_disconnect() {
delete static_cast<keymaster::AndroidKeymaster*>(priv_);
}
template <typename Req, typename Rsp>
static int fake_call(keymaster::AndroidKeymaster* device,
void (keymaster::AndroidKeymaster::*method)(const Req&, Rsp*), void* in_buf,
uint32_t in_size, void* out_buf, uint32_t* out_size) {
Req req;
const uint8_t* in = static_cast<uint8_t*>(in_buf);
req.Deserialize(&in, in + in_size);
Rsp rsp;
(device->*method)(req, &rsp);
*out_size = rsp.SerializedSize();
uint8_t* out = static_cast<uint8_t*>(out_buf);
rsp.Serialize(out, out + *out_size);
return 0;
}
int trusty_keymaster_call(uint32_t cmd, void* in_buf, uint32_t in_size, void* out_buf,
uint32_t* out_size) {
switch (cmd) {
case KM_GENERATE_KEY:
return fake_call(impl_, &keymaster::AndroidKeymaster::GenerateKey, in_buf, in_size,
out_buf, out_size);
case KM_BEGIN_OPERATION:
return fake_call(impl_, &keymaster::AndroidKeymaster::BeginOperation, in_buf, in_size,
out_buf, out_size);
case KM_UPDATE_OPERATION:
return fake_call(impl_, &keymaster::AndroidKeymaster::UpdateOperation, in_buf, in_size,
out_buf, out_size);
case KM_FINISH_OPERATION:
return fake_call(impl_, &keymaster::AndroidKeymaster::FinishOperation, in_buf, in_size,
out_buf, out_size);
case KM_IMPORT_KEY:
return fake_call(impl_, &keymaster::AndroidKeymaster::ImportKey, in_buf, in_size, out_buf,
out_size);
case KM_EXPORT_KEY:
return fake_call(impl_, &keymaster::AndroidKeymaster::ExportKey, in_buf, in_size, out_buf,
out_size);
}
return -EINVAL;
}
namespace keymaster {
namespace test {
class TrustyKeymasterTest : public testing::Test {
protected:
TrustyKeymasterTest() : device(NULL) {}
keymaster_rsa_keygen_params_t build_rsa_params() {
keymaster_rsa_keygen_params_t rsa_params;
rsa_params.public_exponent = 65537;
rsa_params.modulus_size = 2048;
return rsa_params;
}
uint8_t* build_message(size_t length) {
uint8_t* msg = new uint8_t[length];
memset(msg, 'a', length);
return msg;
}
size_t dsa_message_len(const keymaster_dsa_keygen_params_t& params) {
switch (params.key_size) {
case 256:
case 1024:
return 48;
case 2048:
case 4096:
return 72;
default:
// Oops.
return 0;
}
}
TrustyKeymasterDevice device;
};
class Malloc_Delete {
public:
Malloc_Delete(void* p) : p_(p) {}
~Malloc_Delete() { free(p_); }
private:
void* p_;
};
typedef TrustyKeymasterTest KeyGenTest;
TEST_F(KeyGenTest, RsaSuccess) {
keymaster_rsa_keygen_params_t params = build_rsa_params();
uint8_t* ptr = NULL;
size_t size;
ASSERT_EQ(0, device.generate_keypair(TYPE_RSA, &params, &ptr, &size));
EXPECT_GT(size, 0U);
Malloc_Delete key_deleter(ptr);
}
TEST_F(KeyGenTest, EcdsaSuccess) {
keymaster_ec_keygen_params_t ec_params = {256};
uint8_t* ptr = NULL;
size_t size;
ASSERT_EQ(0, device.generate_keypair(TYPE_EC, &ec_params, &ptr, &size));
EXPECT_GT(size, 0U);
Malloc_Delete key_deleter(ptr);
}
typedef TrustyKeymasterTest SigningTest;
TEST_F(SigningTest, RsaSuccess) {
keymaster_rsa_keygen_params_t params = build_rsa_params();
uint8_t* ptr = NULL;
size_t size;
ASSERT_EQ(0, device.generate_keypair(TYPE_RSA, &params, &ptr, &size));
EXPECT_GT(size, 0U);
Malloc_Delete key_deleter(ptr);
keymaster_rsa_sign_params_t sig_params = {DIGEST_NONE, PADDING_NONE};
size_t message_len = params.modulus_size / 8;
UniquePtr<uint8_t[]> message(build_message(message_len));
uint8_t* signature;
size_t siglen;
EXPECT_EQ(KM_ERROR_OK, device.sign_data(&sig_params, ptr, size, message.get(), message_len,
&signature, &siglen));
Malloc_Delete sig_deleter(signature);
EXPECT_EQ(message_len, siglen);
}
TEST_F(SigningTest, RsaShortMessage) {
keymaster_rsa_keygen_params_t params = build_rsa_params();
uint8_t* ptr = NULL;
size_t size;
ASSERT_EQ(0, device.generate_keypair(TYPE_RSA, &params, &ptr, &size));
EXPECT_GT(size, 0U);
Malloc_Delete key_deleter(ptr);
keymaster_rsa_sign_params_t sig_params = {DIGEST_NONE, PADDING_NONE};
size_t message_len = params.modulus_size / 8 - 1;
UniquePtr<uint8_t[]> message(build_message(message_len));
uint8_t* signature;
size_t siglen;
EXPECT_EQ(KM_ERROR_UNKNOWN_ERROR, device.sign_data(&sig_params, ptr, size, message.get(),
message_len, &signature, &siglen));
}
TEST_F(SigningTest, RsaLongMessage) {
keymaster_rsa_keygen_params_t params = build_rsa_params();
uint8_t* ptr = NULL;
size_t size;
ASSERT_EQ(0, device.generate_keypair(TYPE_RSA, &params, &ptr, &size));
EXPECT_GT(size, 0U);
Malloc_Delete key_deleter(ptr);
keymaster_rsa_sign_params_t sig_params = {DIGEST_NONE, PADDING_NONE};
size_t message_len = params.modulus_size / 8 + 1;
UniquePtr<uint8_t[]> message(build_message(message_len));
uint8_t* signature;
size_t siglen;
EXPECT_EQ(KM_ERROR_UNKNOWN_ERROR, device.sign_data(&sig_params, ptr, size, message.get(),
message_len, &signature, &siglen));
}
TEST_F(SigningTest, EcdsaSuccess) {
keymaster_ec_keygen_params_t params = {256};
uint8_t* ptr = NULL;
size_t size;
ASSERT_EQ(0, device.generate_keypair(TYPE_EC, &params, &ptr, &size));
EXPECT_GT(size, 0U);
Malloc_Delete key_deleter(ptr);
keymaster_ec_sign_params_t sig_params = {DIGEST_NONE};
uint8_t message[] = "12345678901234567890123456789012";
uint8_t* signature;
size_t siglen;
ASSERT_EQ(KM_ERROR_OK, device.sign_data(&sig_params, ptr, size, message,
array_size(message) - 1, &signature, &siglen));
Malloc_Delete sig_deleter(signature);
EXPECT_GT(siglen, 69U);
EXPECT_LT(siglen, 73U);
}
TEST_F(SigningTest, EcdsaEmptyMessageSuccess) {
keymaster_ec_keygen_params_t params = {256};
uint8_t* ptr = NULL;
size_t size;
ASSERT_EQ(0, device.generate_keypair(TYPE_EC, &params, &ptr, &size));
EXPECT_GT(size, 0U);
Malloc_Delete key_deleter(ptr);
keymaster_ec_sign_params_t sig_params = {DIGEST_NONE};
uint8_t message[] = "";
uint8_t* signature;
size_t siglen;
ASSERT_EQ(KM_ERROR_OK, device.sign_data(&sig_params, ptr, size, message,
array_size(message) - 1, &signature, &siglen));
Malloc_Delete sig_deleter(signature);
EXPECT_GT(siglen, 69U);
EXPECT_LT(siglen, 73U);
}
TEST_F(SigningTest, EcdsaLargeMessageSuccess) {
keymaster_ec_keygen_params_t params = {256};
uint8_t* ptr = NULL;
size_t size;
ASSERT_EQ(0, device.generate_keypair(TYPE_EC, &params, &ptr, &size));
EXPECT_GT(size, 0U);
Malloc_Delete key_deleter(ptr);
keymaster_ec_sign_params_t sig_params = {DIGEST_NONE};
size_t message_len = 1024 * 7;
UniquePtr<uint8_t[]> message(new uint8_t[message_len]);
// contents of message don't matter.
uint8_t* signature;
size_t siglen;
ASSERT_EQ(KM_ERROR_OK, device.sign_data(&sig_params, ptr, size, message.get(), message_len,
&signature, &siglen));
Malloc_Delete sig_deleter(signature);
EXPECT_GT(siglen, 69U);
EXPECT_LT(siglen, 73U);
}
typedef TrustyKeymasterTest VerificationTest;
TEST_F(VerificationTest, RsaSuccess) {
keymaster_rsa_keygen_params_t params = build_rsa_params();
uint8_t* ptr = NULL;
size_t size;
ASSERT_EQ(0, device.generate_keypair(TYPE_RSA, &params, &ptr, &size));
EXPECT_GT(size, 0U);
Malloc_Delete key_deleter(ptr);
keymaster_rsa_sign_params_t sig_params = {DIGEST_NONE, PADDING_NONE};
size_t message_len = params.modulus_size / 8;
UniquePtr<uint8_t[]> message(build_message(message_len));
uint8_t* signature;
size_t siglen;
EXPECT_EQ(KM_ERROR_OK, device.sign_data(&sig_params, ptr, size, message.get(), message_len,
&signature, &siglen));
Malloc_Delete sig_deleter(signature);
EXPECT_EQ(KM_ERROR_OK, device.verify_data(&sig_params, ptr, size, message.get(), message_len,
signature, siglen));
}
TEST_F(VerificationTest, RsaBadSignature) {
keymaster_rsa_keygen_params_t params = build_rsa_params();
uint8_t* ptr = NULL;
size_t size;
ASSERT_EQ(0, device.generate_keypair(TYPE_RSA, &params, &ptr, &size));
EXPECT_GT(size, 0U);
Malloc_Delete key_deleter(ptr);
keymaster_rsa_sign_params_t sig_params = {DIGEST_NONE, PADDING_NONE};
size_t message_len = params.modulus_size / 8;
UniquePtr<uint8_t[]> message(build_message(message_len));
uint8_t* signature;
size_t siglen;
EXPECT_EQ(KM_ERROR_OK, device.sign_data(&sig_params, ptr, size, message.get(), message_len,
&signature, &siglen));
Malloc_Delete sig_deleter(signature);
signature[siglen / 2]++;
EXPECT_EQ(
KM_ERROR_VERIFICATION_FAILED,
device.verify_data(&sig_params, ptr, size, message.get(), message_len, signature, siglen));
}
TEST_F(VerificationTest, RsaBadMessage) {
keymaster_rsa_keygen_params_t params = build_rsa_params();
uint8_t* ptr = NULL;
size_t size;
ASSERT_EQ(0, device.generate_keypair(TYPE_RSA, &params, &ptr, &size));
EXPECT_GT(size, 0U);
Malloc_Delete key_deleter(ptr);
keymaster_rsa_sign_params_t sig_params = {DIGEST_NONE, PADDING_NONE};
size_t message_len = params.modulus_size / 8;
UniquePtr<uint8_t[]> message(build_message(message_len));
uint8_t* signature;
size_t siglen;
EXPECT_EQ(KM_ERROR_OK, device.sign_data(&sig_params, ptr, size, message.get(), message_len,
&signature, &siglen));
Malloc_Delete sig_deleter(signature);
message[0]++;
EXPECT_EQ(
KM_ERROR_VERIFICATION_FAILED,
device.verify_data(&sig_params, ptr, size, message.get(), message_len, signature, siglen));
}
TEST_F(VerificationTest, RsaShortMessage) {
keymaster_rsa_keygen_params_t params = build_rsa_params();
uint8_t* ptr = NULL;
size_t size;
ASSERT_EQ(0, device.generate_keypair(TYPE_RSA, &params, &ptr, &size));
EXPECT_GT(size, 0U);
Malloc_Delete key_deleter(ptr);
keymaster_rsa_sign_params_t sig_params = {DIGEST_NONE, PADDING_NONE};
size_t message_len = params.modulus_size / 8;
UniquePtr<uint8_t[]> message(build_message(message_len));
uint8_t* signature;
size_t siglen;
EXPECT_EQ(KM_ERROR_OK, device.sign_data(&sig_params, ptr, size, message.get(), message_len,
&signature, &siglen));
Malloc_Delete sig_deleter(signature);
EXPECT_EQ(KM_ERROR_INVALID_INPUT_LENGTH,
device.verify_data(&sig_params, ptr, size, message.get(), message_len - 1, signature,
siglen));
}
TEST_F(VerificationTest, RsaLongMessage) {
keymaster_rsa_keygen_params_t params = build_rsa_params();
uint8_t* ptr = NULL;
size_t size;
ASSERT_EQ(0, device.generate_keypair(TYPE_RSA, &params, &ptr, &size));
EXPECT_GT(size, 0U);
Malloc_Delete key_deleter(ptr);
keymaster_rsa_sign_params_t sig_params = {DIGEST_NONE, PADDING_NONE};
size_t message_len = params.modulus_size / 8;
UniquePtr<uint8_t[]> message(build_message(message_len + 1));
uint8_t* signature;
size_t siglen;
EXPECT_EQ(KM_ERROR_OK, device.sign_data(&sig_params, ptr, size, message.get(), message_len,
&signature, &siglen));
Malloc_Delete sig_deleter(signature);
EXPECT_EQ(KM_ERROR_INVALID_INPUT_LENGTH,
device.verify_data(&sig_params, ptr, size, message.get(), message_len + 1, signature,
siglen));
}
TEST_F(VerificationTest, EcdsaSuccess) {
keymaster_ec_keygen_params_t params = {256};
uint8_t* ptr = NULL;
size_t size;
ASSERT_EQ(0, device.generate_keypair(TYPE_EC, &params, &ptr, &size));
EXPECT_GT(size, 0U);
Malloc_Delete key_deleter(ptr);
keymaster_ec_sign_params_t sig_params = {DIGEST_NONE};
uint8_t message[] = "12345678901234567890123456789012";
uint8_t* signature;
size_t siglen;
ASSERT_EQ(KM_ERROR_OK, device.sign_data(&sig_params, ptr, size, message,
array_size(message) - 1, &signature, &siglen));
Malloc_Delete sig_deleter(signature);
EXPECT_EQ(KM_ERROR_OK, device.verify_data(&sig_params, ptr, size, message,
array_size(message) - 1, signature, siglen));
}
TEST_F(VerificationTest, EcdsaLargeMessageSuccess) {
keymaster_ec_keygen_params_t params = {256};
uint8_t* ptr = NULL;
size_t size;
ASSERT_EQ(0, device.generate_keypair(TYPE_EC, &params, &ptr, &size));
EXPECT_GT(size, 0U);
Malloc_Delete key_deleter(ptr);
keymaster_ec_sign_params_t sig_params = {DIGEST_NONE};
size_t message_len = 1024 * 7;
UniquePtr<uint8_t[]> message(new uint8_t[message_len]);
// contents of message don't matter.
uint8_t* signature;
size_t siglen;
ASSERT_EQ(KM_ERROR_OK, device.sign_data(&sig_params, ptr, size, message.get(), message_len,
&signature, &siglen));
Malloc_Delete sig_deleter(signature);
EXPECT_EQ(KM_ERROR_OK, device.verify_data(&sig_params, ptr, size, message.get(), message_len,
signature, siglen));
}
static string read_file(const string& file_name) {
ifstream file_stream(file_name, std::ios::binary);
istreambuf_iterator<char> file_begin(file_stream);
istreambuf_iterator<char> file_end;
return string(file_begin, file_end);
}
typedef TrustyKeymasterTest ImportKeyTest;
TEST_F(ImportKeyTest, RsaSuccess) {
string pk8_key = read_file("../../../../system/keymaster/rsa_privkey_pk8.der");
ASSERT_EQ(633U, pk8_key.size());
uint8_t* key = NULL;
size_t size;
ASSERT_EQ(KM_ERROR_OK, device.import_keypair(reinterpret_cast<const uint8_t*>(pk8_key.data()),
pk8_key.size(), &key, &size));
Malloc_Delete key_deleter(key);
keymaster_rsa_sign_params_t sig_params = {DIGEST_NONE, PADDING_NONE};
size_t message_size = 1024 /* key size */ / 8;
UniquePtr<uint8_t[]> message(new uint8_t[message_size]);
memset(message.get(), 'a', message_size);
uint8_t* signature;
size_t siglen;
ASSERT_EQ(KM_ERROR_OK, device.sign_data(&sig_params, key, size, message.get(), message_size,
&signature, &siglen));
Malloc_Delete sig_deleter(signature);
EXPECT_EQ(KM_ERROR_OK, device.verify_data(&sig_params, key, size, message.get(), message_size,
signature, siglen));
}
TEST_F(ImportKeyTest, EcdsaSuccess) {
string pk8_key = read_file("../../../../system/keymaster/ec_privkey_pk8.der");
ASSERT_EQ(138U, pk8_key.size());
uint8_t* key = NULL;
size_t size;
ASSERT_EQ(KM_ERROR_OK, device.import_keypair(reinterpret_cast<const uint8_t*>(pk8_key.data()),
pk8_key.size(), &key, &size));
Malloc_Delete key_deleter(key);
keymaster_ec_sign_params_t sig_params = {DIGEST_NONE};
uint8_t message[] = "12345678901234567890123456789012";
uint8_t* signature;
size_t siglen;
ASSERT_EQ(KM_ERROR_OK, device.sign_data(&sig_params, key, size, message,
array_size(message) - 1, &signature, &siglen));
Malloc_Delete sig_deleter(signature);
EXPECT_EQ(KM_ERROR_OK, device.verify_data(&sig_params, key, size, message,
array_size(message) - 1, signature, siglen));
}
struct EVP_PKEY_CTX_Delete {
void operator()(EVP_PKEY_CTX* p) { EVP_PKEY_CTX_free(p); }
};
static void VerifySignature(const uint8_t* key, size_t key_len, const uint8_t* signature,
size_t signature_len, const uint8_t* message, size_t message_len) {
UniquePtr<EVP_PKEY, EVP_PKEY_Delete> pkey(d2i_PUBKEY(NULL, &key, key_len));
ASSERT_TRUE(pkey.get() != NULL);
UniquePtr<EVP_PKEY_CTX, EVP_PKEY_CTX_Delete> ctx(EVP_PKEY_CTX_new(pkey.get(), NULL));
ASSERT_TRUE(ctx.get() != NULL);
ASSERT_EQ(1, EVP_PKEY_verify_init(ctx.get()));
if (EVP_PKEY_type(pkey->type) == EVP_PKEY_RSA)
ASSERT_EQ(1, EVP_PKEY_CTX_set_rsa_padding(ctx.get(), RSA_NO_PADDING));
EXPECT_EQ(1, EVP_PKEY_verify(ctx.get(), signature, signature_len, message, message_len));
}
typedef TrustyKeymasterTest ExportKeyTest;
TEST_F(ExportKeyTest, RsaSuccess) {
keymaster_rsa_keygen_params_t params = build_rsa_params();
uint8_t* ptr = NULL;
size_t size;
ASSERT_EQ(0, device.generate_keypair(TYPE_RSA, &params, &ptr, &size));
EXPECT_GT(size, 0U);
Malloc_Delete key_deleter(ptr);
uint8_t* exported;
size_t exported_size;
EXPECT_EQ(KM_ERROR_OK, device.get_keypair_public(ptr, size, &exported, &exported_size));
Malloc_Delete exported_deleter(exported);
// Sign a message so we can verify it with the exported pubkey.
keymaster_rsa_sign_params_t sig_params = {DIGEST_NONE, PADDING_NONE};
size_t message_len = params.modulus_size / 8;
UniquePtr<uint8_t[]> message(build_message(message_len));
uint8_t* signature;
size_t siglen;
EXPECT_EQ(KM_ERROR_OK, device.sign_data(&sig_params, ptr, size, message.get(), message_len,
&signature, &siglen));
Malloc_Delete sig_deleter(signature);
EXPECT_EQ(message_len, siglen);
const uint8_t* tmp = exported;
VerifySignature(exported, exported_size, signature, siglen, message.get(), message_len);
}
typedef TrustyKeymasterTest ExportKeyTest;
TEST_F(ExportKeyTest, EcdsaSuccess) {
keymaster_ec_keygen_params_t params = {256};
uint8_t* key = NULL;
size_t size;
ASSERT_EQ(0, device.generate_keypair(TYPE_EC, &params, &key, &size));
EXPECT_GT(size, 0U);
Malloc_Delete key_deleter(key);
uint8_t* exported;
size_t exported_size;
EXPECT_EQ(KM_ERROR_OK, device.get_keypair_public(key, size, &exported, &exported_size));
Malloc_Delete exported_deleter(exported);
// Sign a message so we can verify it with the exported pubkey.
keymaster_ec_sign_params_t sig_params = {DIGEST_NONE};
uint8_t message[] = "12345678901234567890123456789012";
uint8_t* signature;
size_t siglen;
ASSERT_EQ(KM_ERROR_OK, device.sign_data(&sig_params, key, size, message,
array_size(message) - 1, &signature, &siglen));
Malloc_Delete sig_deleter(signature);
EXPECT_EQ(KM_ERROR_OK, device.verify_data(&sig_params, key, size, message,
array_size(message) - 1, signature, siglen));
VerifySignature(exported, exported_size, signature, siglen, message, array_size(message) - 1);
}
} // namespace test
} // namespace keymaster

View file

@ -0,0 +1,94 @@
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// TODO: make this generic in libtrusty
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#define LOG_TAG "TrustyKeymaster"
#include <cutils/log.h>
#include <trusty/tipc.h>
#include "trusty_keymaster_ipc.h"
#include "keymaster_ipc.h"
#define TRUSTY_DEVICE_NAME "/dev/trusty-ipc-dev0"
static int handle_ = 0;
int trusty_keymaster_connect() {
int rc = tipc_connect(TRUSTY_DEVICE_NAME, KEYMASTER_PORT);
if (rc < 0) {
return rc;
}
handle_ = rc;
return 0;
}
int trusty_keymaster_call(uint32_t cmd, void *in, uint32_t in_size, uint8_t *out,
uint32_t *out_size) {
if (handle_ == 0) {
ALOGE("not connected\n");
return -EINVAL;
}
size_t msg_size = in_size + sizeof(struct keymaster_message);
struct keymaster_message *msg = malloc(msg_size);
msg->cmd = cmd;
memcpy(msg->payload, in, in_size);
ssize_t rc = write(handle_, msg, msg_size);
free(msg);
if (rc < 0) {
ALOGE("failed to send cmd (%d) to %s: %s\n", cmd,
KEYMASTER_PORT, strerror(errno));
return -errno;
}
rc = read(handle_, out, *out_size);
if (rc < 0) {
ALOGE("failed to retrieve response for cmd (%d) to %s: %s\n",
cmd, KEYMASTER_PORT, strerror(errno));
return -errno;
}
if ((size_t) rc < sizeof(struct keymaster_message)) {
ALOGE("invalid response size (%d)\n", (int) rc);
return -EINVAL;
}
msg = (struct keymaster_message *) out;
if ((cmd | KEYMASTER_RESP_BIT) != msg->cmd) {
ALOGE("invalid command (%d)", msg->cmd);
return -EINVAL;
}
*out_size = ((size_t) rc) - sizeof(struct keymaster_message);
return rc;
}
void trusty_keymaster_disconnect() {
if (handle_ != 0) {
tipc_close(handle_);
}
}

View file

@ -0,0 +1,24 @@
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
__BEGIN_DECLS
int trusty_keymaster_connect(void);
int trusty_keymaster_call(uint32_t cmd, void *in, uint32_t in_size, uint8_t *out,
uint32_t *out_size);
void trusty_keymaster_disconnect(void);
__END_DECLS

View file

@ -0,0 +1,368 @@
/*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <openssl/evp.h>
#include <openssl/x509.h>
#include "trusty_keymaster_device.h"
using keymaster::TrustyKeymasterDevice;
unsigned char rsa_privkey_pk8_der[] = {
0x30, 0x82, 0x02, 0x75, 0x02, 0x01, 0x00, 0x30, 0x0d, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7,
0x0d, 0x01, 0x01, 0x01, 0x05, 0x00, 0x04, 0x82, 0x02, 0x5f, 0x30, 0x82, 0x02, 0x5b, 0x02, 0x01,
0x00, 0x02, 0x81, 0x81, 0x00, 0xc6, 0x09, 0x54, 0x09, 0x04, 0x7d, 0x86, 0x34, 0x81, 0x2d, 0x5a,
0x21, 0x81, 0x76, 0xe4, 0x5c, 0x41, 0xd6, 0x0a, 0x75, 0xb1, 0x39, 0x01, 0xf2, 0x34, 0x22, 0x6c,
0xff, 0xe7, 0x76, 0x52, 0x1c, 0x5a, 0x77, 0xb9, 0xe3, 0x89, 0x41, 0x7b, 0x71, 0xc0, 0xb6, 0xa4,
0x4d, 0x13, 0xaf, 0xe4, 0xe4, 0xa2, 0x80, 0x5d, 0x46, 0xc9, 0xda, 0x29, 0x35, 0xad, 0xb1, 0xff,
0x0c, 0x1f, 0x24, 0xea, 0x06, 0xe6, 0x2b, 0x20, 0xd7, 0x76, 0x43, 0x0a, 0x4d, 0x43, 0x51, 0x57,
0x23, 0x3c, 0x6f, 0x91, 0x67, 0x83, 0xc3, 0x0e, 0x31, 0x0f, 0xcb, 0xd8, 0x9b, 0x85, 0xc2, 0xd5,
0x67, 0x71, 0x16, 0x97, 0x85, 0xac, 0x12, 0xbc, 0xa2, 0x44, 0xab, 0xda, 0x72, 0xbf, 0xb1, 0x9f,
0xc4, 0x4d, 0x27, 0xc8, 0x1e, 0x1d, 0x92, 0xde, 0x28, 0x4f, 0x40, 0x61, 0xed, 0xfd, 0x99, 0x28,
0x07, 0x45, 0xea, 0x6d, 0x25, 0x02, 0x03, 0x01, 0x00, 0x01, 0x02, 0x81, 0x80, 0x1b, 0xe0, 0xf0,
0x4d, 0x9c, 0xae, 0x37, 0x18, 0x69, 0x1f, 0x03, 0x53, 0x38, 0x30, 0x8e, 0x91, 0x56, 0x4b, 0x55,
0x89, 0x9f, 0xfb, 0x50, 0x84, 0xd2, 0x46, 0x0e, 0x66, 0x30, 0x25, 0x7e, 0x05, 0xb3, 0xce, 0xab,
0x02, 0x97, 0x2d, 0xfa, 0xbc, 0xd6, 0xce, 0x5f, 0x6e, 0xe2, 0x58, 0x9e, 0xb6, 0x79, 0x11, 0xed,
0x0f, 0xac, 0x16, 0xe4, 0x3a, 0x44, 0x4b, 0x8c, 0x86, 0x1e, 0x54, 0x4a, 0x05, 0x93, 0x36, 0x57,
0x72, 0xf8, 0xba, 0xf6, 0xb2, 0x2f, 0xc9, 0xe3, 0xc5, 0xf1, 0x02, 0x4b, 0x06, 0x3a, 0xc0, 0x80,
0xa7, 0xb2, 0x23, 0x4c, 0xf8, 0xae, 0xe8, 0xf6, 0xc4, 0x7b, 0xbf, 0x4f, 0xd3, 0xac, 0xe7, 0x24,
0x02, 0x90, 0xbe, 0xf1, 0x6c, 0x0b, 0x3f, 0x7f, 0x3c, 0xdd, 0x64, 0xce, 0x3a, 0xb5, 0x91, 0x2c,
0xf6, 0xe3, 0x2f, 0x39, 0xab, 0x18, 0x83, 0x58, 0xaf, 0xcc, 0xcd, 0x80, 0x81, 0x02, 0x41, 0x00,
0xe4, 0xb4, 0x9e, 0xf5, 0x0f, 0x76, 0x5d, 0x3b, 0x24, 0xdd, 0xe0, 0x1a, 0xce, 0xaa, 0xf1, 0x30,
0xf2, 0xc7, 0x66, 0x70, 0xa9, 0x1a, 0x61, 0xae, 0x08, 0xaf, 0x49, 0x7b, 0x4a, 0x82, 0xbe, 0x6d,
0xee, 0x8f, 0xcd, 0xd5, 0xe3, 0xf7, 0xba, 0x1c, 0xfb, 0x1f, 0x0c, 0x92, 0x6b, 0x88, 0xf8, 0x8c,
0x92, 0xbf, 0xab, 0x13, 0x7f, 0xba, 0x22, 0x85, 0x22, 0x7b, 0x83, 0xc3, 0x42, 0xff, 0x7c, 0x55,
0x02, 0x41, 0x00, 0xdd, 0xab, 0xb5, 0x83, 0x9c, 0x4c, 0x7f, 0x6b, 0xf3, 0xd4, 0x18, 0x32, 0x31,
0xf0, 0x05, 0xb3, 0x1a, 0xa5, 0x8a, 0xff, 0xdd, 0xa5, 0xc7, 0x9e, 0x4c, 0xce, 0x21, 0x7f, 0x6b,
0xc9, 0x30, 0xdb, 0xe5, 0x63, 0xd4, 0x80, 0x70, 0x6c, 0x24, 0xe9, 0xeb, 0xfc, 0xab, 0x28, 0xa6,
0xcd, 0xef, 0xd3, 0x24, 0xb7, 0x7e, 0x1b, 0xf7, 0x25, 0x1b, 0x70, 0x90, 0x92, 0xc2, 0x4f, 0xf5,
0x01, 0xfd, 0x91, 0x02, 0x40, 0x23, 0xd4, 0x34, 0x0e, 0xda, 0x34, 0x45, 0xd8, 0xcd, 0x26, 0xc1,
0x44, 0x11, 0xda, 0x6f, 0xdc, 0xa6, 0x3c, 0x1c, 0xcd, 0x4b, 0x80, 0xa9, 0x8a, 0xd5, 0x2b, 0x78,
0xcc, 0x8a, 0xd8, 0xbe, 0xb2, 0x84, 0x2c, 0x1d, 0x28, 0x04, 0x05, 0xbc, 0x2f, 0x6c, 0x1b, 0xea,
0x21, 0x4a, 0x1d, 0x74, 0x2a, 0xb9, 0x96, 0xb3, 0x5b, 0x63, 0xa8, 0x2a, 0x5e, 0x47, 0x0f, 0xa8,
0x8d, 0xbf, 0x82, 0x3c, 0xdd, 0x02, 0x40, 0x1b, 0x7b, 0x57, 0x44, 0x9a, 0xd3, 0x0d, 0x15, 0x18,
0x24, 0x9a, 0x5f, 0x56, 0xbb, 0x98, 0x29, 0x4d, 0x4b, 0x6a, 0xc1, 0x2f, 0xfc, 0x86, 0x94, 0x04,
0x97, 0xa5, 0xa5, 0x83, 0x7a, 0x6c, 0xf9, 0x46, 0x26, 0x2b, 0x49, 0x45, 0x26, 0xd3, 0x28, 0xc1,
0x1e, 0x11, 0x26, 0x38, 0x0f, 0xde, 0x04, 0xc2, 0x4f, 0x91, 0x6d, 0xec, 0x25, 0x08, 0x92, 0xdb,
0x09, 0xa6, 0xd7, 0x7c, 0xdb, 0xa3, 0x51, 0x02, 0x40, 0x77, 0x62, 0xcd, 0x8f, 0x4d, 0x05, 0x0d,
0xa5, 0x6b, 0xd5, 0x91, 0xad, 0xb5, 0x15, 0xd2, 0x4d, 0x7c, 0xcd, 0x32, 0xcc, 0xa0, 0xd0, 0x5f,
0x86, 0x6d, 0x58, 0x35, 0x14, 0xbd, 0x73, 0x24, 0xd5, 0xf3, 0x36, 0x45, 0xe8, 0xed, 0x8b, 0x4a,
0x1c, 0xb3, 0xcc, 0x4a, 0x1d, 0x67, 0x98, 0x73, 0x99, 0xf2, 0xa0, 0x9f, 0x5b, 0x3f, 0xb6, 0x8c,
0x88, 0xd5, 0xe5, 0xd9, 0x0a, 0xc3, 0x34, 0x92, 0xd6};
unsigned int rsa_privkey_pk8_der_len = 633;
unsigned char dsa_privkey_pk8_der[] = {
0x30, 0x82, 0x01, 0x4b, 0x02, 0x01, 0x00, 0x30, 0x82, 0x01, 0x2b, 0x06, 0x07, 0x2a, 0x86, 0x48,
0xce, 0x38, 0x04, 0x01, 0x30, 0x82, 0x01, 0x1e, 0x02, 0x81, 0x81, 0x00, 0xa3, 0xf3, 0xe9, 0xb6,
0x7e, 0x7d, 0x88, 0xf6, 0xb7, 0xe5, 0xf5, 0x1f, 0x3b, 0xee, 0xac, 0xd7, 0xad, 0xbc, 0xc9, 0xd1,
0x5a, 0xf8, 0x88, 0xc4, 0xef, 0x6e, 0x3d, 0x74, 0x19, 0x74, 0xe7, 0xd8, 0xe0, 0x26, 0x44, 0x19,
0x86, 0xaf, 0x19, 0xdb, 0x05, 0xe9, 0x3b, 0x8b, 0x58, 0x58, 0xde, 0xe5, 0x4f, 0x48, 0x15, 0x01,
0xea, 0xe6, 0x83, 0x52, 0xd7, 0xc1, 0x21, 0xdf, 0xb9, 0xb8, 0x07, 0x66, 0x50, 0xfb, 0x3a, 0x0c,
0xb3, 0x85, 0xee, 0xbb, 0x04, 0x5f, 0xc2, 0x6d, 0x6d, 0x95, 0xfa, 0x11, 0x93, 0x1e, 0x59, 0x5b,
0xb1, 0x45, 0x8d, 0xe0, 0x3d, 0x73, 0xaa, 0xf2, 0x41, 0x14, 0x51, 0x07, 0x72, 0x3d, 0xa2, 0xf7,
0x58, 0xcd, 0x11, 0xa1, 0x32, 0xcf, 0xda, 0x42, 0xb7, 0xcc, 0x32, 0x80, 0xdb, 0x87, 0x82, 0xec,
0x42, 0xdb, 0x5a, 0x55, 0x24, 0x24, 0xa2, 0xd1, 0x55, 0x29, 0xad, 0xeb, 0x02, 0x15, 0x00, 0xeb,
0xea, 0x17, 0xd2, 0x09, 0xb3, 0xd7, 0x21, 0x9a, 0x21, 0x07, 0x82, 0x8f, 0xab, 0xfe, 0x88, 0x71,
0x68, 0xf7, 0xe3, 0x02, 0x81, 0x80, 0x19, 0x1c, 0x71, 0xfd, 0xe0, 0x03, 0x0c, 0x43, 0xd9, 0x0b,
0xf6, 0xcd, 0xd6, 0xa9, 0x70, 0xe7, 0x37, 0x86, 0x3a, 0x78, 0xe9, 0xa7, 0x47, 0xa7, 0x47, 0x06,
0x88, 0xb1, 0xaf, 0xd7, 0xf3, 0xf1, 0xa1, 0xd7, 0x00, 0x61, 0x28, 0x88, 0x31, 0x48, 0x60, 0xd8,
0x11, 0xef, 0xa5, 0x24, 0x1a, 0x81, 0xc4, 0x2a, 0xe2, 0xea, 0x0e, 0x36, 0xd2, 0xd2, 0x05, 0x84,
0x37, 0xcf, 0x32, 0x7d, 0x09, 0xe6, 0x0f, 0x8b, 0x0c, 0xc8, 0xc2, 0xa4, 0xb1, 0xdc, 0x80, 0xca,
0x68, 0xdf, 0xaf, 0xd2, 0x90, 0xc0, 0x37, 0x58, 0x54, 0x36, 0x8f, 0x49, 0xb8, 0x62, 0x75, 0x8b,
0x48, 0x47, 0xc0, 0xbe, 0xf7, 0x9a, 0x92, 0xa6, 0x68, 0x05, 0xda, 0x9d, 0xaf, 0x72, 0x9a, 0x67,
0xb3, 0xb4, 0x14, 0x03, 0xae, 0x4f, 0x4c, 0x76, 0xb9, 0xd8, 0x64, 0x0a, 0xba, 0x3b, 0xa8, 0x00,
0x60, 0x4d, 0xae, 0x81, 0xc3, 0xc5, 0x04, 0x17, 0x02, 0x15, 0x00, 0x81, 0x9d, 0xfd, 0x53, 0x0c,
0xc1, 0x8f, 0xbe, 0x8b, 0xea, 0x00, 0x26, 0x19, 0x29, 0x33, 0x91, 0x84, 0xbe, 0xad, 0x81};
unsigned int dsa_privkey_pk8_der_len = 335;
unsigned char ec_privkey_pk8_der[] = {
0x30, 0x81, 0x87, 0x02, 0x01, 0x00, 0x30, 0x13, 0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02,
0x01, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0x04, 0x6d, 0x30, 0x6b, 0x02,
0x01, 0x01, 0x04, 0x20, 0x73, 0x7c, 0x2e, 0xcd, 0x7b, 0x8d, 0x19, 0x40, 0xbf, 0x29, 0x30, 0xaa,
0x9b, 0x4e, 0xd3, 0xff, 0x94, 0x1e, 0xed, 0x09, 0x36, 0x6b, 0xc0, 0x32, 0x99, 0x98, 0x64, 0x81,
0xf3, 0xa4, 0xd8, 0x59, 0xa1, 0x44, 0x03, 0x42, 0x00, 0x04, 0xbf, 0x85, 0xd7, 0x72, 0x0d, 0x07,
0xc2, 0x54, 0x61, 0x68, 0x3b, 0xc6, 0x48, 0xb4, 0x77, 0x8a, 0x9a, 0x14, 0xdd, 0x8a, 0x02, 0x4e,
0x3b, 0xdd, 0x8c, 0x7d, 0xdd, 0x9a, 0xb2, 0xb5, 0x28, 0xbb, 0xc7, 0xaa, 0x1b, 0x51, 0xf1, 0x4e,
0xbb, 0xbb, 0x0b, 0xd0, 0xce, 0x21, 0xbc, 0xc4, 0x1c, 0x6e, 0xb0, 0x00, 0x83, 0xcf, 0x33, 0x76,
0xd1, 0x1f, 0xd4, 0x49, 0x49, 0xe0, 0xb2, 0x18, 0x3b, 0xfe};
unsigned int ec_privkey_pk8_der_len = 138;
struct EVP_PKEY_Delete {
void operator()(EVP_PKEY* p) const { EVP_PKEY_free(p); }
};
struct EVP_PKEY_CTX_Delete {
void operator()(EVP_PKEY_CTX* p) { EVP_PKEY_CTX_free(p); }
};
static bool test_import_rsa(TrustyKeymasterDevice* device) {
printf("===================\n");
printf("= RSA Import Test =\n");
printf("===================\n\n");
printf("=== Importing RSA keypair === \n");
uint8_t* key;
size_t size;
int error = device->import_keypair(rsa_privkey_pk8_der, rsa_privkey_pk8_der_len, &key, &size);
if (error != KM_ERROR_OK) {
printf("Error importing key pair: %d\n\n", error);
return false;
}
UniquePtr<uint8_t[]> key_deleter(key);
printf("=== Signing with imported RSA key ===\n");
keymaster_rsa_sign_params_t sign_params = {DIGEST_NONE, PADDING_NONE};
size_t message_len = 1024 / 8;
UniquePtr<uint8_t[]> message(new uint8_t[message_len]);
memset(message.get(), 'a', message_len);
uint8_t* signature;
size_t signature_len;
error = device->sign_data(&sign_params, key, size, message.get(), message_len, &signature,
&signature_len);
if (error != KM_ERROR_OK) {
printf("Error signing data with imported RSA key: %d\n\n", error);
return false;
}
UniquePtr<uint8_t[]> signature_deleter(signature);
printf("=== Verifying with imported RSA key === \n");
error = device->verify_data(&sign_params, key, size, message.get(), message_len, signature,
signature_len);
if (error != KM_ERROR_OK) {
printf("Error verifying data with imported RSA key: %d\n\n", error);
return false;
}
printf("\n");
return true;
}
static bool test_rsa(TrustyKeymasterDevice* device) {
printf("============\n");
printf("= RSA Test =\n");
printf("============\n\n");
printf("=== Generating RSA key pair ===\n");
keymaster_rsa_keygen_params_t params;
params.public_exponent = 65537;
params.modulus_size = 2048;
uint8_t* key;
size_t size;
int error = device->generate_keypair(TYPE_RSA, &params, &key, &size);
if (error != KM_ERROR_OK) {
printf("Error generating RSA key pair: %d\n\n", error);
return false;
}
UniquePtr<uint8_t[]> deleter(key);
printf("=== Signing with RSA key === \n");
keymaster_rsa_sign_params_t sign_params = {DIGEST_NONE, PADDING_NONE};
size_t message_len = params.modulus_size / 8;
UniquePtr<uint8_t[]> message(new uint8_t[message_len]);
memset(message.get(), 'a', message_len);
uint8_t* signature;
size_t signature_len;
error = device->sign_data(&sign_params, key, size, message.get(), message_len, &signature,
&signature_len);
if (error != KM_ERROR_OK) {
printf("Error signing data with RSA key: %d\n\n", error);
return false;
}
UniquePtr<uint8_t[]> signature_deleter(signature);
printf("=== Verifying with RSA key === \n");
error = device->verify_data(&sign_params, key, size, message.get(), message_len, signature,
signature_len);
if (error != KM_ERROR_OK) {
printf("Error verifying data with RSA key: %d\n\n", error);
return false;
}
printf("=== Exporting RSA public key ===\n");
uint8_t* exported_key;
size_t exported_size;
error = device->get_keypair_public(key, size, &exported_key, &exported_size);
if (error != KM_ERROR_OK) {
printf("Error exporting RSA public key: %d\n\n", error);
return false;
}
printf("=== Verifying with exported key ===\n");
const uint8_t* tmp = exported_key;
UniquePtr<EVP_PKEY, EVP_PKEY_Delete> pkey(d2i_PUBKEY(NULL, &tmp, exported_size));
UniquePtr<EVP_PKEY_CTX, EVP_PKEY_CTX_Delete> ctx(EVP_PKEY_CTX_new(pkey.get(), NULL));
if (EVP_PKEY_verify_init(ctx.get()) != 1) {
printf("Error initializing openss EVP context\n");
return false;
}
if (EVP_PKEY_type(pkey->type) != EVP_PKEY_RSA) {
printf("Exported key was the wrong type?!?\n");
return false;
}
EVP_PKEY_CTX_set_rsa_padding(ctx.get(), RSA_NO_PADDING);
if (EVP_PKEY_verify(ctx.get(), signature, signature_len, message.get(), message_len) != 1) {
printf("Verification with exported pubkey failed.\n");
return false;
} else {
printf("Verification succeeded\n");
}
printf("\n");
return true;
}
static bool test_import_ecdsa(TrustyKeymasterDevice* device) {
printf("=====================\n");
printf("= ECDSA Import Test =\n");
printf("=====================\n\n");
printf("=== Importing ECDSA keypair === \n");
uint8_t* key;
size_t size;
int error = device->import_keypair(ec_privkey_pk8_der, ec_privkey_pk8_der_len, &key, &size);
if (error != KM_ERROR_OK) {
printf("Error importing key pair: %d\n\n", error);
return false;
}
UniquePtr<uint8_t[]> deleter(key);
printf("=== Signing with imported ECDSA key ===\n");
keymaster_ec_sign_params_t sign_params = {DIGEST_NONE};
size_t message_len = 30 /* arbitrary */;
UniquePtr<uint8_t[]> message(new uint8_t[message_len]);
memset(message.get(), 'a', message_len);
uint8_t* signature;
size_t signature_len;
error = device->sign_data(&sign_params, key, size, message.get(), message_len, &signature,
&signature_len);
if (error != KM_ERROR_OK) {
printf("Error signing data with imported ECDSA key: %d\n\n", error);
return false;
}
UniquePtr<uint8_t[]> signature_deleter(signature);
printf("=== Verifying with imported ECDSA key === \n");
error = device->verify_data(&sign_params, key, size, message.get(), message_len, signature,
signature_len);
if (error != KM_ERROR_OK) {
printf("Error verifying data with imported ECDSA key: %d\n\n", error);
return false;
}
printf("\n");
return true;
}
static bool test_ecdsa(TrustyKeymasterDevice* device) {
printf("==============\n");
printf("= ECDSA Test =\n");
printf("==============\n\n");
printf("=== Generating ECDSA key pair ===\n");
keymaster_ec_keygen_params_t params;
params.field_size = 521;
uint8_t* key;
size_t size;
int error = device->generate_keypair(TYPE_EC, &params, &key, &size);
if (error != 0) {
printf("Error generating ECDSA key pair: %d\n\n", error);
return false;
}
UniquePtr<uint8_t[]> deleter(key);
printf("=== Signing with ECDSA key === \n");
keymaster_ec_sign_params_t sign_params = {DIGEST_NONE};
size_t message_len = 30 /* arbitrary */;
UniquePtr<uint8_t[]> message(new uint8_t[message_len]);
memset(message.get(), 'a', message_len);
uint8_t* signature;
size_t signature_len;
error = device->sign_data(&sign_params, key, size, message.get(), message_len, &signature,
&signature_len);
if (error != KM_ERROR_OK) {
printf("Error signing data with ECDSA key: %d\n\n", error);
return false;
}
UniquePtr<uint8_t[]> signature_deleter(signature);
printf("=== Verifying with ECDSA key === \n");
error = device->verify_data(&sign_params, key, size, message.get(), message_len, signature,
signature_len);
if (error != KM_ERROR_OK) {
printf("Error verifying data with ECDSA key: %d\n\n", error);
return false;
}
printf("=== Exporting ECDSA public key ===\n");
uint8_t* exported_key;
size_t exported_size;
error = device->get_keypair_public(key, size, &exported_key, &exported_size);
if (error != KM_ERROR_OK) {
printf("Error exporting ECDSA public key: %d\n\n", error);
return false;
}
printf("=== Verifying with exported key ===\n");
const uint8_t* tmp = exported_key;
UniquePtr<EVP_PKEY, EVP_PKEY_Delete> pkey(d2i_PUBKEY(NULL, &tmp, exported_size));
UniquePtr<EVP_PKEY_CTX, EVP_PKEY_CTX_Delete> ctx(EVP_PKEY_CTX_new(pkey.get(), NULL));
if (EVP_PKEY_verify_init(ctx.get()) != 1) {
printf("Error initializing openss EVP context\n");
return false;
}
if (EVP_PKEY_type(pkey->type) != EVP_PKEY_EC) {
printf("Exported key was the wrong type?!?\n");
return false;
}
if (EVP_PKEY_verify(ctx.get(), signature, signature_len, message.get(), message_len) != 1) {
printf("Verification with exported pubkey failed.\n");
return false;
} else {
printf("Verification succeeded\n");
}
printf("\n");
return true;
}
int main(void) {
TrustyKeymasterDevice device(NULL);
if (device.session_error() != KM_ERROR_OK) {
printf("Failed to initialize Trusty session: %d\n", device.session_error());
return 1;
}
printf("Trusty session initialized\n");
bool success = true;
success &= test_rsa(&device);
success &= test_import_rsa(&device);
success &= test_ecdsa(&device);
success &= test_import_ecdsa(&device);
if (success) {
printf("\nTESTS PASSED!\n");
} else {
printf("\n!!!!TESTS FAILED!!!\n");
}
return success ? 0 : 1;
}