Merge changes from topic "procrank-ready"

* changes:
  Add procrank2
  libmeminfo: defer maps reading only when required for procmeminfo
  libmeminfo: Add support to reset workingset without procmeminfo objects
  libmeminfo: Add support to fiter accounting based on page flags
  libmeminfo: Add support to read zram memory consumption
  libmeminfo: Add support for counting swap pages
This commit is contained in:
Sandeep Patil 2018-12-08 01:44:13 +00:00 committed by Gerrit Code Review
commit d346349d50
13 changed files with 936 additions and 75 deletions

View file

@ -54,6 +54,11 @@ cc_test {
srcs: [
"libmeminfo_test.cpp"
],
data: [
"testdata1/*",
"testdata2/*"
],
}
cc_benchmark {
@ -67,4 +72,8 @@ cc_benchmark {
"libmeminfo",
"libprocinfo",
],
data: [
"testdata1/*",
],
}

View file

@ -31,6 +31,8 @@ struct MemUsage {
uint64_t pss;
uint64_t uss;
uint64_t swap;
uint64_t private_clean;
uint64_t private_dirty;
uint64_t shared_clean;
@ -41,6 +43,7 @@ struct MemUsage {
rss(0),
pss(0),
uss(0),
swap(0),
private_clean(0),
private_dirty(0),
shared_clean(0),
@ -49,7 +52,7 @@ struct MemUsage {
~MemUsage() = default;
void clear() {
vss = rss = pss = uss = 0;
vss = rss = pss = uss = swap = 0;
private_clean = private_dirty = shared_clean = shared_dirty = 0;
}
};

View file

@ -29,13 +29,16 @@ namespace meminfo {
class ProcMemInfo final {
// Per-process memory accounting
public:
ProcMemInfo(pid_t pid, bool get_wss = false);
// Reset the working set accounting of the process via /proc/<pid>/clear_refs
static bool ResetWorkingSet(pid_t pid);
ProcMemInfo(pid_t pid, bool get_wss = false, uint64_t pgflags = 0, uint64_t pgflags_mask = 0);
const std::vector<Vma>& Maps();
const MemUsage& Usage();
const MemUsage& Wss();
const std::vector<uint16_t>& SwapOffsets();
bool WssReset();
~ProcMemInfo() = default;
private:
@ -44,11 +47,14 @@ class ProcMemInfo final {
pid_t pid_;
bool get_wss_;
uint64_t pgflags_;
uint64_t pgflags_mask_;
std::vector<Vma> maps_;
MemUsage usage_;
MemUsage wss_;
std::vector<uint16_t> swap_offsets_;
};
} // namespace meminfo

View file

@ -28,6 +28,21 @@ namespace meminfo {
class SysMemInfo final {
// System or Global memory accounting
public:
static constexpr const char* kMemTotal = "MemTotal:";
static constexpr const char* kMemFree = "MemFree:";
static constexpr const char* kMemBuffers = "Buffers:";
static constexpr const char* kMemCached = "Cached:";
static constexpr const char* kMemShmem = "Shmem:";
static constexpr const char* kMemSlab = "Slab:";
static constexpr const char* kMemSReclaim = "SReclaimable:";
static constexpr const char* kMemSUnreclaim = "SUnreclaim:";
static constexpr const char* kMemSwapTotal = "SwapTotal:";
static constexpr const char* kMemSwapFree = "SwapFree:";
static constexpr const char* kMemMapped = "Mapped:";
static constexpr const char* kMemVmallocUsed = "VmallocUsed:";
static constexpr const char* kMemPageTables = "PageTables:";
static constexpr const char* kMemKernelStack = "KernelStack:";
static const std::vector<std::string> kDefaultSysMemInfoTags;
SysMemInfo() = default;
@ -38,24 +53,25 @@ class SysMemInfo final {
const std::string& path = "/proc/meminfo");
// getters
uint64_t mem_total_kb() { return mem_in_kb_["MemTotal:"]; }
uint64_t mem_free_kb() { return mem_in_kb_["MemFree:"]; }
uint64_t mem_buffers_kb() { return mem_in_kb_["Buffers:"]; }
uint64_t mem_cached_kb() { return mem_in_kb_["Cached:"]; }
uint64_t mem_shmem_kb() { return mem_in_kb_["Shmem:"]; }
uint64_t mem_slab_kb() { return mem_in_kb_["Slab:"]; }
uint64_t mem_slab_reclailmable_kb() { return mem_in_kb_["SReclaimable:"]; }
uint64_t mem_slab_unreclaimable_kb() { return mem_in_kb_["SUnreclaim:"]; }
uint64_t mem_swap_kb() { return mem_in_kb_["SwapTotal:"]; }
uint64_t mem_free_swap_kb() { return mem_in_kb_["SwapFree:"]; }
uint64_t mem_zram_kb() { return mem_in_kb_["Zram:"]; }
uint64_t mem_mapped_kb() { return mem_in_kb_["Mapped:"]; }
uint64_t mem_vmalloc_used_kb() { return mem_in_kb_["VmallocUsed:"]; }
uint64_t mem_page_tables_kb() { return mem_in_kb_["PageTables:"]; }
uint64_t mem_kernel_stack_kb() { return mem_in_kb_["KernelStack:"]; }
uint64_t mem_total_kb() { return mem_in_kb_[kMemTotal]; }
uint64_t mem_free_kb() { return mem_in_kb_[kMemFree]; }
uint64_t mem_buffers_kb() { return mem_in_kb_[kMemBuffers]; }
uint64_t mem_cached_kb() { return mem_in_kb_[kMemCached]; }
uint64_t mem_shmem_kb() { return mem_in_kb_[kMemShmem]; }
uint64_t mem_slab_kb() { return mem_in_kb_[kMemSlab]; }
uint64_t mem_slab_reclailmable_kb() { return mem_in_kb_[kMemSReclaim]; }
uint64_t mem_slab_unreclaimable_kb() { return mem_in_kb_[kMemSUnreclaim]; }
uint64_t mem_swap_kb() { return mem_in_kb_[kMemSwapTotal]; }
uint64_t mem_swap_free_kb() { return mem_in_kb_[kMemSwapFree]; }
uint64_t mem_mapped_kb() { return mem_in_kb_[kMemMapped]; }
uint64_t mem_vmalloc_used_kb() { return mem_in_kb_[kMemVmallocUsed]; }
uint64_t mem_page_tables_kb() { return mem_in_kb_[kMemPageTables]; }
uint64_t mem_kernel_stack_kb() { return mem_in_kb_[kMemPageTables]; }
uint64_t mem_zram_kb(const std::string& zram_dev = "");
private:
std::map<std::string, uint64_t> mem_in_kb_;
bool MemZramDevice(const std::string& zram_dev, uint64_t* mem_zram_dev);
};
} // namespace meminfo

View file

@ -17,6 +17,8 @@
#include <meminfo/sysmeminfo.h>
#include <fcntl.h>
#include <inttypes.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
@ -46,7 +48,7 @@ enum {
MEMINFO_COUNT
};
void get_mem_info(uint64_t mem[], const char* file) {
static void get_mem_info(uint64_t mem[], const char* file) {
char buffer[4096];
unsigned int numFound = 0;
@ -67,9 +69,10 @@ void get_mem_info(uint64_t mem[], const char* file) {
buffer[len] = 0;
static const char* const tags[] = {
"MemTotal:", "MemFree:", "Buffers:", "Cached:", "Shmem:", "Slab:",
"SReclaimable:", "SUnreclaim:", "SwapTotal:", "SwapFree:", "ZRam:", "Mapped:",
"VmallocUsed:", "PageTables:", "KernelStack:", NULL};
"MemTotal:", "MemFree:", "Buffers:", "Cached:", "Shmem:", "Slab:",
"SReclaimable:", "SUnreclaim:", "SwapTotal:", "SwapFree:", "ZRam:", "Mapped:",
"VmallocUsed:", "PageTables:", "KernelStack:", NULL
};
static const int tagsLen[] = {9, 8, 8, 7, 6, 5, 13, 11, 10, 9, 5, 7, 12, 11, 12, 0};
@ -78,7 +81,8 @@ void get_mem_info(uint64_t mem[], const char* file) {
while (*p && (numFound < (sizeof(tagsLen) / sizeof(tagsLen[0])))) {
int i = 0;
while (tags[i]) {
//std::cout << "tag =" << tags[i] << " p = " << std::string(p, tagsLen[i]) << std::endl;
// std::cout << "tag =" << tags[i] << " p = " << std::string(p, tagsLen[i]) <<
// std::endl;
if (strncmp(p, tags[i], tagsLen[i]) == 0) {
p += tagsLen[i];
while (*p == ' ') p++;
@ -214,4 +218,51 @@ Hugepagesize: 2048 kB)meminfo";
}
BENCHMARK(BM_ReadMemInfo);
static uint64_t get_zram_mem_used(const std::string& zram_dir) {
FILE* f = fopen((zram_dir + "mm_stat").c_str(), "r");
if (f) {
uint64_t mem_used_total = 0;
int matched = fscanf(f, "%*d %*d %" SCNu64 " %*d %*d %*d %*d", &mem_used_total);
if (matched != 1)
fprintf(stderr, "warning: failed to parse %s\n", (zram_dir + "mm_stat").c_str());
fclose(f);
return mem_used_total;
}
f = fopen((zram_dir + "mem_used_total").c_str(), "r");
if (f) {
uint64_t mem_used_total = 0;
int matched = fscanf(f, "%" SCNu64, &mem_used_total);
if (matched != 1)
fprintf(stderr, "warning: failed to parse %s\n", (zram_dir + "mem_used_total").c_str());
fclose(f);
return mem_used_total;
}
return 0;
}
static void BM_OldReadZramTotal(benchmark::State& state) {
std::string exec_dir = ::android::base::GetExecutableDirectory();
std::string zram_mmstat_dir = exec_dir + "/testdata1/";
for (auto _ : state) {
uint64_t zram_total __attribute__((unused)) = get_zram_mem_used(zram_mmstat_dir) / 1024;
}
}
BENCHMARK(BM_OldReadZramTotal);
static void BM_NewReadZramTotal(benchmark::State& state) {
std::string exec_dir = ::android::base::GetExecutableDirectory();
std::string zram_mmstat_dir = exec_dir + "/testdata1/";
::android::meminfo::SysMemInfo mi;
for (auto _ : state) {
uint64_t zram_total __attribute__((unused)) = mi.mem_zram_kb(zram_mmstat_dir);
}
}
BENCHMARK(BM_NewReadZramTotal);
BENCHMARK_MAIN();

View file

@ -73,7 +73,7 @@ TEST_F(ValidateProcMemInfo, TestMapsEquality) {
}
}
TEST_F(ValidateProcMemInfo, TestMapsUsage) {
TEST_F(ValidateProcMemInfo, TestMaps) {
const std::vector<Vma>& maps = proc_mem->Maps();
ASSERT_FALSE(maps.empty());
ASSERT_EQ(proc->num_maps, maps.size());
@ -96,6 +96,30 @@ TEST_F(ValidateProcMemInfo, TestMapsUsage) {
EXPECT_EQ(proc_usage.uss, proc_mem->Usage().uss);
}
TEST_F(ValidateProcMemInfo, TestSwapUsage) {
const std::vector<Vma>& maps = proc_mem->Maps();
ASSERT_FALSE(maps.empty());
ASSERT_EQ(proc->num_maps, maps.size());
pm_memusage_t map_usage, proc_usage;
pm_memusage_zero(&map_usage);
pm_memusage_zero(&proc_usage);
for (size_t i = 0; i < maps.size(); i++) {
ASSERT_EQ(0, pm_map_usage(proc->maps[i], &map_usage));
EXPECT_EQ(map_usage.swap, maps[i].usage.swap) << "SWAP mismatch for map: " << maps[i].name;
pm_memusage_add(&proc_usage, &map_usage);
}
EXPECT_EQ(proc_usage.swap, proc_mem->Usage().swap);
}
TEST_F(ValidateProcMemInfo, TestSwapOffsets) {
const MemUsage& proc_usage = proc_mem->Usage();
const std::vector<uint16_t>& swap_offsets = proc_mem->SwapOffsets();
EXPECT_EQ(proc_usage.swap / getpagesize(), swap_offsets.size());
}
class ValidateProcMemInfoWss : public ::testing::Test {
protected:
void SetUp() override {
@ -118,7 +142,7 @@ class ValidateProcMemInfoWss : public ::testing::Test {
TEST_F(ValidateProcMemInfoWss, TestWorkingTestReset) {
// Expect reset to succeed
EXPECT_TRUE(proc_mem->WssReset());
EXPECT_TRUE(ProcMemInfo::ResetWorkingSet(pid));
}
TEST_F(ValidateProcMemInfoWss, TestWssEquality) {
@ -221,6 +245,93 @@ TEST_F(ValidatePageAcct, TestPageIdle) {
}
}
TEST(TestProcMemInfo, TestMapsEmpty) {
ProcMemInfo proc_mem(pid);
const std::vector<Vma>& maps = proc_mem.Maps();
EXPECT_GT(maps.size(), 0);
}
TEST(TestProcMemInfo, TestUsageEmpty) {
// If we created the object for getting working set,
// the usage must be empty
ProcMemInfo proc_mem(pid, true);
const MemUsage& usage = proc_mem.Usage();
EXPECT_EQ(usage.rss, 0);
EXPECT_EQ(usage.vss, 0);
EXPECT_EQ(usage.pss, 0);
EXPECT_EQ(usage.uss, 0);
EXPECT_EQ(usage.swap, 0);
}
TEST(TestProcMemInfoWssReset, TestWssEmpty) {
// If we created the object for getting usage,
// the working set must be empty
ProcMemInfo proc_mem(pid, false);
const MemUsage& wss = proc_mem.Wss();
EXPECT_EQ(wss.rss, 0);
EXPECT_EQ(wss.vss, 0);
EXPECT_EQ(wss.pss, 0);
EXPECT_EQ(wss.uss, 0);
EXPECT_EQ(wss.swap, 0);
}
TEST(TestProcMemInfoWssReset, TestSwapOffsetsEmpty) {
// If we created the object for getting working set,
// the swap offsets must be empty
ProcMemInfo proc_mem(pid, true);
const std::vector<uint16_t>& swap_offsets = proc_mem.SwapOffsets();
EXPECT_EQ(swap_offsets.size(), 0);
}
TEST(ValidateProcMemInfoFlags, TestPageFlags1) {
// Create proc object using libpagemap
pm_kernel_t* ker;
ASSERT_EQ(0, pm_kernel_create(&ker));
pm_process_t* proc;
ASSERT_EQ(0, pm_process_create(ker, pid, &proc));
// count swapbacked pages using libpagemap
pm_memusage_t proc_usage;
pm_memusage_zero(&proc_usage);
ASSERT_EQ(0, pm_process_usage_flags(proc, &proc_usage, (1 << KPF_SWAPBACKED),
(1 << KPF_SWAPBACKED)));
// Create ProcMemInfo that counts swapbacked pages
ProcMemInfo proc_mem(pid, false, (1 << KPF_SWAPBACKED), (1 << KPF_SWAPBACKED));
EXPECT_EQ(proc_usage.vss, proc_mem.Usage().vss);
EXPECT_EQ(proc_usage.rss, proc_mem.Usage().rss);
EXPECT_EQ(proc_usage.pss, proc_mem.Usage().pss);
EXPECT_EQ(proc_usage.uss, proc_mem.Usage().uss);
pm_process_destroy(proc);
pm_kernel_destroy(ker);
}
TEST(ValidateProcMemInfoFlags, TestPageFlags2) {
// Create proc object using libpagemap
pm_kernel_t* ker;
ASSERT_EQ(0, pm_kernel_create(&ker));
pm_process_t* proc;
ASSERT_EQ(0, pm_process_create(ker, pid, &proc));
// count non-swapbacked pages using libpagemap
pm_memusage_t proc_usage;
pm_memusage_zero(&proc_usage);
ASSERT_EQ(0, pm_process_usage_flags(proc, &proc_usage, (1 << KPF_SWAPBACKED), 0));
// Create ProcMemInfo that counts non-swapbacked pages
ProcMemInfo proc_mem(pid, false, 0, (1 << KPF_SWAPBACKED));
EXPECT_EQ(proc_usage.vss, proc_mem.Usage().vss);
EXPECT_EQ(proc_usage.rss, proc_mem.Usage().rss);
EXPECT_EQ(proc_usage.pss, proc_mem.Usage().pss);
EXPECT_EQ(proc_usage.uss, proc_mem.Usage().uss);
pm_process_destroy(proc);
pm_kernel_destroy(ker);
}
TEST(SysMemInfoParser, TestSysMemInfoFile) {
std::string meminfo = R"meminfo(MemTotal: 3019740 kB
MemFree: 1809728 kB
@ -288,6 +399,17 @@ TEST(SysMemInfoParser, TestEmptyFile) {
EXPECT_EQ(mi.mem_total_kb(), 0);
}
TEST(SysMemInfoParse, TestZramTotal) {
std::string exec_dir = ::android::base::GetExecutableDirectory();
SysMemInfo mi;
std::string zram_mmstat_dir = exec_dir + "/testdata1/";
EXPECT_EQ(mi.mem_zram_kb(zram_mmstat_dir), 30504);
std::string zram_memused_dir = exec_dir + "/testdata2/";
EXPECT_EQ(mi.mem_zram_kb(zram_memused_dir), 30504);
}
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
if (argc <= 1) {

View file

@ -44,6 +44,8 @@ static void add_mem_usage(MemUsage* to, const MemUsage& from) {
to->pss += from.pss;
to->uss += from.uss;
to->swap += from.swap;
to->private_clean += from.private_clean;
to->private_dirty += from.private_dirty;
@ -51,48 +53,78 @@ static void add_mem_usage(MemUsage* to, const MemUsage& from) {
to->shared_dirty += from.shared_dirty;
}
ProcMemInfo::ProcMemInfo(pid_t pid, bool get_wss) : pid_(pid), get_wss_(get_wss) {
if (!ReadMaps(get_wss_)) {
LOG(ERROR) << "Failed to read maps for Process " << pid_;
}
}
const std::vector<Vma>& ProcMemInfo::Maps() {
return maps_;
}
const MemUsage& ProcMemInfo::Usage() {
if (get_wss_) {
LOG(WARNING) << "Trying to read memory usage from working set object";
}
return usage_;
}
const MemUsage& ProcMemInfo::Wss() {
if (!get_wss_) {
LOG(WARNING) << "Trying to read working set when there is none";
}
return wss_;
}
bool ProcMemInfo::WssReset() {
if (!get_wss_) {
LOG(ERROR) << "Trying to reset working set from a memory usage counting object";
return false;
}
std::string clear_refs_path = ::android::base::StringPrintf("/proc/%d/clear_refs", pid_);
bool ProcMemInfo::ResetWorkingSet(pid_t pid) {
std::string clear_refs_path = ::android::base::StringPrintf("/proc/%d/clear_refs", pid);
if (!::android::base::WriteStringToFile("1\n", clear_refs_path)) {
PLOG(ERROR) << "Failed to write to " << clear_refs_path;
return false;
}
wss_.clear();
return true;
}
ProcMemInfo::ProcMemInfo(pid_t pid, bool get_wss, uint64_t pgflags, uint64_t pgflags_mask)
: pid_(pid), get_wss_(get_wss), pgflags_(pgflags), pgflags_mask_(pgflags_mask) {}
const std::vector<Vma>& ProcMemInfo::Maps() {
if (maps_.empty() && !ReadMaps(get_wss_)) {
LOG(ERROR) << "Failed to read maps for Process " << pid_;
}
return maps_;
}
const MemUsage& ProcMemInfo::Usage() {
if (get_wss_) {
LOG(WARNING) << "Trying to read process memory usage for " << pid_
<< " using invalid object";
return usage_;
}
if (maps_.empty() && !ReadMaps(get_wss_)) {
LOG(ERROR) << "Failed to get memory usage for Process " << pid_;
}
return usage_;
}
const MemUsage& ProcMemInfo::Wss() {
if (!get_wss_) {
LOG(WARNING) << "Trying to read process working set for " << pid_
<< " using invalid object";
return wss_;
}
if (maps_.empty() && !ReadMaps(get_wss_)) {
LOG(ERROR) << "Failed to get working set for Process " << pid_;
}
return wss_;
}
const std::vector<uint16_t>& ProcMemInfo::SwapOffsets() {
if (get_wss_) {
LOG(WARNING) << "Trying to read process swap offsets for " << pid_
<< " using invalid object";
return swap_offsets_;
}
if (maps_.empty() && !ReadMaps(get_wss_)) {
LOG(ERROR) << "Failed to get swap offsets for Process " << pid_;
}
return swap_offsets_;
}
bool ProcMemInfo::ReadMaps(bool get_wss) {
// Each object reads /proc/<pid>/maps only once. This is done to make sure programs that are
// running for the lifetime of the system can recycle the objects and don't have to
// unnecessarily retain and update this object in memory (which can get significantly large).
// E.g. A program that only needs to reset the working set will never all ->Maps(), ->Usage().
// E.g. A program that is monitoring smaps_rollup, may never call ->maps(), Usage(), so it
// doesn't make sense for us to parse and retain unnecessary memory accounting stats by default.
if (!maps_.empty()) return true;
// parse and read /proc/<pid>/maps
std::string maps_file = ::android::base::StringPrintf("/proc/%d/maps", pid_);
if (!::android::procinfo::ReadMapFile(
@ -115,8 +147,8 @@ bool ProcMemInfo::ReadMaps(bool get_wss) {
for (auto& vma : maps_) {
if (!ReadVmaStats(pagemap_fd.get(), vma, get_wss)) {
LOG(ERROR) << "Failed to read page map for vma " << vma.name << "[" << vma.start
<< "-" << vma.end << "]";
LOG(ERROR) << "Failed to read page map for vma " << vma.name << "[" << vma.start << "-"
<< vma.end << "]";
maps_.clear();
return false;
}
@ -153,18 +185,24 @@ bool ProcMemInfo::ReadVmaStats(int pagemap_fd, Vma& vma, bool get_wss) {
if (!PAGE_PRESENT(p) && !PAGE_SWAPPED(p)) continue;
if (PAGE_SWAPPED(p)) {
// TODO: do what's needed for swapped pages
vma.usage.swap += pagesz;
swap_offsets_.emplace_back(PAGE_SWAP_OFFSET(p));
continue;
}
uint64_t page_frame = PAGE_PFN(p);
if (!pinfo.PageFlags(page_frame, &pg_flags[i])) {
LOG(ERROR) << "Failed to get page flags for " << page_frame << " in process " << pid_;
swap_offsets_.clear();
return false;
}
// skip unwanted pages from the count
if ((pg_flags[i] & pgflags_mask_) != pgflags_) continue;
if (!pinfo.PageMapCount(page_frame, &pg_counts[i])) {
LOG(ERROR) << "Failed to get page count for " << page_frame << " in process " << pid_;
swap_offsets_.clear();
return false;
}

View file

@ -17,10 +17,12 @@
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <stdlib.h>
#include <unistd.h>
#include <cctype>
#include <cstdio>
#include <fstream>
#include <string>
#include <utility>
@ -29,7 +31,9 @@
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/parseint.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include "meminfo_private.h"
@ -37,9 +41,11 @@ namespace android {
namespace meminfo {
const std::vector<std::string> SysMemInfo::kDefaultSysMemInfoTags = {
"MemTotal:", "MemFree:", "Buffers:", "Cached:", "Shmem:",
"Slab:", "SReclaimable:", "SUnreclaim:", "SwapTotal:", "SwapFree:",
"ZRam:", "Mapped:", "VmallocUsed:", "PageTables:", "KernelStack:",
SysMemInfo::kMemTotal, SysMemInfo::kMemFree, SysMemInfo::kMemBuffers,
SysMemInfo::kMemCached, SysMemInfo::kMemShmem, SysMemInfo::kMemSlab,
SysMemInfo::kMemSReclaim, SysMemInfo::kMemSUnreclaim, SysMemInfo::kMemSwapTotal,
SysMemInfo::kMemSwapFree, SysMemInfo::kMemMapped, SysMemInfo::kMemVmallocUsed,
SysMemInfo::kMemPageTables, SysMemInfo::kMemKernelStack,
};
bool SysMemInfo::ReadMemInfo(const std::string& path) {
@ -99,6 +105,7 @@ bool SysMemInfo::ReadMemInfo(const std::vector<std::string>& tags, const std::st
buffer[len] = '\0';
char* p = buffer;
uint32_t found = 0;
uint32_t lineno = 0;
while (*p && found < tags.size()) {
for (auto& tag : tags) {
if (strncmp(p, tag.c_str(), tag.size()) == 0) {
@ -107,7 +114,7 @@ bool SysMemInfo::ReadMemInfo(const std::vector<std::string>& tags, const std::st
char* endptr = nullptr;
mem_in_kb_[tag] = strtoull(p, &endptr, 10);
if (p == endptr) {
PLOG(ERROR) << "Failed to parse line in file: " << path;
PLOG(ERROR) << "Failed to parse line:" << lineno + 1 << " in file: " << path;
return false;
}
p = endptr;
@ -119,11 +126,75 @@ bool SysMemInfo::ReadMemInfo(const std::vector<std::string>& tags, const std::st
p++;
}
if (*p) p++;
lineno++;
}
return true;
}
#endif
uint64_t SysMemInfo::mem_zram_kb(const std::string& zram_dev) {
uint64_t mem_zram_total = 0;
if (!zram_dev.empty()) {
if (!MemZramDevice(zram_dev, &mem_zram_total)) {
return 0;
}
return mem_zram_total / 1024;
}
constexpr uint32_t kMaxZramDevices = 256;
for (uint32_t i = 0; i < kMaxZramDevices; i++) {
std::string zram_dev = ::android::base::StringPrintf("/sys/block/zram%u/", i);
if (access(zram_dev.c_str(), F_OK)) {
// We assume zram devices appear in range 0-255 and appear always in sequence
// under /sys/block. So, stop looking for them once we find one is missing.
break;
}
uint64_t mem_zram_dev;
if (!MemZramDevice(zram_dev, &mem_zram_dev)) {
return 0;
}
mem_zram_total += mem_zram_dev;
}
return mem_zram_total / 1024;
}
bool SysMemInfo::MemZramDevice(const std::string& zram_dev, uint64_t* mem_zram_dev) {
std::string content;
if (android::base::ReadFileToString(zram_dev + "mm_stat", &content)) {
std::vector<std::string> values = ::android::base::Split(content, " ");
if (values.size() < 3) {
LOG(ERROR) << "Malformed mm_stat file for zram dev: " << zram_dev
<< " content: " << content;
return false;
}
if (!::android::base::ParseUint(values[2], mem_zram_dev)) {
LOG(ERROR) << "Malformed mm_stat file for zram dev: " << zram_dev
<< " value: " << values[2];
return false;
}
return true;
}
if (::android::base::ReadFileToString(zram_dev + "mem_used_total", &content)) {
*mem_zram_dev = strtoull(content.c_str(), NULL, 10);
if (*mem_zram_dev == ULLONG_MAX) {
PLOG(ERROR) << "Malformed mem_used_total file for zram dev: " << zram_dev
<< " content: " << content;
return false;
}
return true;
}
LOG(ERROR) << "Can't find memory status under: " << zram_dev;
return false;
}
} // namespace meminfo
} // namespace android

View file

@ -0,0 +1 @@
145674240 26801454 31236096 0 45772800 3042 1887 517

View file

@ -0,0 +1 @@
31236096

View file

@ -25,3 +25,18 @@ cc_binary {
"libmeminfo",
],
}
cc_binary {
name: "procrank2",
cflags: [
"-Wall",
"-Werror",
"-Wno-unused-parameter",
],
srcs: ["procrank.cpp"],
shared_libs: [
"libbase",
"libmeminfo",
],
}

View file

@ -66,14 +66,12 @@ static void scan_usage(std::stringstream& ss, const MemUsage& usage, const std::
// clear string stream first.
ss.str("");
// TODO: use ::android::base::StringPrintf instead of <iomanip> here.
if (!show_wss)
ss << std::setw(6) << usage.vss/1024 << padding;
ss << std::setw(6) << usage.rss/1024 << padding << std::setw(6)
<< usage.pss/1024 << padding << std::setw(6) << usage.uss/1024 << padding
<< std::setw(6) << usage.shared_clean/1024 << padding << std::setw(6)
<< usage.shared_dirty/1024 << padding << std::setw(6)
<< usage.private_clean/1024 << padding << std::setw(6)
<< usage.private_dirty/1024 << padding;
if (!show_wss) ss << std::setw(6) << usage.vss / 1024 << padding;
ss << std::setw(6) << usage.rss / 1024 << padding << std::setw(6) << usage.pss / 1024 << padding
<< std::setw(6) << usage.uss / 1024 << padding << std::setw(6) << usage.shared_clean / 1024
<< padding << std::setw(6) << usage.shared_dirty / 1024 << padding << std::setw(6)
<< usage.private_clean / 1024 << padding << std::setw(6) << usage.private_dirty / 1024
<< padding;
}
static int show(ProcMemInfo& proc, bool hide_zeroes, bool show_wss) {
@ -158,14 +156,14 @@ int main(int argc, char* argv[]) {
}
bool need_wss = wss_reset || show_wss;
ProcMemInfo proc(pid, need_wss);
if (wss_reset) {
if (!proc.WssReset()) {
if (!ProcMemInfo::ResetWorkingSet(pid)) {
std::cerr << "Failed to reset working set of pid : " << pid << std::endl;
exit(EXIT_FAILURE);
}
return 0;
}
ProcMemInfo proc(pid, need_wss);
return show(proc, hide_zeroes, show_wss);
}

View file

@ -0,0 +1,530 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <dirent.h>
#include <errno.h>
#include <inttypes.h>
#include <linux/kernel-page-flags.h>
#include <linux/oom.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
#include <iostream>
#include <memory>
#include <sstream>
#include <vector>
#include <android-base/file.h>
#include <android-base/parseint.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <meminfo/procmeminfo.h>
#include <meminfo/sysmeminfo.h>
using ::android::meminfo::MemUsage;
using ::android::meminfo::ProcMemInfo;
struct ProcessRecord {
public:
ProcessRecord(pid_t pid, bool get_wss = false, uint64_t pgflags = 0, uint64_t pgflags_mask = 0)
: pid_(-1),
procmem_(nullptr),
oomadj_(OOM_SCORE_ADJ_MAX + 1),
cmdline_(""),
proportional_swap_(0),
unique_swap_(0),
zswap_(0) {
std::unique_ptr<ProcMemInfo> procmem =
std::make_unique<ProcMemInfo>(pid, get_wss, pgflags, pgflags_mask);
if (procmem == nullptr) {
std::cerr << "Failed to create ProcMemInfo for: " << pid << std::endl;
return;
}
std::string fname = ::android::base::StringPrintf("/proc/%d/oom_score_adj", pid);
auto oomscore_fp =
std::unique_ptr<FILE, decltype(&fclose)>{fopen(fname.c_str(), "re"), fclose};
if (oomscore_fp == nullptr) {
std::cerr << "Failed to open oom_score_adj file: " << fname << std::endl;
return;
}
if (fscanf(oomscore_fp.get(), "%d\n", &oomadj_) != 1) {
std::cerr << "Failed to read oomadj from: " << fname << std::endl;
return;
}
fname = ::android::base::StringPrintf("/proc/%d/cmdline", pid);
if (!::android::base::ReadFileToString(fname, &cmdline_)) {
std::cerr << "Failed to read cmdline from: " << fname << std::endl;
cmdline_ = "<unknown>";
}
// We deliberately don't read the proc/<pid>cmdline file directly into 'cmdline_'
// because of some processes showing up cmdlines that end with "0x00 0x0A 0x00"
// e.g. xtra-daemon, lowi-server
// The .c_str() assignment below then takes care of trimming the cmdline at the first
// 0x00. This is how original procrank worked (luckily)
cmdline_.resize(strlen(cmdline_.c_str()));
procmem_ = std::move(procmem);
pid_ = pid;
}
bool valid() const { return pid_ != -1; }
void CalculateSwap(const uint16_t* swap_offset_array, float zram_compression_ratio) {
const std::vector<uint16_t>& swp_offs = procmem_->SwapOffsets();
for (auto& off : swp_offs) {
proportional_swap_ += getpagesize() / swap_offset_array[off];
unique_swap_ += swap_offset_array[off] == 1 ? getpagesize() : 0;
zswap_ = proportional_swap_ * zram_compression_ratio;
}
}
// Getters
pid_t pid() const { return pid_; }
const std::string& cmdline() const { return cmdline_; }
int32_t oomadj() const { return oomadj_; }
uint64_t proportional_swap() const { return proportional_swap_; }
uint64_t unique_swap() const { return unique_swap_; }
uint64_t zswap() const { return zswap_; }
// Wrappers to ProcMemInfo
const std::vector<uint16_t>& SwapOffsets() const { return procmem_->SwapOffsets(); }
const MemUsage& Usage() const { return procmem_->Usage(); }
const MemUsage& Wss() const { return procmem_->Wss(); }
private:
pid_t pid_;
std::unique_ptr<ProcMemInfo> procmem_;
int32_t oomadj_;
std::string cmdline_;
uint64_t proportional_swap_;
uint64_t unique_swap_;
uint64_t zswap_;
};
// Show working set instead of memory consumption
bool show_wss = false;
// Reset working set of each process
bool reset_wss = false;
// Show per-process oom_score_adj column
bool show_oomadj = false;
// True if the device has swap enabled
bool has_swap = false;
// True, if device has zram enabled
bool has_zram = false;
// If zram is enabled, the compression ratio is zram used / swap used.
float zram_compression_ratio = 0.0;
// Sort process in reverse, default is descending
bool reverse_sort = false;
// Calculated total memory usage across all processes in the system
uint64_t total_pss = 0;
uint64_t total_uss = 0;
uint64_t total_swap = 0;
uint64_t total_pswap = 0;
uint64_t total_uswap = 0;
uint64_t total_zswap = 0;
static void usage(const char* myname) {
std::cerr << "Usage: " << myname << " [ -W ] [ -v | -r | -p | -u | -s | -h ]" << std::endl
<< " -v Sort by VSS." << std::endl
<< " -r Sort by RSS." << std::endl
<< " -p Sort by PSS." << std::endl
<< " -u Sort by USS." << std::endl
<< " -s Sort by swap." << std::endl
<< " (Default sort order is PSS.)" << std::endl
<< " -R Reverse sort order (default is descending)." << std::endl
<< " -c Only show cached (storage backed) pages" << std::endl
<< " -C Only show non-cached (ram/swap backed) pages" << std::endl
<< " -k Only show pages collapsed by KSM" << std::endl
<< " -w Display statistics for working set only." << std::endl
<< " -W Reset working set of all processes." << std::endl
<< " -o Show and sort by oom score against lowmemorykiller thresholds."
<< std::endl
<< " -h Display this help screen." << std::endl;
}
static bool read_all_pids(std::vector<pid_t>* pids, std::function<bool(pid_t pid)> for_each_pid) {
pids->clear();
std::unique_ptr<DIR, int (*)(DIR*)> procdir(opendir("/proc"), closedir);
if (!procdir) return false;
struct dirent* dir;
pid_t pid;
while ((dir = readdir(procdir.get()))) {
if (!::android::base::ParseInt(dir->d_name, &pid)) continue;
if (!for_each_pid(pid)) return false;
pids->push_back(pid);
}
return true;
}
static bool count_swap_offsets(const ProcessRecord& proc, uint16_t* swap_offset_array,
uint32_t size) {
const std::vector<uint16_t>& swp_offs = proc.SwapOffsets();
for (auto& off : swp_offs) {
if (off >= size) {
std::cerr << "swap offset " << off << " is out of bounds for process: " << proc.pid()
<< std::endl;
return false;
}
if (swap_offset_array[off] == USHRT_MAX) {
std::cerr << "swap offset " << off << " ref count overflow in process: " << proc.pid()
<< std::endl;
return false;
}
swap_offset_array[off]++;
}
return true;
}
static void print_header(std::stringstream& ss) {
ss.str("");
ss << ::android::base::StringPrintf("%5s ", "PID");
if (show_oomadj) {
ss << ::android::base::StringPrintf("%5s ", "oom");
}
if (show_wss) {
ss << ::android::base::StringPrintf("%7s %7s %7s ", "WRss", "WPss", "WUss");
// now swap statistics here, working set pages by definition shouldn't end up in swap.
} else {
ss << ::android::base::StringPrintf("%8s %7s %7s %7s ", "Vss", "Rss", "Pss", "Uss");
if (has_swap) {
ss << ::android::base::StringPrintf("%7s %7s %7s ", "Swap", "PSwap", "USwap");
if (has_zram) {
ss << ::android::base::StringPrintf("%7s ", "ZSwap");
}
}
}
ss << "cmdline";
}
static void print_process_record(std::stringstream& ss, ProcessRecord& proc) {
ss << ::android::base::StringPrintf("%5d ", proc.pid());
if (show_oomadj) {
ss << ::android::base::StringPrintf("%5d ", proc.oomadj());
}
if (show_wss) {
ss << ::android::base::StringPrintf("%6" PRIu64 "K %6" PRIu64 "K %6" PRIu64 "K ",
proc.Wss().rss / 1024, proc.Wss().pss / 1024,
proc.Wss().uss / 1024);
} else {
ss << ::android::base::StringPrintf("%7" PRIu64 "K %6" PRIu64 "K %6" PRIu64 "K %6" PRIu64
"K ",
proc.Usage().vss / 1024, proc.Usage().rss / 1024,
proc.Usage().pss / 1024, proc.Usage().uss / 1024);
if (has_swap) {
ss << ::android::base::StringPrintf("%6" PRIu64 "K ", proc.Usage().swap / 1024);
ss << ::android::base::StringPrintf("%6" PRIu64 "K ", proc.proportional_swap() / 1024);
ss << ::android::base::StringPrintf("%6" PRIu64 "K ", proc.unique_swap() / 1024);
if (has_zram) {
ss << ::android::base::StringPrintf("%6" PRIu64 "K ", (proc.zswap() / 1024));
}
}
}
}
static void print_processes(std::stringstream& ss, std::vector<ProcessRecord>& procs,
uint16_t* swap_offset_array) {
for (auto& proc : procs) {
total_pss += show_wss ? proc.Wss().pss : proc.Usage().pss;
total_uss += show_wss ? proc.Wss().uss : proc.Usage().uss;
if (!show_wss && has_swap) {
proc.CalculateSwap(swap_offset_array, zram_compression_ratio);
total_swap += proc.Usage().swap;
total_pswap += proc.proportional_swap();
total_uswap += proc.unique_swap();
if (has_zram) {
total_zswap += proc.zswap();
}
}
print_process_record(ss, proc);
ss << proc.cmdline() << std::endl;
}
}
static void print_separator(std::stringstream& ss) {
ss << ::android::base::StringPrintf("%5s ", "");
if (show_oomadj) {
ss << ::android::base::StringPrintf("%5s ", "");
}
if (show_wss) {
ss << ::android::base::StringPrintf("%7s %7s %7s ", "", "------", "------");
} else {
ss << ::android::base::StringPrintf("%8s %7s %7s %7s ", "", "", "------", "------");
if (has_swap) {
ss << ::android::base::StringPrintf("%7s %7s %7s ", "------", "------", "------");
if (has_zram) {
ss << ::android::base::StringPrintf("%7s ", "------");
}
}
}
ss << ::android::base::StringPrintf("%s", "------");
}
static void print_totals(std::stringstream& ss) {
ss << ::android::base::StringPrintf("%5s ", "");
if (show_oomadj) {
ss << ::android::base::StringPrintf("%5s ", "");
}
if (show_wss) {
ss << ::android::base::StringPrintf("%7s %6" PRIu64 "K %6" PRIu64 "K ", "",
total_pss / 1024, total_uss / 1024);
} else {
ss << ::android::base::StringPrintf("%8s %7s %6" PRIu64 "K %6" PRIu64 "K ", "", "",
total_pss / 1024, total_uss / 1024);
if (has_swap) {
ss << ::android::base::StringPrintf("%6" PRIu64 "K ", total_swap / 1024);
ss << ::android::base::StringPrintf("%6" PRIu64 "K ", total_pswap / 1024);
ss << ::android::base::StringPrintf("%6" PRIu64 "K ", total_uswap / 1024);
if (has_zram) {
ss << ::android::base::StringPrintf("%6" PRIu64 "K ", total_zswap / 1024);
}
}
}
ss << "TOTAL";
}
static void print_sysmeminfo(std::stringstream& ss, ::android::meminfo::SysMemInfo& smi) {
if (has_swap) {
ss << ::android::base::StringPrintf("ZRAM: %" PRIu64 "K physical used for %" PRIu64
"K in swap "
"(%" PRIu64 "K total swap)",
smi.mem_zram_kb(),
(smi.mem_swap_kb() - smi.mem_swap_free_kb()),
smi.mem_swap_kb())
<< std::endl;
}
ss << ::android::base::StringPrintf(" RAM: %" PRIu64 "K total, %" PRIu64 "K free, %" PRIu64
"K buffers, "
"%" PRIu64 "K cached, %" PRIu64 "K shmem, %" PRIu64
"K slab",
smi.mem_total_kb(), smi.mem_free_kb(), smi.mem_buffers_kb(),
smi.mem_cached_kb(), smi.mem_shmem_kb(), smi.mem_slab_kb());
}
int main(int argc, char* argv[]) {
auto pss_sort = [](ProcessRecord& a, ProcessRecord& b) {
MemUsage stats_a = show_wss ? a.Wss() : a.Usage();
MemUsage stats_b = show_wss ? b.Wss() : b.Usage();
return reverse_sort ? stats_a.pss < stats_b.pss : stats_a.pss > stats_b.pss;
};
auto uss_sort = [](ProcessRecord& a, ProcessRecord& b) {
MemUsage stats_a = show_wss ? a.Wss() : a.Usage();
MemUsage stats_b = show_wss ? b.Wss() : b.Usage();
return reverse_sort ? stats_a.uss < stats_b.uss : stats_a.uss > stats_b.uss;
};
auto rss_sort = [](ProcessRecord& a, ProcessRecord& b) {
MemUsage stats_a = show_wss ? a.Wss() : a.Usage();
MemUsage stats_b = show_wss ? b.Wss() : b.Usage();
return reverse_sort ? stats_a.rss < stats_b.pss : stats_a.pss > stats_b.pss;
};
auto vss_sort = [](ProcessRecord& a, ProcessRecord& b) {
MemUsage stats_a = show_wss ? a.Wss() : a.Usage();
MemUsage stats_b = show_wss ? b.Wss() : b.Usage();
return reverse_sort ? stats_a.vss < stats_b.vss : stats_a.vss > stats_b.vss;
};
auto swap_sort = [](ProcessRecord& a, ProcessRecord& b) {
MemUsage stats_a = show_wss ? a.Wss() : a.Usage();
MemUsage stats_b = show_wss ? b.Wss() : b.Usage();
return reverse_sort ? stats_a.swap < stats_b.swap : stats_a.swap > stats_b.swap;
};
auto oomadj_sort = [](ProcessRecord& a, ProcessRecord& b) {
return reverse_sort ? a.oomadj() < b.oomadj() : a.oomadj() > b.oomadj();
};
// default PSS sort
std::function<bool(ProcessRecord & a, ProcessRecord & b)> proc_sort = pss_sort;
// count all pages by default
uint64_t pgflags = 0;
uint64_t pgflags_mask = 0;
int opt;
while ((opt = getopt(argc, argv, "cChkoprRsuvwW")) != -1) {
switch (opt) {
case 'c':
pgflags = 0;
pgflags_mask = (1 << KPF_SWAPBACKED);
break;
case 'C':
pgflags = (1 << KPF_SWAPBACKED);
pgflags_mask = (1 << KPF_SWAPBACKED);
break;
case 'h':
usage(argv[0]);
return 0;
break;
case 'k':
pgflags = (1 << KPF_KSM);
pgflags_mask = (1 << KPF_KSM);
break;
case 'o':
proc_sort = oomadj_sort;
show_oomadj = true;
break;
case 'p':
proc_sort = pss_sort;
break;
case 'r':
proc_sort = rss_sort;
break;
case 'R':
reverse_sort = true;
break;
case 's':
proc_sort = swap_sort;
break;
case 'u':
proc_sort = uss_sort;
break;
case 'v':
proc_sort = vss_sort;
break;
case 'w':
show_wss = true;
break;
case 'W':
reset_wss = true;
break;
default:
abort();
}
}
std::vector<pid_t> pids;
std::vector<ProcessRecord> procs;
if (reset_wss) {
if (!read_all_pids(&pids,
[&](pid_t pid) -> bool { return ProcMemInfo::ResetWorkingSet(pid); })) {
std::cerr << "Failed to reset working set of all processes" << std::endl;
exit(EXIT_FAILURE);
}
// we are done, all other options passed to procrank are ignored in the presence of '-W'
return 0;
}
::android::meminfo::SysMemInfo smi;
if (!smi.ReadMemInfo()) {
std::cerr << "Failed to get system memory info" << std::endl;
exit(EXIT_FAILURE);
}
// Figure out swap and zram
uint64_t swap_total = smi.mem_swap_kb() * 1024;
has_swap = swap_total > 0;
// Allocate the swap array
auto swap_offset_array = std::make_unique<uint16_t[]>(swap_total / getpagesize());
if (has_swap) {
has_zram = smi.mem_zram_kb() > 0;
if (has_zram) {
zram_compression_ratio = static_cast<float>(smi.mem_zram_kb()) /
(smi.mem_swap_kb() - smi.mem_swap_free_kb());
}
}
auto mark_swap_usage = [&](pid_t pid) -> bool {
ProcessRecord proc(pid, show_wss, pgflags, pgflags_mask);
if (!proc.valid()) {
std::cerr << "Failed to create process record for: " << pid << std::endl;
return false;
}
// Skip processes with no memory mappings
uint64_t vss = show_wss ? proc.Wss().vss : proc.Usage().vss;
if (vss == 0) return true;
// collect swap_offset counts from all processes in 1st pass
if (!show_wss && has_swap &&
!count_swap_offsets(proc, swap_offset_array.get(), swap_total / getpagesize())) {
std::cerr << "Failed to count swap offsets for process: " << pid << std::endl;
return false;
}
procs.push_back(std::move(proc));
return true;
};
// Get a list of all pids currently running in the system in
// 1st pass through all processes. Mark each swap offset used by the process as we find them
// for calculating proportional swap usage later.
if (!read_all_pids(&pids, mark_swap_usage)) {
std::cerr << "Failed to read all pids from the system" << std::endl;
exit(EXIT_FAILURE);
}
std::stringstream ss;
if (procs.empty()) {
// This would happen in corner cases where procrank is being run to find KSM usage on a
// system with no KSM and combined with working set determination as follows
// procrank -w -u -k
// procrank -w -s -k
// procrank -w -o -k
ss << "<empty>" << std::endl << std::endl;
print_sysmeminfo(ss, smi);
ss << std::endl;
std::cout << ss.str();
return 0;
}
// Sort all process records, default is PSS descending
std::sort(procs.begin(), procs.end(), proc_sort);
// start dumping output in string stream
print_header(ss);
ss << std::endl;
// 2nd pass to calculate and get per process stats to add them up
print_processes(ss, procs, swap_offset_array.get());
// Add separator to output
print_separator(ss);
ss << std::endl;
// Add totals to output
print_totals(ss);
ss << std::endl << std::endl;
// Add system information at the end
print_sysmeminfo(ss, smi);
ss << std::endl;
// dump on the screen
std::cout << ss.str();
return 0;
}