/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include "ArmExidx.h" #include "Check.h" #include "Machine.h" namespace unwindstack { void ArmExidx::LogRawData() { std::string log_str("Raw Data:"); for (const uint8_t data : data_) { log_str += android::base::StringPrintf(" 0x%02x", data); } log(log_indent_, log_str.c_str()); } bool ArmExidx::ExtractEntryData(uint32_t entry_offset) { data_.clear(); status_ = ARM_STATUS_NONE; if (entry_offset & 1) { // The offset needs to be at least two byte aligned. status_ = ARM_STATUS_INVALID_ALIGNMENT; return false; } // Each entry is a 32 bit prel31 offset followed by 32 bits // of unwind information. If bit 31 of the unwind data is zero, // then this is a prel31 offset to the start of the unwind data. // If the unwind data is 1, then this is a cant unwind entry. // Otherwise, this data is the compact form of the unwind information. uint32_t data; if (!elf_memory_->Read32(entry_offset + 4, &data)) { status_ = ARM_STATUS_READ_FAILED; return false; } if (data == 1) { // This is a CANT UNWIND entry. status_ = ARM_STATUS_NO_UNWIND; if (log_) { log(log_indent_, "Raw Data: 0x00 0x00 0x00 0x01"); log(log_indent_, "[cantunwind]"); } return false; } if (data & (1UL << 31)) { // This is a compact table entry. if ((data >> 24) & 0xf) { // This is a non-zero index, this code doesn't support // other formats. status_ = ARM_STATUS_INVALID_PERSONALITY; return false; } data_.push_back((data >> 16) & 0xff); data_.push_back((data >> 8) & 0xff); uint8_t last_op = data & 0xff; data_.push_back(last_op); if (last_op != ARM_OP_FINISH) { // If this didn't end with a finish op, add one. data_.push_back(ARM_OP_FINISH); } if (log_) { LogRawData(); } return true; } // Get the address of the ops. // Sign extend the data value if necessary. int32_t signed_data = static_cast(data << 1) >> 1; uint32_t addr = (entry_offset + 4) + signed_data; if (!elf_memory_->Read32(addr, &data)) { status_ = ARM_STATUS_READ_FAILED; return false; } size_t num_table_words; if (data & (1UL << 31)) { // Compact model. switch ((data >> 24) & 0xf) { case 0: num_table_words = 0; data_.push_back((data >> 16) & 0xff); break; case 1: case 2: num_table_words = (data >> 16) & 0xff; addr += 4; break; default: // Only a personality of 0, 1, 2 is valid. status_ = ARM_STATUS_INVALID_PERSONALITY; return false; } data_.push_back((data >> 8) & 0xff); data_.push_back(data & 0xff); } else { // Generic model. // Skip the personality routine data, it doesn't contain any data // needed to decode the unwind information. addr += 4; if (!elf_memory_->Read32(addr, &data)) { status_ = ARM_STATUS_READ_FAILED; return false; } num_table_words = (data >> 24) & 0xff; data_.push_back((data >> 16) & 0xff); data_.push_back((data >> 8) & 0xff); data_.push_back(data & 0xff); addr += 4; } if (num_table_words > 5) { status_ = ARM_STATUS_MALFORMED; return false; } for (size_t i = 0; i < num_table_words; i++) { if (!elf_memory_->Read32(addr, &data)) { status_ = ARM_STATUS_READ_FAILED; return false; } data_.push_back((data >> 24) & 0xff); data_.push_back((data >> 16) & 0xff); data_.push_back((data >> 8) & 0xff); data_.push_back(data & 0xff); addr += 4; } if (data_.back() != ARM_OP_FINISH) { // If this didn't end with a finish op, add one. data_.push_back(ARM_OP_FINISH); } if (log_) { LogRawData(); } return true; } inline bool ArmExidx::GetByte(uint8_t* byte) { if (data_.empty()) { status_ = ARM_STATUS_TRUNCATED; return false; } *byte = data_.front(); data_.pop_front(); return true; } inline bool ArmExidx::DecodePrefix_10_00(uint8_t byte) { CHECK((byte >> 4) == 0x8); uint16_t registers = (byte & 0xf) << 8; if (!GetByte(&byte)) { return false; } registers |= byte; if (registers == 0) { // 10000000 00000000: Refuse to unwind if (log_) { log(log_indent_, "Refuse to unwind"); } status_ = ARM_STATUS_NO_UNWIND; return false; } // 1000iiii iiiiiiii: Pop up to 12 integer registers under masks {r15-r12}, {r11-r4} if (log_) { bool add_comma = false; std::string msg = "pop {"; for (size_t i = 0; i < 12; i++) { if (registers & (1 << i)) { if (add_comma) { msg += ", "; } msg += android::base::StringPrintf("r%zu", i + 4); add_comma = true; } } log(log_indent_, "%s}", msg.c_str()); if (log_skip_execution_) { return true; } } registers <<= 4; for (size_t reg = 4; reg < 16; reg++) { if (registers & (1 << reg)) { if (!process_memory_->Read32(cfa_, &(*regs_)[reg])) { status_ = ARM_STATUS_READ_FAILED; return false; } cfa_ += 4; } } // If the sp register is modified, change the cfa value. if (registers & (1 << ARM_REG_SP)) { cfa_ = (*regs_)[ARM_REG_SP]; } // Indicate if the pc register was set. if (registers & (1 << ARM_REG_PC)) { pc_set_ = true; } return true; } inline bool ArmExidx::DecodePrefix_10_01(uint8_t byte) { CHECK((byte >> 4) == 0x9); uint8_t bits = byte & 0xf; if (bits == 13 || bits == 15) { // 10011101: Reserved as prefix for ARM register to register moves // 10011111: Reserved as prefix for Intel Wireless MMX register to register moves if (log_) { log(log_indent_, "[Reserved]"); } status_ = ARM_STATUS_RESERVED; return false; } // 1001nnnn: Set vsp = r[nnnn] (nnnn != 13, 15) if (log_) { log(log_indent_, "vsp = r%d", bits); if (log_skip_execution_) { return true; } } // It is impossible for bits to be larger than the total number of // arm registers, so don't bother checking if bits is a valid register. cfa_ = (*regs_)[bits]; return true; } inline bool ArmExidx::DecodePrefix_10_10(uint8_t byte) { CHECK((byte >> 4) == 0xa); // 10100nnn: Pop r4-r[4+nnn] // 10101nnn: Pop r4-r[4+nnn], r14 if (log_) { std::string msg = "pop {r4"; uint8_t end_reg = byte & 0x7; if (end_reg) { msg += android::base::StringPrintf("-r%d", 4 + end_reg); } if (byte & 0x8) { log(log_indent_, "%s, r14}", msg.c_str()); } else { log(log_indent_, "%s}", msg.c_str()); } if (log_skip_execution_) { return true; } } for (size_t i = 4; i <= 4 + (byte & 0x7); i++) { if (!process_memory_->Read32(cfa_, &(*regs_)[i])) { status_ = ARM_STATUS_READ_FAILED; return false; } cfa_ += 4; } if (byte & 0x8) { if (!process_memory_->Read32(cfa_, &(*regs_)[ARM_REG_R14])) { status_ = ARM_STATUS_READ_FAILED; return false; } cfa_ += 4; } return true; } inline bool ArmExidx::DecodePrefix_10_11_0000() { // 10110000: Finish if (log_) { log(log_indent_, "finish"); if (log_skip_execution_) { status_ = ARM_STATUS_FINISH; return false; } } status_ = ARM_STATUS_FINISH; return false; } inline bool ArmExidx::DecodePrefix_10_11_0001() { uint8_t byte; if (!GetByte(&byte)) { return false; } if (byte == 0) { // 10110001 00000000: Spare if (log_) { log(log_indent_, "Spare"); } status_ = ARM_STATUS_SPARE; return false; } if (byte >> 4) { // 10110001 xxxxyyyy: Spare (xxxx != 0000) if (log_) { log(log_indent_, "Spare"); } status_ = ARM_STATUS_SPARE; return false; } // 10110001 0000iiii: Pop integer registers under mask {r3, r2, r1, r0} if (log_) { bool add_comma = false; std::string msg = "pop {"; for (size_t i = 0; i < 4; i++) { if (byte & (1 << i)) { if (add_comma) { msg += ", "; } msg += android::base::StringPrintf("r%zu", i); add_comma = true; } } log(log_indent_, "%s}", msg.c_str()); if (log_skip_execution_) { return true; } } for (size_t reg = 0; reg < 4; reg++) { if (byte & (1 << reg)) { if (!process_memory_->Read32(cfa_, &(*regs_)[reg])) { status_ = ARM_STATUS_READ_FAILED; return false; } cfa_ += 4; } } return true; } inline bool ArmExidx::DecodePrefix_10_11_0010() { // 10110010 uleb128: vsp = vsp + 0x204 + (uleb128 << 2) uint32_t result = 0; uint32_t shift = 0; uint8_t byte; do { if (!GetByte(&byte)) { return false; } result |= (byte & 0x7f) << shift; shift += 7; } while (byte & 0x80); result <<= 2; if (log_) { log(log_indent_, "vsp = vsp + %d", 0x204 + result); if (log_skip_execution_) { return true; } } cfa_ += 0x204 + result; return true; } inline bool ArmExidx::DecodePrefix_10_11_0011() { // 10110011 sssscccc: Pop VFP double precision registers D[ssss]-D[ssss+cccc] by FSTMFDX uint8_t byte; if (!GetByte(&byte)) { return false; } if (log_) { uint8_t start_reg = byte >> 4; std::string msg = android::base::StringPrintf("pop {d%d", start_reg); uint8_t end_reg = start_reg + (byte & 0xf); if (end_reg) { msg += android::base::StringPrintf("-d%d", end_reg); } log(log_indent_, "%s}", msg.c_str()); if (log_skip_execution_) { return true; } } cfa_ += (byte & 0xf) * 8 + 12; return true; } inline bool ArmExidx::DecodePrefix_10_11_01nn() { // 101101nn: Spare if (log_) { log(log_indent_, "Spare"); } status_ = ARM_STATUS_SPARE; return false; } inline bool ArmExidx::DecodePrefix_10_11_1nnn(uint8_t byte) { CHECK((byte & ~0x07) == 0xb8); // 10111nnn: Pop VFP double-precision registers D[8]-D[8+nnn] by FSTMFDX if (log_) { std::string msg = "pop {d8"; uint8_t last_reg = (byte & 0x7); if (last_reg) { msg += android::base::StringPrintf("-d%d", last_reg + 8); } log(log_indent_, "%s}", msg.c_str()); if (log_skip_execution_) { return true; } } // Only update the cfa. cfa_ += (byte & 0x7) * 8 + 12; return true; } inline bool ArmExidx::DecodePrefix_10(uint8_t byte) { CHECK((byte >> 6) == 0x2); switch ((byte >> 4) & 0x3) { case 0: return DecodePrefix_10_00(byte); case 1: return DecodePrefix_10_01(byte); case 2: return DecodePrefix_10_10(byte); default: switch (byte & 0xf) { case 0: return DecodePrefix_10_11_0000(); case 1: return DecodePrefix_10_11_0001(); case 2: return DecodePrefix_10_11_0010(); case 3: return DecodePrefix_10_11_0011(); default: if (byte & 0x8) { return DecodePrefix_10_11_1nnn(byte); } else { return DecodePrefix_10_11_01nn(); } } } } inline bool ArmExidx::DecodePrefix_11_000(uint8_t byte) { CHECK((byte & ~0x07) == 0xc0); uint8_t bits = byte & 0x7; if (bits == 6) { if (!GetByte(&byte)) { return false; } // 11000110 sssscccc: Intel Wireless MMX pop wR[ssss]-wR[ssss+cccc] if (log_) { uint8_t start_reg = byte >> 4; std::string msg = android::base::StringPrintf("pop {wR%d", start_reg); uint8_t end_reg = byte & 0xf; if (end_reg) { msg += android::base::StringPrintf("-wR%d", start_reg + end_reg); } log(log_indent_, "%s}", msg.c_str()); if (log_skip_execution_) { return true; } } // Only update the cfa. cfa_ += (byte & 0xf) * 8 + 8; } else if (bits == 7) { if (!GetByte(&byte)) { return false; } if (byte == 0) { // 11000111 00000000: Spare if (log_) { log(log_indent_, "Spare"); } status_ = ARM_STATUS_SPARE; return false; } else if ((byte >> 4) == 0) { // 11000111 0000iiii: Intel Wireless MMX pop wCGR registers {wCGR0,1,2,3} if (log_) { bool add_comma = false; std::string msg = "pop {"; for (size_t i = 0; i < 4; i++) { if (byte & (1 << i)) { if (add_comma) { msg += ", "; } msg += android::base::StringPrintf("wCGR%zu", i); add_comma = true; } } log(log_indent_, "%s}", msg.c_str()); } // Only update the cfa. cfa_ += __builtin_popcount(byte) * 4; } else { // 11000111 xxxxyyyy: Spare (xxxx != 0000) if (log_) { log(log_indent_, "Spare"); } status_ = ARM_STATUS_SPARE; return false; } } else { // 11000nnn: Intel Wireless MMX pop wR[10]-wR[10+nnn] (nnn != 6, 7) if (log_) { std::string msg = "pop {wR10"; uint8_t nnn = byte & 0x7; if (nnn) { msg += android::base::StringPrintf("-wR%d", 10 + nnn); } log(log_indent_, "%s}", msg.c_str()); if (log_skip_execution_) { return true; } } // Only update the cfa. cfa_ += (byte & 0x7) * 8 + 8; } return true; } inline bool ArmExidx::DecodePrefix_11_001(uint8_t byte) { CHECK((byte & ~0x07) == 0xc8); uint8_t bits = byte & 0x7; if (bits == 0) { // 11001000 sssscccc: Pop VFP double precision registers D[16+ssss]-D[16+ssss+cccc] by VPUSH if (!GetByte(&byte)) { return false; } if (log_) { uint8_t start_reg = byte >> 4; std::string msg = android::base::StringPrintf("pop {d%d", 16 + start_reg); uint8_t end_reg = byte & 0xf; if (end_reg) { msg += android::base::StringPrintf("-d%d", 16 + start_reg + end_reg); } log(log_indent_, "%s}", msg.c_str()); if (log_skip_execution_) { return true; } } // Only update the cfa. cfa_ += (byte & 0xf) * 8 + 8; } else if (bits == 1) { // 11001001 sssscccc: Pop VFP double precision registers D[ssss]-D[ssss+cccc] by VPUSH if (!GetByte(&byte)) { return false; } if (log_) { uint8_t start_reg = byte >> 4; std::string msg = android::base::StringPrintf("pop {d%d", start_reg); uint8_t end_reg = byte & 0xf; if (end_reg) { msg += android::base::StringPrintf("-d%d", start_reg + end_reg); } log(log_indent_, "%s}", msg.c_str()); if (log_skip_execution_) { return true; } } // Only update the cfa. cfa_ += (byte & 0xf) * 8 + 8; } else { // 11001yyy: Spare (yyy != 000, 001) if (log_) { log(log_indent_, "Spare"); } status_ = ARM_STATUS_SPARE; return false; } return true; } inline bool ArmExidx::DecodePrefix_11_010(uint8_t byte) { CHECK((byte & ~0x07) == 0xd0); // 11010nnn: Pop VFP double precision registers D[8]-D[8+nnn] by VPUSH if (log_) { std::string msg = "pop {d8"; uint8_t end_reg = byte & 0x7; if (end_reg) { msg += android::base::StringPrintf("-d%d", 8 + end_reg); } log(log_indent_, "%s}", msg.c_str()); if (log_skip_execution_) { return true; } } cfa_ += (byte & 0x7) * 8 + 8; return true; } inline bool ArmExidx::DecodePrefix_11(uint8_t byte) { CHECK((byte >> 6) == 0x3); switch ((byte >> 3) & 0x7) { case 0: return DecodePrefix_11_000(byte); case 1: return DecodePrefix_11_001(byte); case 2: return DecodePrefix_11_010(byte); default: // 11xxxyyy: Spare (xxx != 000, 001, 010) if (log_) { log(log_indent_, "Spare"); } status_ = ARM_STATUS_SPARE; return false; } } bool ArmExidx::Decode() { status_ = ARM_STATUS_NONE; uint8_t byte; if (!GetByte(&byte)) { return false; } switch (byte >> 6) { case 0: // 00xxxxxx: vsp = vsp + (xxxxxxx << 2) + 4 if (log_) { log(log_indent_, "vsp = vsp + %d", ((byte & 0x3f) << 2) + 4); if (log_skip_execution_) { break; } } cfa_ += ((byte & 0x3f) << 2) + 4; break; case 1: // 01xxxxxx: vsp = vsp - (xxxxxxx << 2) + 4 if (log_) { log(log_indent_, "vsp = vsp - %d", ((byte & 0x3f) << 2) + 4); if (log_skip_execution_) { break; } } cfa_ -= ((byte & 0x3f) << 2) + 4; break; case 2: return DecodePrefix_10(byte); default: return DecodePrefix_11(byte); } return true; } bool ArmExidx::Eval() { pc_set_ = false; while (Decode()); return status_ == ARM_STATUS_FINISH; } } // namespace unwindstack