libutils: Add more tests for Unicode

This CL added additional tests for converting between utf16 and utf8,
specifically tests that:

  1. check utf16_to_utf8_length() returns 0 if input is an
     empty UTF16 string

  2. check utf16_to_utf8_length() returns 1 if input is a
     single ASCII character UTF16 string

  3. check utf16_to_utf8_length() returns 3 if input is a
     single UTF-16 character between U+0800 - U+FFFF

  4. check utf16_to_utf8_length() returns 4 if input has
     a surrogate pair

  5. check unpaired UTF-16 surrogate is handled correctly
     (skipped)

  6. check utf16_to_utf8_length(0 handles invalid surrogate
     case correctly, by skipping the first but handling the
     rest correctly

  7. check a normal string with a mix of 1/2/3/4-byte UTF8
     characters is correctly converted by utf16_to_utf8()

  8. check conversion from invalid utf8 sequence with invalid
     leading byte and/or invalid trailing byte(s) should still
     work and not crash

Change-Id: If68e514af0e84ddebf5900b2e140e76ba4f44553
This commit is contained in:
Eric Miao 2022-11-30 16:04:55 -08:00
parent f9e6c5104d
commit c2527073c2

View file

@ -35,86 +35,208 @@ protected:
}
char16_t const * const kSearchString = u"I am a leaf on the wind.";
constexpr static size_t BUFSIZE = 64; // large enough for all tests
void TestUTF8toUTF16(std::initializer_list<uint8_t> input,
std::initializer_list<char16_t> expect,
const char* err_msg_length = "",
ssize_t expected_length = 0) {
uint8_t empty_str[] = {};
char16_t output[BUFSIZE];
const size_t inlen = input.size(), outlen = expect.size();
ASSERT_LT(outlen, BUFSIZE);
const uint8_t *input_data = inlen ? std::data(input) : empty_str;
ssize_t measured = utf8_to_utf16_length(input_data, inlen);
EXPECT_EQ(expected_length ? : (ssize_t)outlen, measured) << err_msg_length;
utf8_to_utf16(input_data, inlen, output, outlen + 1);
for (size_t i = 0; i < outlen; i++) {
EXPECT_EQ(std::data(expect)[i], output[i]);
}
EXPECT_EQ(0, output[outlen]) << "should be null terminated";
}
void TestUTF16toUTF8(std::initializer_list<char16_t> input,
std::initializer_list<char> expect,
const char* err_msg_length = "",
ssize_t expected_length = 0) {
char16_t empty_str[] = {};
char output[BUFSIZE];
const size_t inlen = input.size(), outlen = expect.size();
ASSERT_LT(outlen, BUFSIZE);
const char16_t *input_data = inlen ? std::data(input) : empty_str;
ssize_t measured = utf16_to_utf8_length(input_data, inlen);
EXPECT_EQ(expected_length ? : (ssize_t)outlen, measured) << err_msg_length;
utf16_to_utf8(input_data, inlen, output, outlen + 1);
for (size_t i = 0; i < outlen; i++) {
EXPECT_EQ(std::data(expect)[i], output[i]);
}
EXPECT_EQ(0, output[outlen]) << "should be null terminated";
}
};
TEST_F(UnicodeTest, UTF8toUTF16ZeroLength) {
ssize_t measured;
const uint8_t str[] = { };
measured = utf8_to_utf16_length(str, 0);
EXPECT_EQ(0, measured)
<< "Zero length input should return zero length output.";
TestUTF8toUTF16({}, {},
"Zero length input should return zero length output.");
}
TEST_F(UnicodeTest, UTF8toUTF16ASCIILength) {
ssize_t measured;
// U+0030 or ASCII '0'
const uint8_t str[] = { 0x30 };
measured = utf8_to_utf16_length(str, sizeof(str));
EXPECT_EQ(1, measured)
<< "ASCII glyphs should have a length of 1 char16_t";
TEST_F(UnicodeTest, UTF8toUTF16ASCII) {
TestUTF8toUTF16(
{ 0x30 }, // U+0030 or ASCII '0'
{ 0x0030 },
"ASCII codepoints should have a length of 1 char16_t");
}
TEST_F(UnicodeTest, UTF8toUTF16Plane1Length) {
ssize_t measured;
// U+2323 SMILE
const uint8_t str[] = { 0xE2, 0x8C, 0xA3 };
measured = utf8_to_utf16_length(str, sizeof(str));
EXPECT_EQ(1, measured)
<< "Plane 1 glyphs should have a length of 1 char16_t";
TEST_F(UnicodeTest, UTF8toUTF16Plane1) {
TestUTF8toUTF16(
{ 0xE2, 0x8C, 0xA3 }, // U+2323 SMILE
{ 0x2323 },
"Plane 1 codepoints should have a length of 1 char16_t");
}
TEST_F(UnicodeTest, UTF8toUTF16SurrogateLength) {
ssize_t measured;
// U+10000
const uint8_t str[] = { 0xF0, 0x90, 0x80, 0x80 };
measured = utf8_to_utf16_length(str, sizeof(str));
EXPECT_EQ(2, measured)
<< "Surrogate pairs should have a length of 2 char16_t";
TEST_F(UnicodeTest, UTF8toUTF16Surrogate) {
TestUTF8toUTF16(
{ 0xF0, 0x90, 0x80, 0x80 }, // U+10000
{ 0xD800, 0xDC00 },
"Surrogate pairs should have a length of 2 char16_t");
}
TEST_F(UnicodeTest, UTF8toUTF16TruncatedUTF8) {
ssize_t measured;
// Truncated U+2323 SMILE
// U+2323 SMILE
const uint8_t str[] = { 0xE2, 0x8C };
measured = utf8_to_utf16_length(str, sizeof(str));
EXPECT_EQ(-1, measured)
<< "Truncated UTF-8 should return -1 to indicate invalid";
TestUTF8toUTF16(
{ 0xE2, 0x8C }, // Truncated U+2323 SMILE
{ }, // Conversion should still work but produce nothing
"Truncated UTF-8 should return -1 to indicate invalid",
-1);
}
TEST_F(UnicodeTest, UTF8toUTF16Normal) {
const uint8_t str[] = {
0x30, // U+0030, 1 UTF-16 character
0xC4, 0x80, // U+0100, 1 UTF-16 character
0xE2, 0x8C, 0xA3, // U+2323, 1 UTF-16 character
TestUTF8toUTF16({
0x30, // U+0030, 1 UTF-16 character
0xC4, 0x80, // U+0100, 1 UTF-16 character
0xE2, 0x8C, 0xA3, // U+2323, 1 UTF-16 character
0xF0, 0x90, 0x80, 0x80, // U+10000, 2 UTF-16 character
};
}, {
0x0030,
0x0100,
0x2323,
0xD800, 0xDC00
});
}
char16_t output[1 + 1 + 1 + 2 + 1]; // Room for null
TEST_F(UnicodeTest, UTF8toUTF16Invalid) {
// TODO: The current behavior of utf8_to_utf16 is to treat invalid
// leading byte (>= 0xf8) as a 4-byte UTF8 sequence, and to treat
// invalid trailing byte(s) (i.e. bytes not having MSB set) as if
// they are valid and do the normal conversion. However, a better
// handling would be to treat invalid sequences as errors, such
// cases need to be reported and invalid characters (e.g. U+FFFD)
// could be produced at the place of error. Until a fix is ready
// and compatibility is not an issue, we will keep testing the
// current behavior
TestUTF8toUTF16({
0xf8, // invalid leading byte
0xc4, 0x00, // U+0100 with invalid trailing byte
0xe2, 0x0c, 0xa3, // U+2323 with invalid trailing bytes
0xf0, 0x10, 0x00, 0x00, // U+10000 with invalid trailing bytes
}, {
0x4022, // invalid leading byte (>=0xfc) is treated
// as valid for 4-byte UTF8 sequence
0x000C,
0x00A3, // invalid leadnig byte (b'10xxxxxx) is
// treated as valid single UTF-8 byte
0xD800, // invalid trailing bytes are treated
0xDC00, // as valid bytes and follow normal
});
}
utf8_to_utf16(str, sizeof(str), output, sizeof(output) / sizeof(output[0]));
TEST_F(UnicodeTest, UTF16toUTF8ZeroLength) {
// TODO: The current behavior of utf16_to_utf8_length() is that
// it returns -1 if the input is a zero length UTF16 string.
// This is inconsistent with utf8_to_utf16_length() where a zero
// length string returns 0. However, to fix the current behavior,
// we could have compatibility issue. Until then, we will keep
// testing the current behavior
TestUTF16toUTF8({}, {},
"Zero length UTF16 input should return length of -1.", -1);
}
EXPECT_EQ(0x0030, output[0])
<< "should be U+0030";
EXPECT_EQ(0x0100, output[1])
<< "should be U+0100";
EXPECT_EQ(0x2323, output[2])
<< "should be U+2323";
EXPECT_EQ(0xD800, output[3])
<< "should be first half of surrogate U+10000";
EXPECT_EQ(0xDC00, output[4])
<< "should be second half of surrogate U+10000";
EXPECT_EQ(0, output[5]) << "should be null terminated";
TEST_F(UnicodeTest, UTF16toUTF8ASCII) {
TestUTF16toUTF8(
{ 0x0030 }, // U+0030 or ASCII '0'
{ '\x30' },
"ASCII codepoints in UTF16 should give a length of 1 in UTF8");
}
TEST_F(UnicodeTest, UTF16toUTF8Plane1) {
TestUTF16toUTF8(
{ 0x2323 }, // U+2323 SMILE
{ '\xE2', '\x8C', '\xA3' },
"Plane 1 codepoints should have a length of 3 char in UTF-8");
}
TEST_F(UnicodeTest, UTF16toUTF8Surrogate) {
TestUTF16toUTF8(
{ 0xD800, 0xDC00 }, // U+10000
{ '\xF0', '\x90', '\x80', '\x80' },
"Surrogate pairs should have a length of 4 chars");
}
TEST_F(UnicodeTest, UTF16toUTF8UnpairedSurrogate) {
TestUTF16toUTF8(
{ 0xD800 }, // U+10000 with high surrogate pair only
{ }, // Unpaired surrogate should be ignored
"A single unpaired high surrogate should have a length of 0 chars");
TestUTF16toUTF8(
{ 0xDC00 }, // U+10000 with low surrogate pair only
{ }, // Unpaired surrogate should be ignored
"A single unpaired low surrogate should have a length of 0 chars");
TestUTF16toUTF8(
// U+0030, U+0100, U+10000 with high surrogate pair only, U+2323
{ 0x0030, 0x0100, 0xDC00, 0x2323 },
{ '\x30', '\xC4', '\x80', '\xE2', '\x8C', '\xA3' },
"Unpaired high surrogate should be skipped in the middle");
TestUTF16toUTF8(
// U+0030, U+0100, U+10000 with high surrogate pair only, U+2323
{ 0x0030, 0x0100, 0xDC00, 0x2323 },
{ '\x30', '\xC4', '\x80', '\xE2', '\x8C', '\xA3' },
"Unpaired low surrogate should be skipped in the middle");
}
TEST_F(UnicodeTest, UTF16toUTF8CorrectInvalidSurrogate) {
// http://b/29250543
// d841d8 is an invalid start for a surrogate pair. Make sure this is handled by ignoring the
// first character in the pair and handling the rest correctly.
TestUTF16toUTF8(
{ 0xD841, 0xD841, 0xDC41 }, // U+20441
{ '\xF0', '\xA0', '\x91', '\x81' },
"Invalid start for a surrogate pair should be ignored");
}
TEST_F(UnicodeTest, UTF16toUTF8Normal) {
TestUTF16toUTF8({
0x0024, // U+0024 ($) --> 0x24, 1 UTF-8 byte
0x00A3, // U+00A3 (£) --> 0xC2 0xA3, 2 UTF-8 bytes
0x0939, // U+0939 (ह) --> 0xE0 0xA4 0xB9, 3 UTF-8 bytes
0x20AC, // U+20AC (€) --> 0xE2 0x82 0xAC, 3 UTF-8 bytes
0xD55C, // U+D55C (한)--> 0xED 0x95 0x9C, 3 UTF-8 bytes
0xD801, 0xDC37, // U+10437 (𐐷) --> 0xF0 0x90 0x90 0xB7, 4 UTF-8 bytes
}, {
'\x24',
'\xC2', '\xA3',
'\xE0', '\xA4', '\xB9',
'\xE2', '\x82', '\xAC',
'\xED', '\x95', '\x9C',
'\xF0', '\x90', '\x90', '\xB7',
});
}
TEST_F(UnicodeTest, strstr16EmptyTarget) {