/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "action.h" #include "bootchart.h" #include "devices.h" #include "fs_mgr.h" #include "import_parser.h" #include "init.h" #include "init_parser.h" #include "keychords.h" #include "log.h" #include "property_service.h" #include "service.h" #include "signal_handler.h" #include "ueventd.h" #include "util.h" #include "watchdogd.h" using android::base::StringPrintf; struct selabel_handle *sehandle; struct selabel_handle *sehandle_prop; static int property_triggers_enabled = 0; static char qemu[32]; std::string default_console = "/dev/console"; static time_t process_needs_restart_at; const char *ENV[32]; static std::unique_ptr waiting_for_exec(nullptr); static int epoll_fd = -1; static std::unique_ptr waiting_for_prop(nullptr); static std::string wait_prop_name; static std::string wait_prop_value; void register_epoll_handler(int fd, void (*fn)()) { epoll_event ev; ev.events = EPOLLIN; ev.data.ptr = reinterpret_cast(fn); if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fd, &ev) == -1) { PLOG(ERROR) << "epoll_ctl failed"; } } /* add_environment - add "key=value" to the current environment */ int add_environment(const char *key, const char *val) { size_t n; size_t key_len = strlen(key); /* The last environment entry is reserved to terminate the list */ for (n = 0; n < (arraysize(ENV) - 1); n++) { /* Delete any existing entry for this key */ if (ENV[n] != NULL) { size_t entry_key_len = strcspn(ENV[n], "="); if ((entry_key_len == key_len) && (strncmp(ENV[n], key, entry_key_len) == 0)) { free((char*)ENV[n]); ENV[n] = NULL; } } /* Add entry if a free slot is available */ if (ENV[n] == NULL) { char* entry; asprintf(&entry, "%s=%s", key, val); ENV[n] = entry; return 0; } } LOG(ERROR) << "No env. room to store: '" << key << "':'" << val << "'"; return -1; } bool start_waiting_for_exec() { if (waiting_for_exec) { return false; } waiting_for_exec.reset(new Timer()); return true; } void stop_waiting_for_exec() { if (waiting_for_exec) { LOG(INFO) << "Wait for exec took " << *waiting_for_exec; waiting_for_exec.reset(); } } bool start_waiting_for_property(const char *name, const char *value) { if (waiting_for_prop) { return false; } if (property_get(name) != value) { // Current property value is not equal to expected value wait_prop_name = name; wait_prop_value = value; waiting_for_prop.reset(new Timer()); } else { LOG(INFO) << "start_waiting_for_property(\"" << name << "\", \"" << value << "\"): already set"; } return true; } void property_changed(const char *name, const char *value) { if (property_triggers_enabled) ActionManager::GetInstance().QueuePropertyTrigger(name, value); if (waiting_for_prop) { if (wait_prop_name == name && wait_prop_value == value) { wait_prop_name.clear(); wait_prop_value.clear(); LOG(INFO) << "Wait for property took " << *waiting_for_prop; waiting_for_prop.reset(); } } } static void restart_processes() { process_needs_restart_at = 0; ServiceManager::GetInstance().ForEachServiceWithFlags(SVC_RESTARTING, [](Service* s) { s->RestartIfNeeded(&process_needs_restart_at); }); } void handle_control_message(const std::string& msg, const std::string& name) { Service* svc = ServiceManager::GetInstance().FindServiceByName(name); if (svc == nullptr) { LOG(ERROR) << "no such service '" << name << "'"; return; } if (msg == "start") { svc->Start(); } else if (msg == "stop") { svc->Stop(); } else if (msg == "restart") { svc->Restart(); } else { LOG(ERROR) << "unknown control msg '" << msg << "'"; } } static int wait_for_coldboot_done_action(const std::vector& args) { Timer t; LOG(VERBOSE) << "Waiting for " COLDBOOT_DONE "..."; // Historically we had a 1s timeout here because we weren't otherwise // tracking boot time, and many OEMs made their sepolicy regular // expressions too expensive (http://b/19899875). // Now we're tracking boot time, just log the time taken to a system // property. We still panic if it takes more than a minute though, // because any build that slow isn't likely to boot at all, and we'd // rather any test lab devices fail back to the bootloader. if (wait_for_file(COLDBOOT_DONE, 60s) < 0) { LOG(ERROR) << "Timed out waiting for " COLDBOOT_DONE; panic(); } property_set("ro.boottime.init.cold_boot_wait", std::to_string(t.duration_ms()).c_str()); return 0; } /* * Writes 512 bytes of output from Hardware RNG (/dev/hw_random, backed * by Linux kernel's hw_random framework) into Linux RNG's via /dev/urandom. * Does nothing if Hardware RNG is not present. * * Since we don't yet trust the quality of Hardware RNG, these bytes are not * mixed into the primary pool of Linux RNG and the entropy estimate is left * unmodified. * * If the HW RNG device /dev/hw_random is present, we require that at least * 512 bytes read from it are written into Linux RNG. QA is expected to catch * devices/configurations where these I/O operations are blocking for a long * time. We do not reboot or halt on failures, as this is a best-effort * attempt. */ static int mix_hwrng_into_linux_rng_action(const std::vector& args) { int result = -1; int hwrandom_fd = -1; int urandom_fd = -1; char buf[512]; ssize_t chunk_size; size_t total_bytes_written = 0; hwrandom_fd = TEMP_FAILURE_RETRY( open("/dev/hw_random", O_RDONLY | O_NOFOLLOW | O_CLOEXEC)); if (hwrandom_fd == -1) { if (errno == ENOENT) { LOG(ERROR) << "/dev/hw_random not found"; // It's not an error to not have a Hardware RNG. result = 0; } else { PLOG(ERROR) << "Failed to open /dev/hw_random"; } goto ret; } urandom_fd = TEMP_FAILURE_RETRY( open("/dev/urandom", O_WRONLY | O_NOFOLLOW | O_CLOEXEC)); if (urandom_fd == -1) { PLOG(ERROR) << "Failed to open /dev/urandom"; goto ret; } while (total_bytes_written < sizeof(buf)) { chunk_size = TEMP_FAILURE_RETRY( read(hwrandom_fd, buf, sizeof(buf) - total_bytes_written)); if (chunk_size == -1) { PLOG(ERROR) << "Failed to read from /dev/hw_random"; goto ret; } else if (chunk_size == 0) { LOG(ERROR) << "Failed to read from /dev/hw_random: EOF"; goto ret; } chunk_size = TEMP_FAILURE_RETRY(write(urandom_fd, buf, chunk_size)); if (chunk_size == -1) { PLOG(ERROR) << "Failed to write to /dev/urandom"; goto ret; } total_bytes_written += chunk_size; } LOG(INFO) << "Mixed " << total_bytes_written << " bytes from /dev/hw_random into /dev/urandom"; result = 0; ret: if (hwrandom_fd != -1) { close(hwrandom_fd); } if (urandom_fd != -1) { close(urandom_fd); } return result; } static void security_failure() { LOG(ERROR) << "Security failure..."; panic(); } static bool set_highest_available_option_value(std::string path, int min, int max) { std::ifstream inf(path, std::fstream::in); if (!inf) { LOG(ERROR) << "Cannot open for reading: " << path; return false; } int current = max; while (current >= min) { // try to write out new value std::string str_val = std::to_string(current); std::ofstream of(path, std::fstream::out); if (!of) { LOG(ERROR) << "Cannot open for writing: " << path; return false; } of << str_val << std::endl; of.close(); // check to make sure it was recorded inf.seekg(0); std::string str_rec; inf >> str_rec; if (str_val.compare(str_rec) == 0) { break; } current--; } inf.close(); if (current < min) { LOG(ERROR) << "Unable to set minimum option value " << min << " in " << path; return false; } return true; } #define MMAP_RND_PATH "/proc/sys/vm/mmap_rnd_bits" #define MMAP_RND_COMPAT_PATH "/proc/sys/vm/mmap_rnd_compat_bits" /* __attribute__((unused)) due to lack of mips support: see mips block * in set_mmap_rnd_bits_action */ static bool __attribute__((unused)) set_mmap_rnd_bits_min(int start, int min, bool compat) { std::string path; if (compat) { path = MMAP_RND_COMPAT_PATH; } else { path = MMAP_RND_PATH; } return set_highest_available_option_value(path, min, start); } /* * Set /proc/sys/vm/mmap_rnd_bits and potentially * /proc/sys/vm/mmap_rnd_compat_bits to the maximum supported values. * Returns -1 if unable to set these to an acceptable value. * * To support this sysctl, the following upstream commits are needed: * * d07e22597d1d mm: mmap: add new /proc tunable for mmap_base ASLR * e0c25d958f78 arm: mm: support ARCH_MMAP_RND_BITS * 8f0d3aa9de57 arm64: mm: support ARCH_MMAP_RND_BITS * 9e08f57d684a x86: mm: support ARCH_MMAP_RND_BITS * ec9ee4acd97c drivers: char: random: add get_random_long() * 5ef11c35ce86 mm: ASLR: use get_random_long() */ static int set_mmap_rnd_bits_action(const std::vector& args) { int ret = -1; /* values are arch-dependent */ #if defined(__aarch64__) /* arm64 supports 18 - 33 bits depending on pagesize and VA_SIZE */ if (set_mmap_rnd_bits_min(33, 24, false) && set_mmap_rnd_bits_min(16, 16, true)) { ret = 0; } #elif defined(__x86_64__) /* x86_64 supports 28 - 32 bits */ if (set_mmap_rnd_bits_min(32, 32, false) && set_mmap_rnd_bits_min(16, 16, true)) { ret = 0; } #elif defined(__arm__) || defined(__i386__) /* check to see if we're running on 64-bit kernel */ bool h64 = !access(MMAP_RND_COMPAT_PATH, F_OK); /* supported 32-bit architecture must have 16 bits set */ if (set_mmap_rnd_bits_min(16, 16, h64)) { ret = 0; } #elif defined(__mips__) || defined(__mips64__) // TODO: add mips support b/27788820 ret = 0; #else LOG(ERROR) << "Unknown architecture"; #endif if (ret == -1) { LOG(ERROR) << "Unable to set adequate mmap entropy value!"; security_failure(); } return ret; } #define KPTR_RESTRICT_PATH "/proc/sys/kernel/kptr_restrict" #define KPTR_RESTRICT_MINVALUE 2 #define KPTR_RESTRICT_MAXVALUE 4 /* Set kptr_restrict to the highest available level. * * Aborts if unable to set this to an acceptable value. */ static int set_kptr_restrict_action(const std::vector& args) { std::string path = KPTR_RESTRICT_PATH; if (!set_highest_available_option_value(path, KPTR_RESTRICT_MINVALUE, KPTR_RESTRICT_MAXVALUE)) { LOG(ERROR) << "Unable to set adequate kptr_restrict value!"; security_failure(); } return 0; } static int keychord_init_action(const std::vector& args) { keychord_init(); return 0; } static int console_init_action(const std::vector& args) { std::string console = property_get("ro.boot.console"); if (!console.empty()) { default_console = "/dev/" + console; } return 0; } static void import_kernel_nv(const std::string& key, const std::string& value, bool for_emulator) { if (key.empty()) return; if (for_emulator) { // In the emulator, export any kernel option with the "ro.kernel." prefix. property_set(StringPrintf("ro.kernel.%s", key.c_str()).c_str(), value.c_str()); return; } if (key == "qemu") { strlcpy(qemu, value.c_str(), sizeof(qemu)); } else if (android::base::StartsWith(key, "androidboot.")) { property_set(StringPrintf("ro.boot.%s", key.c_str() + 12).c_str(), value.c_str()); } } static void export_oem_lock_status() { if (property_get("ro.oem_unlock_supported") != "1") { return; } std::string value = property_get("ro.boot.verifiedbootstate"); if (!value.empty()) { property_set("ro.boot.flash.locked", value == "orange" ? "0" : "1"); } } static void export_kernel_boot_props() { struct { const char *src_prop; const char *dst_prop; const char *default_value; } prop_map[] = { { "ro.boot.serialno", "ro.serialno", "", }, { "ro.boot.mode", "ro.bootmode", "unknown", }, { "ro.boot.baseband", "ro.baseband", "unknown", }, { "ro.boot.bootloader", "ro.bootloader", "unknown", }, { "ro.boot.hardware", "ro.hardware", "unknown", }, { "ro.boot.revision", "ro.revision", "0", }, }; for (size_t i = 0; i < arraysize(prop_map); i++) { std::string value = property_get(prop_map[i].src_prop); property_set(prop_map[i].dst_prop, (!value.empty()) ? value.c_str() : prop_map[i].default_value); } } static constexpr char android_dt_dir[] = "/proc/device-tree/firmware/android"; static bool is_dt_compatible() { std::string dt_value; std::string file_name = StringPrintf("%s/compatible", android_dt_dir); if (android::base::ReadFileToString(file_name, &dt_value)) { // trim the trailing '\0' out, otherwise the comparison // will produce false-negatives. dt_value.resize(dt_value.size() - 1); if (dt_value == "android,firmware") { return true; } } return false; } static bool is_dt_fstab_compatible() { std::string dt_value; std::string file_name = StringPrintf("%s/%s/compatible", android_dt_dir, "fstab"); if (android::base::ReadFileToString(file_name, &dt_value)) { dt_value.resize(dt_value.size() - 1); if (dt_value == "android,fstab") { return true; } } return false; } static void process_kernel_dt() { if (!is_dt_compatible()) return; std::unique_ptrdir(opendir(android_dt_dir), closedir); if (!dir) return; std::string dt_file; struct dirent *dp; while ((dp = readdir(dir.get())) != NULL) { if (dp->d_type != DT_REG || !strcmp(dp->d_name, "compatible") || !strcmp(dp->d_name, "name")) { continue; } std::string file_name = StringPrintf("%s/%s", android_dt_dir, dp->d_name); android::base::ReadFileToString(file_name, &dt_file); std::replace(dt_file.begin(), dt_file.end(), ',', '.'); std::string property_name = StringPrintf("ro.boot.%s", dp->d_name); property_set(property_name.c_str(), dt_file.c_str()); } } static void process_kernel_cmdline() { // The first pass does the common stuff, and finds if we are in qemu. // The second pass is only necessary for qemu to export all kernel params // as properties. import_kernel_cmdline(false, import_kernel_nv); if (qemu[0]) import_kernel_cmdline(true, import_kernel_nv); } static int property_enable_triggers_action(const std::vector& args) { /* Enable property triggers. */ property_triggers_enabled = 1; return 0; } static int queue_property_triggers_action(const std::vector& args) { ActionManager::GetInstance().QueueBuiltinAction(property_enable_triggers_action, "enable_property_trigger"); ActionManager::GetInstance().QueueAllPropertyTriggers(); return 0; } static void selinux_init_all_handles(void) { sehandle = selinux_android_file_context_handle(); selinux_android_set_sehandle(sehandle); sehandle_prop = selinux_android_prop_context_handle(); } enum selinux_enforcing_status { SELINUX_PERMISSIVE, SELINUX_ENFORCING }; static selinux_enforcing_status selinux_status_from_cmdline() { selinux_enforcing_status status = SELINUX_ENFORCING; import_kernel_cmdline(false, [&](const std::string& key, const std::string& value, bool in_qemu) { if (key == "androidboot.selinux" && value == "permissive") { status = SELINUX_PERMISSIVE; } }); return status; } static bool selinux_is_enforcing(void) { if (ALLOW_PERMISSIVE_SELINUX) { return selinux_status_from_cmdline() == SELINUX_ENFORCING; } return true; } static int audit_callback(void *data, security_class_t /*cls*/, char *buf, size_t len) { property_audit_data *d = reinterpret_cast(data); if (!d || !d->name || !d->cr) { LOG(ERROR) << "audit_callback invoked with null data arguments!"; return 0; } snprintf(buf, len, "property=%s pid=%d uid=%d gid=%d", d->name, d->cr->pid, d->cr->uid, d->cr->gid); return 0; } /* * Forks, executes the provided program in the child, and waits for the completion in the parent. * * Returns true if the child exited with status code 0, returns false otherwise. */ static bool fork_execve_and_wait_for_completion(const char* filename, char* const argv[], char* const envp[]) { pid_t child_pid = fork(); if (child_pid == -1) { PLOG(ERROR) << "Failed to fork for " << filename; return false; } if (child_pid == 0) { // fork succeeded -- this is executing in the child process if (execve(filename, argv, envp) == -1) { PLOG(ERROR) << "Failed to execve " << filename; return false; } // Unreachable because execve will have succeeded and replaced this code // with child process's code. _exit(127); return false; } else { // fork succeeded -- this is executing in the original/parent process int status; if (TEMP_FAILURE_RETRY(waitpid(child_pid, &status, 0)) != child_pid) { PLOG(ERROR) << "Failed to wait for " << filename; return false; } if (WIFEXITED(status)) { int status_code = WEXITSTATUS(status); if (status_code == 0) { return true; } else { LOG(ERROR) << filename << " exited with status " << status_code; } } else if (WIFSIGNALED(status)) { LOG(ERROR) << filename << " killed by signal " << WTERMSIG(status); } else if (WIFSTOPPED(status)) { LOG(ERROR) << filename << " stopped by signal " << WSTOPSIG(status); } else { LOG(ERROR) << "waitpid for " << filename << " returned unexpected status: " << status; } return false; } } static constexpr const char plat_policy_cil_file[] = "/plat_sepolicy.cil"; static bool selinux_is_split_policy_device() { return access(plat_policy_cil_file, R_OK) != -1; } /* * Loads SELinux policy split across platform/system and non-platform/vendor files. * * Returns true upon success, false otherwise (failure cause is logged). */ static bool selinux_load_split_policy() { // IMPLEMENTATION NOTE: Split policy consists of three CIL files: // * platform -- policy needed due to logic contained in the system image, // * non-platform -- policy needed due to logic contained in the vendor image, // * mapping -- mapping policy which helps preserve forward-compatibility of non-platform policy // with newer versions of platform policy. // // secilc is invoked to compile the above three policy files into a single monolithic policy // file. This file is then loaded into the kernel. LOG(INFO) << "Compiling SELinux policy"; // We store the output of the compilation on /dev because this is the most convenient tmpfs // storage mount available this early in the boot sequence. char compiled_sepolicy[] = "/dev/sepolicy.XXXXXX"; android::base::unique_fd compiled_sepolicy_fd(mkostemp(compiled_sepolicy, O_CLOEXEC)); if (compiled_sepolicy_fd < 0) { PLOG(ERROR) << "Failed to create temporary file " << compiled_sepolicy; return false; } const char* compile_args[] = {"/system/bin/secilc", plat_policy_cil_file, "-M", "true", "-c", "30", // TODO: pass in SELinux policy version from build system "/mapping_sepolicy.cil", "/nonplat_sepolicy.cil", "-o", compiled_sepolicy, // We don't care about file_contexts output by the compiler "-f", "/sys/fs/selinux/null", // /dev/null is not yet available nullptr}; if (!fork_execve_and_wait_for_completion(compile_args[0], (char**)compile_args, (char**)ENV)) { unlink(compiled_sepolicy); return false; } unlink(compiled_sepolicy); LOG(INFO) << "Loading compiled SELinux policy"; if (selinux_android_load_policy_from_fd(compiled_sepolicy_fd, compiled_sepolicy) < 0) { LOG(ERROR) << "Failed to load SELinux policy from " << compiled_sepolicy; return false; } return true; } /* * Loads SELinux policy from a monolithic file. * * Returns true upon success, false otherwise (failure cause is logged). */ static bool selinux_load_monolithic_policy() { LOG(VERBOSE) << "Loading SELinux policy from monolithic file"; if (selinux_android_load_policy() < 0) { PLOG(ERROR) << "Failed to load monolithic SELinux policy"; return false; } return true; } /* * Loads SELinux policy into the kernel. * * Returns true upon success, false otherwise (failure cause is logged). */ static bool selinux_load_policy() { return selinux_is_split_policy_device() ? selinux_load_split_policy() : selinux_load_monolithic_policy(); } static void selinux_initialize(bool in_kernel_domain) { Timer t; selinux_callback cb; cb.func_log = selinux_klog_callback; selinux_set_callback(SELINUX_CB_LOG, cb); cb.func_audit = audit_callback; selinux_set_callback(SELINUX_CB_AUDIT, cb); if (in_kernel_domain) { LOG(INFO) << "Loading SELinux policy"; if (!selinux_load_policy()) { panic(); } bool kernel_enforcing = (security_getenforce() == 1); bool is_enforcing = selinux_is_enforcing(); if (kernel_enforcing != is_enforcing) { if (security_setenforce(is_enforcing)) { PLOG(ERROR) << "security_setenforce(%s) failed" << (is_enforcing ? "true" : "false"); security_failure(); } } if (!write_file("/sys/fs/selinux/checkreqprot", "0")) { security_failure(); } // init's first stage can't set properties, so pass the time to the second stage. setenv("INIT_SELINUX_TOOK", std::to_string(t.duration_ms()).c_str(), 1); } else { selinux_init_all_handles(); } } // Set the UDC controller for the ConfigFS USB Gadgets. // Read the UDC controller in use from "/sys/class/udc". // In case of multiple UDC controllers select the first one. static void set_usb_controller() { std::unique_ptrdir(opendir("/sys/class/udc"), closedir); if (!dir) return; dirent* dp; while ((dp = readdir(dir.get())) != nullptr) { if (dp->d_name[0] == '.') continue; property_set("sys.usb.controller", dp->d_name); break; } } static bool early_mount_one(struct fstab_rec* rec) { if (rec && fs_mgr_is_verified(rec)) { // setup verity and create the dm-XX block device // needed to mount this partition int ret = fs_mgr_setup_verity(rec, false); if (ret == FS_MGR_SETUP_VERITY_FAIL) { PLOG(ERROR) << "early_mount: Failed to setup verity for '" << rec->mount_point << "'"; return false; } // The exact block device name is added as a mount source by // fs_mgr_setup_verity() in ->blk_device as "/dev/block/dm-XX" // We create that device by running coldboot on /sys/block/dm-XX std::string dm_device(basename(rec->blk_device)); std::string syspath = StringPrintf("/sys/block/%s", dm_device.c_str()); device_init(syspath.c_str(), [&](uevent* uevent) -> coldboot_action_t { if (uevent->device_name && !strcmp(dm_device.c_str(), uevent->device_name)) { LOG(VERBOSE) << "early_mount: creating dm-verity device : " << dm_device; return COLDBOOT_STOP; } return COLDBOOT_CONTINUE; }); } if (rec && fs_mgr_do_mount_one(rec)) { PLOG(ERROR) << "early_mount: Failed to mount '" << rec->mount_point << "'"; return false; } return true; } /* Early mount vendor and ODM partitions. The fstab is read from device-tree. */ static bool early_mount() { // first check if device tree fstab entries are compatible if (!is_dt_fstab_compatible()) { LOG(INFO) << "Early mount skipped (missing/incompatible fstab in device tree)"; return true; } std::unique_ptr tab( fs_mgr_read_fstab_dt(), fs_mgr_free_fstab); if (!tab) { LOG(ERROR) << "Early mount failed to read fstab from device tree"; return false; } // find out fstab records for odm, system and vendor // TODO: add std::map so all required information about // them can be gathered at once in a single loop fstab_rec* odm_rec = fs_mgr_get_entry_for_mount_point(tab.get(), "/odm"); fstab_rec* system_rec = fs_mgr_get_entry_for_mount_point(tab.get(), "/system"); fstab_rec* vendor_rec = fs_mgr_get_entry_for_mount_point(tab.get(), "/vendor"); if (!odm_rec && !system_rec && !vendor_rec) { // nothing to early mount return true; } // don't allow verifyatboot for early mounted partitions if ((odm_rec && fs_mgr_is_verifyatboot(odm_rec)) || (system_rec && fs_mgr_is_verifyatboot(system_rec)) || (vendor_rec && fs_mgr_is_verifyatboot(vendor_rec))) { LOG(ERROR) << "Early mount partitions can't be verified at boot"; return false; } // assume A/B device if we find 'slotselect' in any fstab entry bool is_ab = ((odm_rec && fs_mgr_is_slotselect(odm_rec)) || (system_rec && fs_mgr_is_slotselect(system_rec)) || (vendor_rec && fs_mgr_is_slotselect(vendor_rec))); // check for verified partitions bool need_verity = ((odm_rec && fs_mgr_is_verified(odm_rec)) || (system_rec && fs_mgr_is_verified(system_rec)) || (vendor_rec && fs_mgr_is_verified(vendor_rec))); // check if verity metadata is on a separate partition and get partition // name from the end of the ->verity_loc path. verity state is not partition // specific, so there must be only 1 additional partition that carries // verity state. std::string meta_partition; if (odm_rec && odm_rec->verity_loc) { meta_partition = basename(odm_rec->verity_loc); } else if (system_rec && system_rec->verity_loc) { meta_partition = basename(system_rec->verity_loc); } else if (vendor_rec && vendor_rec->verity_loc) { meta_partition = basename(vendor_rec->verity_loc); } bool found_odm = !odm_rec; bool found_system = !system_rec; bool found_vendor = !vendor_rec; bool found_meta = meta_partition.empty(); int count_odm = 0, count_vendor = 0, count_system = 0; // create the devices we need.. device_init(nullptr, [&](uevent* uevent) -> coldboot_action_t { if (!strncmp(uevent->subsystem, "firmware", 8)) { return COLDBOOT_CONTINUE; } // we need platform devices to create symlinks if (!strncmp(uevent->subsystem, "platform", 8)) { return COLDBOOT_CREATE; } // Ignore everything that is not a block device if (strncmp(uevent->subsystem, "block", 5)) { return COLDBOOT_CONTINUE; } coldboot_action_t ret; bool create_this_node = false; if (uevent->partition_name) { // prefix match partition names so we create device nodes for // A/B-ed partitions if (!found_odm && !strncmp(uevent->partition_name, "odm", 3)) { LOG(VERBOSE) << "early_mount: found (" << uevent->partition_name << ") partition"; // wait twice for A/B-ed partitions count_odm++; if (!is_ab || count_odm == 2) { found_odm = true; } create_this_node = true; } else if (!found_system && !strncmp(uevent->partition_name, "system", 6)) { LOG(VERBOSE) << "early_mount: found (" << uevent->partition_name << ") partition"; count_system++; if (!is_ab || count_system == 2) { found_system = true; } create_this_node = true; } else if (!found_vendor && !strncmp(uevent->partition_name, "vendor", 6)) { LOG(VERBOSE) << "early_mount: found (" << uevent->partition_name << ") partition"; count_vendor++; if (!is_ab || count_vendor == 2) { found_vendor = true; } create_this_node = true; } else if (!found_meta && (meta_partition == uevent->partition_name)) { LOG(VERBOSE) << "early_mount: found (" << uevent->partition_name << ") partition"; found_meta = true; create_this_node = true; } } // if we found all other partitions already, create this // node and stop coldboot. If this is a prefix matched // partition, create device node and continue. For everything // else skip the device node if (found_meta && found_odm && found_system && found_vendor) { ret = COLDBOOT_STOP; } else if (create_this_node) { ret = COLDBOOT_CREATE; } else { ret = COLDBOOT_CONTINUE; } return ret; }); if (need_verity) { // create /dev/device mapper device_init("/sys/devices/virtual/misc/device-mapper", [&](uevent* uevent) -> coldboot_action_t { return COLDBOOT_STOP; }); } bool success = true; if (odm_rec && !(success = early_mount_one(odm_rec))) goto done; if (system_rec && !(success = early_mount_one(system_rec))) goto done; if (vendor_rec && !(success = early_mount_one(vendor_rec))) goto done; done: device_close(); return success; } int main(int argc, char** argv) { if (!strcmp(basename(argv[0]), "ueventd")) { return ueventd_main(argc, argv); } if (!strcmp(basename(argv[0]), "watchdogd")) { return watchdogd_main(argc, argv); } boot_clock::time_point start_time = boot_clock::now(); // Clear the umask. umask(0); add_environment("PATH", _PATH_DEFPATH); bool is_first_stage = (getenv("INIT_SECOND_STAGE") == nullptr); // Don't expose the raw commandline to unprivileged processes. chmod("/proc/cmdline", 0440); // Get the basic filesystem setup we need put together in the initramdisk // on / and then we'll let the rc file figure out the rest. if (is_first_stage) { mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755"); mkdir("/dev/pts", 0755); mkdir("/dev/socket", 0755); mount("devpts", "/dev/pts", "devpts", 0, NULL); #define MAKE_STR(x) __STRING(x) mount("proc", "/proc", "proc", 0, "hidepid=2,gid=" MAKE_STR(AID_READPROC)); gid_t groups[] = { AID_READPROC }; setgroups(arraysize(groups), groups); mount("sysfs", "/sys", "sysfs", 0, NULL); mount("selinuxfs", "/sys/fs/selinux", "selinuxfs", 0, NULL); mknod("/dev/kmsg", S_IFCHR | 0600, makedev(1, 11)); mknod("/dev/random", S_IFCHR | 0666, makedev(1, 8)); mknod("/dev/urandom", S_IFCHR | 0666, makedev(1, 9)); } // Now that tmpfs is mounted on /dev and we have /dev/kmsg, we can actually // talk to the outside world... InitKernelLogging(argv); LOG(INFO) << "init " << (is_first_stage ? "first" : "second") << " stage started!"; if (is_first_stage) { if (!early_mount()) { LOG(ERROR) << "Failed to mount required partitions early ..."; panic(); } // Set up SELinux, loading the SELinux policy. selinux_initialize(true); // We're in the kernel domain, so re-exec init to transition to the init domain now // that the SELinux policy has been loaded. if (restorecon("/init") == -1) { PLOG(ERROR) << "restorecon failed"; security_failure(); } setenv("INIT_SECOND_STAGE", "true", 1); static constexpr uint32_t kNanosecondsPerMillisecond = 1e6; uint64_t start_ms = start_time.time_since_epoch().count() / kNanosecondsPerMillisecond; setenv("INIT_STARTED_AT", StringPrintf("%" PRIu64, start_ms).c_str(), 1); char* path = argv[0]; char* args[] = { path, nullptr }; if (execv(path, args) == -1) { PLOG(ERROR) << "execv(\"" << path << "\") failed"; security_failure(); } } else { // Indicate that booting is in progress to background fw loaders, etc. close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000)); property_init(); // If arguments are passed both on the command line and in DT, // properties set in DT always have priority over the command-line ones. process_kernel_dt(); process_kernel_cmdline(); // Propagate the kernel variables to internal variables // used by init as well as the current required properties. export_kernel_boot_props(); // Make the time that init started available for bootstat to log. property_set("ro.boottime.init", getenv("INIT_STARTED_AT")); property_set("ro.boottime.init.selinux", getenv("INIT_SELINUX_TOOK")); // Set libavb version for Framework-only OTA match in Treble build. property_set("ro.boot.init.avb_version", std::to_string(AVB_MAJOR_VERSION).c_str()); // Clean up our environment. unsetenv("INIT_SECOND_STAGE"); unsetenv("INIT_STARTED_AT"); unsetenv("INIT_SELINUX_TOOK"); // Now set up SELinux for second stage. selinux_initialize(false); } // These directories were necessarily created before initial policy load // and therefore need their security context restored to the proper value. // This must happen before /dev is populated by ueventd. LOG(INFO) << "Running restorecon..."; restorecon("/dev"); restorecon("/dev/kmsg"); restorecon("/dev/socket"); restorecon("/dev/random"); restorecon("/dev/urandom"); restorecon("/dev/__properties__"); restorecon("/plat_property_contexts"); restorecon("/nonplat_property_contexts"); restorecon("/sys", SELINUX_ANDROID_RESTORECON_RECURSE); restorecon("/dev/block", SELINUX_ANDROID_RESTORECON_RECURSE); restorecon("/dev/device-mapper"); epoll_fd = epoll_create1(EPOLL_CLOEXEC); if (epoll_fd == -1) { PLOG(ERROR) << "epoll_create1 failed"; exit(1); } signal_handler_init(); property_load_boot_defaults(); export_oem_lock_status(); start_property_service(); set_usb_controller(); const BuiltinFunctionMap function_map; Action::set_function_map(&function_map); Parser& parser = Parser::GetInstance(); parser.AddSectionParser("service",std::make_unique()); parser.AddSectionParser("on", std::make_unique()); parser.AddSectionParser("import", std::make_unique()); std::string bootscript = property_get("ro.boot.init_rc"); if (bootscript.empty()) { parser.ParseConfig("/init.rc"); parser.set_is_system_etc_init_loaded( parser.ParseConfig("/system/etc/init")); parser.set_is_vendor_etc_init_loaded( parser.ParseConfig("/vendor/etc/init")); parser.set_is_odm_etc_init_loaded(parser.ParseConfig("/odm/etc/init")); } else { parser.ParseConfig(bootscript); parser.set_is_system_etc_init_loaded(true); parser.set_is_vendor_etc_init_loaded(true); parser.set_is_odm_etc_init_loaded(true); } ActionManager& am = ActionManager::GetInstance(); am.QueueEventTrigger("early-init"); // Queue an action that waits for coldboot done so we know ueventd has set up all of /dev... am.QueueBuiltinAction(wait_for_coldboot_done_action, "wait_for_coldboot_done"); // ... so that we can start queuing up actions that require stuff from /dev. am.QueueBuiltinAction(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng"); am.QueueBuiltinAction(set_mmap_rnd_bits_action, "set_mmap_rnd_bits"); am.QueueBuiltinAction(set_kptr_restrict_action, "set_kptr_restrict"); am.QueueBuiltinAction(keychord_init_action, "keychord_init"); am.QueueBuiltinAction(console_init_action, "console_init"); // Trigger all the boot actions to get us started. am.QueueEventTrigger("init"); // Repeat mix_hwrng_into_linux_rng in case /dev/hw_random or /dev/random // wasn't ready immediately after wait_for_coldboot_done am.QueueBuiltinAction(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng"); // Don't mount filesystems or start core system services in charger mode. std::string bootmode = property_get("ro.bootmode"); if (bootmode == "charger") { am.QueueEventTrigger("charger"); } else { am.QueueEventTrigger("late-init"); } // Run all property triggers based on current state of the properties. am.QueueBuiltinAction(queue_property_triggers_action, "queue_property_triggers"); while (true) { if (!(waiting_for_exec || waiting_for_prop)) { am.ExecuteOneCommand(); restart_processes(); } // By default, sleep until something happens. int epoll_timeout_ms = -1; // If there's a process that needs restarting, wake up in time for that. if (process_needs_restart_at != 0) { epoll_timeout_ms = (process_needs_restart_at - time(nullptr)) * 1000; if (epoll_timeout_ms < 0) epoll_timeout_ms = 0; } // If there's more work to do, wake up again immediately. if (am.HasMoreCommands()) epoll_timeout_ms = 0; epoll_event ev; int nr = TEMP_FAILURE_RETRY(epoll_wait(epoll_fd, &ev, 1, epoll_timeout_ms)); if (nr == -1) { PLOG(ERROR) << "epoll_wait failed"; } else if (nr == 1) { ((void (*)()) ev.data.ptr)(); } } return 0; }