Add support for caching small reads.

Add benchmarking to verify this is faster.

Test: Ran unit tests.
Change-Id: I1487114331f4581ec2368e56c4f18c6e3e6bcc7d
This commit is contained in:
Christopher Ferris 2018-11-14 15:36:45 -08:00
parent 9392718950
commit ef6401091f
5 changed files with 324 additions and 0 deletions

View file

@ -184,6 +184,7 @@ cc_test {
"tests/MapInfoGetLoadBiasTest.cpp",
"tests/MapsTest.cpp",
"tests/MemoryBufferTest.cpp",
"tests/MemoryCacheTest.cpp",
"tests/MemoryFake.cpp",
"tests/MemoryFileTest.cpp",
"tests/MemoryLocalTest.cpp",
@ -310,6 +311,28 @@ cc_binary {
],
}
//-------------------------------------------------------------------------
// Benchmarks
//-------------------------------------------------------------------------
cc_benchmark {
name: "unwind_benchmarks",
host_supported: true,
defaults: ["libunwindstack_flags"],
// Disable optimizations so that all of the calls are not optimized away.
cflags: [
"-O0",
],
srcs: [
"benchmarks/unwind_benchmarks.cpp",
],
shared_libs: [
"libunwindstack",
],
}
// Generates the elf data for use in the tests for .gnu_debugdata frames.
// Once these files are generated, use the xz command to compress the data.
cc_binary_host {

View file

@ -174,6 +174,13 @@ std::shared_ptr<Memory> Memory::CreateProcessMemory(pid_t pid) {
return std::shared_ptr<Memory>(new MemoryRemote(pid));
}
std::shared_ptr<Memory> Memory::CreateProcessMemoryCached(pid_t pid) {
if (pid == getpid()) {
return std::shared_ptr<Memory>(new MemoryCache(new MemoryLocal()));
}
return std::shared_ptr<Memory>(new MemoryCache(new MemoryRemote(pid)));
}
size_t MemoryBuffer::Read(uint64_t addr, void* dst, size_t size) {
if (addr >= raw_.size()) {
return 0;
@ -398,4 +405,50 @@ size_t MemoryOfflineParts::Read(uint64_t addr, void* dst, size_t size) {
return 0;
}
size_t MemoryCache::Read(uint64_t addr, void* dst, size_t size) {
// Only bother caching and looking at the cache if this is a small read for now.
if (size > 64) {
return impl_->Read(addr, dst, size);
}
uint64_t addr_page = addr >> kCacheBits;
auto entry = cache_.find(addr_page);
uint8_t* cache_dst;
if (entry != cache_.end()) {
cache_dst = entry->second;
} else {
cache_dst = cache_[addr_page];
if (!impl_->ReadFully(addr_page << kCacheBits, cache_dst, kCacheSize)) {
// Erase the entry.
cache_.erase(addr_page);
return impl_->Read(addr, dst, size);
}
}
size_t max_read = ((addr_page + 1) << kCacheBits) - addr;
if (size <= max_read) {
memcpy(dst, &cache_dst[addr & kCacheMask], size);
return size;
}
// The read crossed into another cached entry, since a read can only cross
// into one extra cached page, duplicate the code rather than looping.
memcpy(dst, &cache_dst[addr & kCacheMask], max_read);
dst = &reinterpret_cast<uint8_t*>(dst)[max_read];
addr_page++;
entry = cache_.find(addr_page);
if (entry != cache_.end()) {
cache_dst = entry->second;
} else {
cache_dst = cache_[addr_page];
if (!impl_->ReadFully(addr_page << kCacheBits, cache_dst, kCacheSize)) {
// Erase the entry.
cache_.erase(addr_page);
return impl_->Read(addr_page << kCacheBits, dst, size - max_read) + max_read;
}
}
memcpy(dst, cache_dst, size - max_read);
return size;
}
} // namespace unwindstack

View file

@ -0,0 +1,83 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <memory>
#include <benchmark/benchmark.h>
#include <unwindstack/Maps.h>
#include <unwindstack/Memory.h>
#include <unwindstack/Regs.h>
#include <unwindstack/RegsGetLocal.h>
#include <unwindstack/Unwinder.h>
size_t Call6(std::shared_ptr<unwindstack::Memory>& process_memory, unwindstack::Maps* maps) {
std::unique_ptr<unwindstack::Regs> regs(unwindstack::Regs::CreateFromLocal());
unwindstack::RegsGetLocal(regs.get());
unwindstack::Unwinder unwinder(32, maps, regs.get(), process_memory);
unwinder.Unwind();
return unwinder.NumFrames();
}
size_t Call5(std::shared_ptr<unwindstack::Memory>& process_memory, unwindstack::Maps* maps) {
return Call6(process_memory, maps);
}
size_t Call4(std::shared_ptr<unwindstack::Memory>& process_memory, unwindstack::Maps* maps) {
return Call5(process_memory, maps);
}
size_t Call3(std::shared_ptr<unwindstack::Memory>& process_memory, unwindstack::Maps* maps) {
return Call4(process_memory, maps);
}
size_t Call2(std::shared_ptr<unwindstack::Memory>& process_memory, unwindstack::Maps* maps) {
return Call3(process_memory, maps);
}
size_t Call1(std::shared_ptr<unwindstack::Memory>& process_memory, unwindstack::Maps* maps) {
return Call2(process_memory, maps);
}
static void BM_uncached_unwind(benchmark::State& state) {
auto process_memory = unwindstack::Memory::CreateProcessMemory(getpid());
unwindstack::LocalMaps maps;
if (!maps.Parse()) {
state.SkipWithError("Failed to parse local maps.");
}
for (auto _ : state) {
benchmark::DoNotOptimize(Call1(process_memory, &maps));
}
}
BENCHMARK(BM_uncached_unwind);
static void BM_cached_unwind(benchmark::State& state) {
auto process_memory = unwindstack::Memory::CreateProcessMemoryCached(getpid());
unwindstack::LocalMaps maps;
if (!maps.Parse()) {
state.SkipWithError("Failed to parse local maps.");
}
for (auto _ : state) {
benchmark::DoNotOptimize(Call1(process_memory, &maps));
}
}
BENCHMARK(BM_cached_unwind);
BENCHMARK_MAIN();

View file

@ -25,6 +25,7 @@
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
namespace unwindstack {
@ -35,9 +36,12 @@ class Memory {
virtual ~Memory() = default;
static std::shared_ptr<Memory> CreateProcessMemory(pid_t pid);
static std::shared_ptr<Memory> CreateProcessMemoryCached(pid_t pid);
virtual bool ReadString(uint64_t addr, std::string* string, uint64_t max_read = UINT64_MAX);
virtual void Clear() {}
virtual size_t Read(uint64_t addr, void* dst, size_t size) = 0;
bool ReadFully(uint64_t addr, void* dst, size_t size);
@ -51,6 +55,24 @@ class Memory {
}
};
class MemoryCache : public Memory {
public:
MemoryCache(Memory* memory) : impl_(memory) {}
virtual ~MemoryCache() = default;
size_t Read(uint64_t addr, void* dst, size_t size) override;
void Clear() override { cache_.clear(); }
private:
constexpr static size_t kCacheBits = 12;
constexpr static size_t kCacheMask = (1 << kCacheBits) - 1;
constexpr static size_t kCacheSize = 1 << kCacheBits;
std::unordered_map<uint64_t, uint8_t[kCacheSize]> cache_;
std::unique_ptr<Memory> impl_;
};
class MemoryBuffer : public Memory {
public:
MemoryBuffer() = default;

View file

@ -0,0 +1,143 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <vector>
#include <gtest/gtest.h>
#include <unwindstack/Memory.h>
#include "MemoryFake.h"
namespace unwindstack {
class MemoryCacheTest : public ::testing::Test {
protected:
void SetUp() override {
memory_ = new MemoryFake;
memory_cache_.reset(new MemoryCache(memory_));
memory_->SetMemoryBlock(0x8000, 4096, 0xab);
memory_->SetMemoryBlock(0x9000, 4096, 0xde);
memory_->SetMemoryBlock(0xa000, 3000, 0x50);
}
MemoryFake* memory_;
std::unique_ptr<MemoryCache> memory_cache_;
constexpr static size_t kMaxCachedSize = 64;
};
TEST_F(MemoryCacheTest, cached_read) {
for (size_t i = 1; i <= kMaxCachedSize; i++) {
std::vector<uint8_t> buffer(i);
ASSERT_TRUE(memory_cache_->ReadFully(0x8000 + i, buffer.data(), i))
<< "Read failed at size " << i;
ASSERT_EQ(std::vector<uint8_t>(i, 0xab), buffer) << "Failed at size " << i;
}
// Verify the cached data is used.
memory_->SetMemoryBlock(0x8000, 4096, 0xff);
for (size_t i = 1; i <= kMaxCachedSize; i++) {
std::vector<uint8_t> buffer(i);
ASSERT_TRUE(memory_cache_->ReadFully(0x8000 + i, buffer.data(), i))
<< "Read failed at size " << i;
ASSERT_EQ(std::vector<uint8_t>(i, 0xab), buffer) << "Failed at size " << i;
}
}
TEST_F(MemoryCacheTest, no_cached_read_after_clear) {
for (size_t i = 1; i <= kMaxCachedSize; i++) {
std::vector<uint8_t> buffer(i);
ASSERT_TRUE(memory_cache_->ReadFully(0x8000 + i, buffer.data(), i))
<< "Read failed at size " << i;
ASSERT_EQ(std::vector<uint8_t>(i, 0xab), buffer) << "Failed at size " << i;
}
// Verify the cached data is not used after a reset.
memory_cache_->Clear();
memory_->SetMemoryBlock(0x8000, 4096, 0xff);
for (size_t i = 1; i <= kMaxCachedSize; i++) {
std::vector<uint8_t> buffer(i);
ASSERT_TRUE(memory_cache_->ReadFully(0x8000 + i, buffer.data(), i))
<< "Read failed at size " << i;
ASSERT_EQ(std::vector<uint8_t>(i, 0xff), buffer) << "Failed at size " << i;
}
}
TEST_F(MemoryCacheTest, cached_read_across_caches) {
std::vector<uint8_t> expect(16, 0xab);
expect.resize(32, 0xde);
std::vector<uint8_t> buffer(32);
ASSERT_TRUE(memory_cache_->ReadFully(0x8ff0, buffer.data(), 32));
ASSERT_EQ(expect, buffer);
// Verify the cached data is used.
memory_->SetMemoryBlock(0x8000, 4096, 0xff);
memory_->SetMemoryBlock(0x9000, 4096, 0xff);
ASSERT_TRUE(memory_cache_->ReadFully(0x8ff0, buffer.data(), 32));
ASSERT_EQ(expect, buffer);
}
TEST_F(MemoryCacheTest, no_cache_read) {
for (size_t i = kMaxCachedSize + 1; i < 2 * kMaxCachedSize; i++) {
std::vector<uint8_t> buffer(i);
ASSERT_TRUE(memory_cache_->ReadFully(0x8000 + i, buffer.data(), i))
<< "Read failed at size " << i;
ASSERT_EQ(std::vector<uint8_t>(i, 0xab), buffer) << "Failed at size " << i;
}
// Verify the cached data is not used.
memory_->SetMemoryBlock(0x8000, 4096, 0xff);
for (size_t i = kMaxCachedSize + 1; i < 2 * kMaxCachedSize; i++) {
std::vector<uint8_t> buffer(i);
ASSERT_TRUE(memory_cache_->ReadFully(0x8000 + i, buffer.data(), i))
<< "Read failed at size " << i;
ASSERT_EQ(std::vector<uint8_t>(i, 0xff), buffer) << "Failed at size " << i;
}
}
TEST_F(MemoryCacheTest, read_for_cache_fail) {
std::vector<uint8_t> buffer(kMaxCachedSize);
ASSERT_TRUE(memory_cache_->ReadFully(0xa010, buffer.data(), kMaxCachedSize));
ASSERT_EQ(std::vector<uint8_t>(kMaxCachedSize, 0x50), buffer);
// Verify the cached data is not used.
memory_->SetMemoryBlock(0xa000, 3000, 0xff);
ASSERT_TRUE(memory_cache_->ReadFully(0xa010, buffer.data(), kMaxCachedSize));
ASSERT_EQ(std::vector<uint8_t>(kMaxCachedSize, 0xff), buffer);
}
TEST_F(MemoryCacheTest, read_for_cache_fail_cross) {
std::vector<uint8_t> expect(16, 0xde);
expect.resize(32, 0x50);
std::vector<uint8_t> buffer(32);
ASSERT_TRUE(memory_cache_->ReadFully(0x9ff0, buffer.data(), 32));
ASSERT_EQ(expect, buffer);
// Verify the cached data is not used for the second half but for the first.
memory_->SetMemoryBlock(0xa000, 3000, 0xff);
ASSERT_TRUE(memory_cache_->ReadFully(0x9ff0, buffer.data(), 32));
expect.resize(16);
expect.resize(32, 0xff);
ASSERT_EQ(expect, buffer);
}
} // namespace unwindstack