Simplified stats_event.c; exposed getter methods

Simplifications/changes:
(1) We remove the bufPos field and track the end of the buffer using
    only the size field.
(2) We rename put_<type>() functions to append_<type>() to signify that the
    value will be placed at the end of the buffer. We also move the
    increment of event->size to within the append_<type>() functions;
    this improves readability of the write_<type>() functions.
(3) We immediately write the timestamp and atom id to the buffer in
    order to simplify stats_event_build().
(4) We never check for null pointers; checking for null pointers
    delays errors and obfuscates the root problem.
(5) We change the the annotationId and numPairs parameters to be
    uint8_t's. This helps signify to clients that these values must fit
    in 1 byte.
(6) Clients no longer have to pass in the length of strings. Instead, we
    expect them to pass in null-terminated strings, and we will
    calculate the length outselves using strnlen.

Test: m -j libstatssocket
Change-Id: I6d192768876a23d7016173bcdaf59f8b7e92b182
Merged-In: I0173f8bc76ef25118379dce5d2481f5f7a9b7519
This commit is contained in:
Ruchir Rastogi 2019-11-07 14:10:32 -08:00
parent 3822e61d7b
commit a38d5a6fd6
2 changed files with 165 additions and 190 deletions

View file

@ -34,6 +34,7 @@
* stats_event_add_int32_annotation(event, 2, 128);
* stats_event_write_float(event, 2.0);
*
* stats_event_build(event);
* stats_event_write(event);
* stats_event_release(event);
*
@ -43,11 +44,9 @@
* (b) set_atom_id() can be called anytime before stats_event_write().
* (c) add_<type>_annotation() calls apply to the previous field.
* (d) If errors occur, stats_event_write() will write a bitmask of the errors to the socket.
* (e) Strings should be encoded using UTF8 and written using stats_event_write_string8().
* (e) All strings should be encoded using UTF8.
*/
struct stats_event;
/* ERRORS */
#define ERROR_NO_TIMESTAMP 0x1
#define ERROR_NO_ATOM_ID 0x2
@ -60,6 +59,7 @@ struct stats_event;
#define ERROR_TOO_MANY_ANNOTATIONS 0x100
#define ERROR_TOO_MANY_FIELDS 0x200
#define ERROR_INVALID_VALUE_TYPE 0x400
#define ERROR_STRING_NOT_NULL_TERMINATED 0x800
/* TYPE IDS */
#define INT32_TYPE 0x00
@ -74,28 +74,39 @@ struct stats_event;
#define ATTRIBUTION_CHAIN_TYPE 0x09
#define ERROR_TYPE 0x0F
#ifdef __cplusplus
extern "C" {
#endif
struct stats_event;
/* SYSTEM API */
struct stats_event* stats_event_obtain();
// The build function can be called multiple times without error. If the event
// has been built before, this function is a no-op.
void stats_event_build(struct stats_event* event);
void stats_event_write(struct stats_event* event);
void stats_event_release(struct stats_event* event);
void stats_event_set_atom_id(struct stats_event* event, const uint32_t atomId);
void stats_event_set_atom_id(struct stats_event* event, uint32_t atomId);
void stats_event_write_int32(struct stats_event* event, int32_t value);
void stats_event_write_int64(struct stats_event* event, int64_t value);
void stats_event_write_float(struct stats_event* event, float value);
void stats_event_write_bool(struct stats_event* event, bool value);
void stats_event_write_byte_array(struct stats_event* event, uint8_t* buf, uint32_t numBytes);
void stats_event_write_string8(struct stats_event* event, char* buf, uint32_t numBytes);
void stats_event_write_attribution_chain(struct stats_event* event, uint32_t* uids, char** tags,
uint32_t* tagLengths, uint32_t numNodes);
void stats_event_write_byte_array(struct stats_event* event, uint8_t* buf, size_t numBytes);
// Buf must be null-terminated.
void stats_event_write_string8(struct stats_event* event, const char* buf);
// Tags must be null-terminated.
void stats_event_write_attribution_chain(struct stats_event* event, uint32_t* uids,
const char** tags, uint8_t numNodes);
/* key_value_pair struct can be constructed as follows:
* struct key_value_pair pair;
* pair.key = key;
* pair.typeId = STRING_TYPE;
* pair.stringValue = buf;
* pair.stringBytes = strlen(buf);
* struct key_value_pair pair = {.key = key, .valueType = STRING_TYPE,
* .stringValue = buf};
*/
struct key_value_pair {
int32_t key;
@ -104,23 +115,23 @@ struct key_value_pair {
int32_t int32Value;
int64_t int64Value;
float floatValue;
struct {
char* stringValue;
uint32_t stringBytes;
};
const char* stringValue; // must be null terminated
};
};
void stats_event_add_key_value_pairs(struct stats_event* event, struct key_value_pair* pairs,
uint32_t numPairs);
void stats_event_write_key_value_pairs(struct stats_event* event, struct key_value_pair* pairs,
uint8_t numPairs);
void stats_event_add_bool_annotation(struct stats_event* event, uint32_t annotationId, bool value);
void stats_event_add_int32_annotation(struct stats_event* event, uint32_t annotationId,
void stats_event_add_bool_annotation(struct stats_event* event, uint8_t annotationId, bool value);
void stats_event_add_int32_annotation(struct stats_event* event, uint8_t annotationId,
int32_t value);
uint32_t stats_event_get_atom_id(struct stats_event* event);
uint8_t* stats_event_get_buffer(struct stats_event* event, size_t* size);
uint32_t stats_event_get_errors(struct stats_event* event);
/* TESTING ONLY */
void stats_event_set_timestamp_ns(struct stats_event* event, const uint64_t timestampNs);
#ifdef __cplusplus
}
#endif
#endif // ANDROID_STATS_LOG_STATS_EVENT_H

View file

@ -20,8 +20,6 @@
#include <time.h>
#include "include/stats_event_list.h"
#define byte unsigned char
#define STATS_EVENT_TAG 1937006964
#define LOGGER_ENTRY_MAX_PAYLOAD 4068
// Max payload size is 4 bytes less as 4 bytes are reserved for stats_eventTag.
@ -30,9 +28,9 @@
/* POSITIONS */
#define POS_NUM_ELEMENTS 1
#define POS_TIMESTAMP (POS_NUM_ELEMENTS + 1)
#define POS_ATOM_ID (POS_TIMESTAMP + sizeof(byte) + sizeof(uint64_t))
#define POS_FIRST_FIELD (POS_ATOM_ID + sizeof(byte) + sizeof(uint32_t))
#define POS_TIMESTAMP (POS_NUM_ELEMENTS + sizeof(uint8_t))
#define POS_ATOM_ID (POS_TIMESTAMP + sizeof(uint8_t) + sizeof(uint64_t))
#define POS_FIRST_FIELD (POS_ATOM_ID + sizeof(uint8_t) + sizeof(uint32_t))
/* LIMITS */
#define MAX_ANNOTATION_COUNT 15
@ -41,16 +39,14 @@
// The stats_event struct holds the serialized encoding of an event
// within a buf. Also includes other required fields.
struct stats_event {
byte buf[MAX_EVENT_PAYLOAD];
size_t bufPos; // current write position within the buf
uint8_t buf[MAX_EVENT_PAYLOAD];
size_t lastFieldPos; // location of last field within the buf
byte lastFieldType; // type of last field
size_t size; // number of valid bytes within buffer
uint32_t numElements;
uint32_t atomId;
uint64_t timestampNs;
uint32_t errors;
uint32_t tag;
bool built;
};
static int64_t get_elapsed_realtime_ns() {
@ -65,184 +61,184 @@ struct stats_event* stats_event_obtain() {
memset(event->buf, 0, MAX_EVENT_PAYLOAD);
event->buf[0] = OBJECT_TYPE;
event->bufPos = POS_FIRST_FIELD;
event->lastFieldPos = 0;
event->lastFieldType = OBJECT_TYPE;
event->size = 0;
event->numElements = 0;
event->atomId = 0;
event->timestampNs = get_elapsed_realtime_ns();
event->errors = 0;
event->tag = STATS_EVENT_TAG;
event->built = false;
// place the timestamp
uint64_t timestampNs = get_elapsed_realtime_ns();
event->buf[POS_TIMESTAMP] = INT64_TYPE;
memcpy(&event->buf[POS_TIMESTAMP + sizeof(uint8_t)], &timestampNs, sizeof(timestampNs));
event->numElements = 1;
event->lastFieldPos = 0; // 0 since we haven't written a field yet
event->size = POS_FIRST_FIELD;
return event;
}
void stats_event_release(struct stats_event* event) {
free(event); // free is a no-op if event is NULL
}
// Should only be used for testing
void stats_event_set_timestamp_ns(struct stats_event* event, uint64_t timestampNs) {
if (event) event->timestampNs = timestampNs;
free(event);
}
void stats_event_set_atom_id(struct stats_event* event, uint32_t atomId) {
if (event) event->atomId = atomId;
event->atomId = atomId;
event->buf[POS_ATOM_ID] = INT32_TYPE;
memcpy(&event->buf[POS_ATOM_ID + sizeof(uint8_t)], &atomId, sizeof(atomId));
event->numElements++;
}
// Side-effect: modifies event->errors if the buffer would overflow
static bool overflows(struct stats_event* event, size_t size) {
if (event->bufPos + size > MAX_EVENT_PAYLOAD) {
if (event->size + size > MAX_EVENT_PAYLOAD) {
event->errors |= ERROR_OVERFLOW;
return true;
}
return false;
}
static size_t put_byte(struct stats_event* event, byte value) {
// Side-effect: all append functions increment event->size if there is
// sufficient space within the buffer to place the value
static void append_byte(struct stats_event* event, uint8_t value) {
if (!overflows(event, sizeof(value))) {
event->buf[event->bufPos] = value;
return sizeof(byte);
event->buf[event->size] = value;
event->size += sizeof(value);
}
return 0;
}
static size_t put_bool(struct stats_event* event, bool value) {
return put_byte(event, (byte)value);
static void append_bool(struct stats_event* event, bool value) {
append_byte(event, (uint8_t)value);
}
static size_t put_int32(struct stats_event* event, int32_t value) {
static void append_int32(struct stats_event* event, int32_t value) {
if (!overflows(event, sizeof(value))) {
memcpy(&event->buf[event->bufPos], &value, sizeof(int32_t));
return sizeof(int32_t);
memcpy(&event->buf[event->size], &value, sizeof(value));
event->size += sizeof(value);
}
return 0;
}
static size_t put_int64(struct stats_event* event, int64_t value) {
static void append_int64(struct stats_event* event, int64_t value) {
if (!overflows(event, sizeof(value))) {
memcpy(&event->buf[event->bufPos], &value, sizeof(int64_t));
return sizeof(int64_t);
memcpy(&event->buf[event->size], &value, sizeof(value));
event->size += sizeof(value);
}
return 0;
}
static size_t put_float(struct stats_event* event, float value) {
static void append_float(struct stats_event* event, float value) {
if (!overflows(event, sizeof(value))) {
memcpy(&event->buf[event->bufPos], &value, sizeof(float));
return sizeof(float);
memcpy(&event->buf[event->size], &value, sizeof(value));
event->size += sizeof(float);
}
return 0;
}
static size_t put_byte_array(struct stats_event* event, void* buf, size_t size) {
static void append_byte_array(struct stats_event* event, uint8_t* buf, size_t size) {
if (!overflows(event, size)) {
memcpy(&event->buf[event->bufPos], buf, size);
return size;
memcpy(&event->buf[event->size], buf, size);
event->size += size;
}
return 0;
}
static void start_field(struct stats_event* event, byte typeId) {
event->lastFieldPos = event->bufPos;
event->lastFieldType = typeId;
event->bufPos += put_byte(event, typeId);
// Side-effect: modifies event->errors if buf is not properly null-terminated
static void append_string(struct stats_event* event, const char* buf) {
size_t size = strnlen(buf, MAX_EVENT_PAYLOAD);
if (event->errors) {
event->errors |= ERROR_STRING_NOT_NULL_TERMINATED;
return;
}
append_int32(event, size);
append_byte_array(event, (uint8_t*)buf, size);
}
static void start_field(struct stats_event* event, uint8_t typeId) {
event->lastFieldPos = event->size;
append_byte(event, typeId);
event->numElements++;
}
void stats_event_write_int32(struct stats_event* event, int32_t value) {
if (!event || event->errors) return;
if (event->errors) return;
start_field(event, INT32_TYPE);
event->bufPos += put_int32(event, value);
append_int32(event, value);
}
void stats_event_write_int64(struct stats_event* event, int64_t value) {
if (!event || event->errors) return;
if (event->errors) return;
start_field(event, INT64_TYPE);
event->bufPos += put_int64(event, value);
append_int64(event, value);
}
void stats_event_write_float(struct stats_event* event, float value) {
if (!event || event->errors) return;
if (event->errors) return;
start_field(event, FLOAT_TYPE);
event->bufPos += put_float(event, value);
append_float(event, value);
}
void stats_event_write_bool(struct stats_event* event, bool value) {
if (!event || event->errors) return;
if (event->errors) return;
start_field(event, BOOL_TYPE);
event->bufPos += put_bool(event, value);
append_bool(event, value);
}
// Buf is assumed to be encoded using UTF8
void stats_event_write_byte_array(struct stats_event* event, uint8_t* buf, uint32_t numBytes) {
if (!event || !buf || event->errors) return;
void stats_event_write_byte_array(struct stats_event* event, uint8_t* buf, size_t numBytes) {
if (event->errors) return;
start_field(event, BYTE_ARRAY_TYPE);
event->bufPos += put_int32(event, numBytes);
event->bufPos += put_byte_array(event, buf, numBytes);
append_int32(event, numBytes);
append_byte_array(event, buf, numBytes);
}
// Buf is assumed to be encoded using UTF8
void stats_event_write_string8(struct stats_event* event, char* buf, uint32_t numBytes) {
if (!event || !buf || event->errors) return;
void stats_event_write_string8(struct stats_event* event, const char* buf) {
if (event->errors) return;
start_field(event, STRING_TYPE);
event->bufPos += put_int32(event, numBytes);
event->bufPos += put_byte_array(event, buf, numBytes);
append_string(event, buf);
}
// Tags are assumed to be encoded using UTF8
void stats_event_write_attribution_chain(struct stats_event* event, uint32_t* uids, char** tags,
uint32_t* tagLengths, uint32_t numNodes) {
if (!event || event->errors) return;
if (numNodes > MAX_BYTE_VALUE) {
event->errors |= ERROR_ATTRIBUTION_CHAIN_TOO_LONG;
return;
}
void stats_event_write_attribution_chain(struct stats_event* event, uint32_t* uids,
const char** tags, uint8_t numNodes) {
if (numNodes > MAX_BYTE_VALUE) event->errors |= ERROR_ATTRIBUTION_CHAIN_TOO_LONG;
if (event->errors) return;
start_field(event, ATTRIBUTION_CHAIN_TYPE);
event->bufPos += put_byte(event, (byte)numNodes);
append_byte(event, numNodes);
for (int i = 0; i < numNodes; i++) {
event->bufPos += put_int32(event, uids[i]);
event->bufPos += put_int32(event, tagLengths[i]);
event->bufPos += put_byte_array(event, tags[i], tagLengths[i]);
for (uint8_t i = 0; i < numNodes; i++) {
append_int32(event, uids[i]);
append_string(event, tags[i]);
}
}
void stats_event_add_key_value_pairs(struct stats_event* event, struct key_value_pair* pairs,
uint32_t numPairs) {
if (!event || event->errors) return;
if (numPairs > MAX_BYTE_VALUE) {
event->errors |= ERROR_TOO_MANY_KEY_VALUE_PAIRS;
return;
}
void stats_event_write_key_value_pairs(struct stats_event* event, struct key_value_pair* pairs,
uint8_t numPairs) {
if (numPairs > MAX_BYTE_VALUE) event->errors |= ERROR_TOO_MANY_KEY_VALUE_PAIRS;
if (event->errors) return;
start_field(event, KEY_VALUE_PAIRS_TYPE);
event->bufPos += put_byte(event, (byte)numPairs);
append_byte(event, numPairs);
for (int i = 0; i < numPairs; i++) {
event->bufPos += put_int32(event, pairs[i].key);
event->bufPos += put_byte(event, pairs[i].valueType);
for (uint8_t i = 0; i < numPairs; i++) {
append_int32(event, pairs[i].key);
append_byte(event, pairs[i].valueType);
switch (pairs[i].valueType) {
case INT32_TYPE:
event->bufPos += put_int32(event, pairs[i].int32Value);
append_int32(event, pairs[i].int32Value);
break;
case INT64_TYPE:
event->bufPos += put_int64(event, pairs[i].int64Value);
append_int64(event, pairs[i].int64Value);
break;
case FLOAT_TYPE:
event->bufPos += put_float(event, pairs[i].floatValue);
append_float(event, pairs[i].floatValue);
break;
case STRING_TYPE:
event->bufPos += put_int32(event, pairs[i].stringBytes);
event->bufPos += put_byte_array(event, pairs[i].stringValue, pairs[i].stringBytes);
append_string(event, pairs[i].stringValue);
break;
default:
event->errors |= ERROR_INVALID_VALUE_TYPE;
@ -251,28 +247,10 @@ void stats_event_add_key_value_pairs(struct stats_event* event, struct key_value
}
}
// Side-effect: modifies event->errors if annotation does not follow field
static bool does_annotation_follow_field(struct stats_event* event) {
if (event->lastFieldPos == 0) {
event->errors |= ERROR_ANNOTATION_DOES_NOT_FOLLOW_FIELD;
return false;
}
return true;
}
// Side-effect: modifies event->errors if annotation id is too large
static bool is_valid_annotation_id(struct stats_event* event, uint32_t annotationId) {
if (annotationId > MAX_BYTE_VALUE) {
event->errors |= ERROR_ANNOTATION_ID_TOO_LARGE;
return false;
}
return true;
}
// Side-effect: modifies event->errors if field has too many annotations
static void increment_annotation_count(struct stats_event* event) {
byte fieldType = event->buf[event->lastFieldPos] & 0x0F;
uint32_t oldAnnotationCount = event->buf[event->lastFieldPos] & 0xF0;
uint8_t fieldType = event->buf[event->lastFieldPos] & 0x0F;
uint32_t oldAnnotationCount = (event->buf[event->lastFieldPos] & 0xF0) >> 4;
uint32_t newAnnotationCount = oldAnnotationCount + 1;
if (newAnnotationCount > MAX_ANNOTATION_COUNT) {
@ -280,86 +258,72 @@ static void increment_annotation_count(struct stats_event* event) {
return;
}
event->buf[event->lastFieldPos] = (((byte)newAnnotationCount << 4) & 0xF0) | fieldType;
event->buf[event->lastFieldPos] = (((uint8_t)newAnnotationCount << 4) & 0xF0) | fieldType;
}
void stats_event_add_bool_annotation(struct stats_event* event, uint32_t annotationId, bool value) {
if (!event || event->errors) return;
if (!does_annotation_follow_field(event)) return;
if (!is_valid_annotation_id(event, annotationId)) return;
void stats_event_add_bool_annotation(struct stats_event* event, uint8_t annotationId, bool value) {
if (event->lastFieldPos == 0) event->errors |= ERROR_ANNOTATION_DOES_NOT_FOLLOW_FIELD;
if (annotationId > MAX_BYTE_VALUE) event->errors |= ERROR_ANNOTATION_ID_TOO_LARGE;
if (event->errors) return;
event->bufPos += put_byte(event, (byte)annotationId);
event->bufPos += put_byte(event, BOOL_TYPE);
event->bufPos += put_bool(event, value);
append_byte(event, annotationId);
append_byte(event, BOOL_TYPE);
append_bool(event, value);
increment_annotation_count(event);
}
void stats_event_add_int32_annotation(struct stats_event* event, uint32_t annotationId,
void stats_event_add_int32_annotation(struct stats_event* event, uint8_t annotationId,
int32_t value) {
if (!event || event->errors) return;
if (!does_annotation_follow_field(event)) return;
if (!is_valid_annotation_id(event, annotationId)) return;
if (event->lastFieldPos == 0) event->errors |= ERROR_ANNOTATION_DOES_NOT_FOLLOW_FIELD;
if (annotationId > MAX_BYTE_VALUE) event->errors |= ERROR_ANNOTATION_ID_TOO_LARGE;
if (event->errors) return;
event->bufPos += put_byte(event, (byte)annotationId);
event->bufPos += put_byte(event, INT32_TYPE);
event->bufPos += put_int32(event, value);
append_byte(event, annotationId);
append_byte(event, INT32_TYPE);
append_int32(event, value);
increment_annotation_count(event);
}
uint32_t stats_event_get_atom_id(struct stats_event* event) {
return event->atomId;
}
uint8_t* stats_event_get_buffer(struct stats_event* event, size_t* size) {
if (size) *size = event->size;
return event->buf;
}
uint32_t stats_event_get_errors(struct stats_event* event) {
return event->errors;
}
static void build(struct stats_event* event) {
// store size before we modify bufPos
event->size = event->bufPos;
void stats_event_build(struct stats_event* event) {
if (event->built) return;
if (event->timestampNs == 0) {
event->errors |= ERROR_NO_TIMESTAMP;
} else {
// Don't use the write functions since they short-circuit if there was
// an error previously. We, regardless, want to know the timestamp and
// atomId.
event->bufPos = POS_TIMESTAMP;
event->bufPos += put_byte(event, INT64_TYPE);
event->bufPos += put_int64(event, event->timestampNs);
event->numElements++;
}
if (event->atomId == 0) {
event->errors |= ERROR_NO_ATOM_ID;
} else {
event->bufPos = POS_ATOM_ID;
event->bufPos += put_byte(event, INT32_TYPE);
event->bufPos += put_int64(event, event->atomId);
event->numElements++;
}
if (event->atomId == 0) event->errors |= ERROR_NO_ATOM_ID;
if (event->numElements > MAX_BYTE_VALUE) {
event->errors |= ERROR_TOO_MANY_FIELDS;
} else {
event->bufPos = POS_NUM_ELEMENTS;
put_byte(event, (byte)event->numElements);
event->buf[POS_NUM_ELEMENTS] = event->numElements;
}
// If there are errors, rewrite buffer
// If there are errors, rewrite buffer.
if (event->errors) {
event->bufPos = POS_NUM_ELEMENTS;
put_byte(event, (byte)3);
event->bufPos = POS_FIRST_FIELD;
event->bufPos += put_byte(event, ERROR_TYPE);
event->bufPos += put_int32(event, event->errors);
event->size = event->bufPos;
event->buf[POS_NUM_ELEMENTS] = 3;
event->buf[POS_FIRST_FIELD] = ERROR_TYPE;
memcpy(&event->buf[POS_FIRST_FIELD + sizeof(uint8_t)], &event->errors,
sizeof(event->errors));
event->size = POS_FIRST_FIELD + sizeof(uint8_t) + sizeof(uint32_t);
}
event->built = true;
}
void stats_event_write(struct stats_event* event) {
if (!event) return;
stats_event_build(event);
build(event);
// prepare iovecs for write to statsd
// Prepare iovecs for write to statsd.
struct iovec vecs[2];
vecs[0].iov_base = &event->tag;
vecs[0].iov_len = sizeof(event->tag);