/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "service.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rlimit_parser.h" #include "util.h" #if defined(__ANDROID__) #include #include #include "init.h" #include "property_service.h" #include "selinux.h" #else #include "host_init_stubs.h" #endif using android::base::boot_clock; using android::base::GetProperty; using android::base::Join; using android::base::ParseInt; using android::base::Split; using android::base::StartsWith; using android::base::StringPrintf; using android::base::unique_fd; using android::base::WriteStringToFile; namespace android { namespace init { static Result ComputeContextFromExecutable(const std::string& service_path) { std::string computed_context; char* raw_con = nullptr; char* raw_filecon = nullptr; if (getcon(&raw_con) == -1) { return Error() << "Could not get security context"; } std::unique_ptr mycon(raw_con); if (getfilecon(service_path.c_str(), &raw_filecon) == -1) { return Error() << "Could not get file context"; } std::unique_ptr filecon(raw_filecon); char* new_con = nullptr; int rc = security_compute_create(mycon.get(), filecon.get(), string_to_security_class("process"), &new_con); if (rc == 0) { computed_context = new_con; free(new_con); } if (rc == 0 && computed_context == mycon.get()) { return Error() << "File " << service_path << "(labeled \"" << filecon.get() << "\") has incorrect label or no domain transition from " << mycon.get() << " to another SELinux domain defined. Have you configured your " "service correctly? https://source.android.com/security/selinux/" "device-policy#label_new_services_and_address_denials"; } if (rc < 0) { return Error() << "Could not get process context"; } return computed_context; } Result Service::SetUpMountNamespace() const { constexpr unsigned int kSafeFlags = MS_NODEV | MS_NOEXEC | MS_NOSUID; // Recursively remount / as slave like zygote does so unmounting and mounting /proc // doesn't interfere with the parent namespace's /proc mount. This will also // prevent any other mounts/unmounts initiated by the service from interfering // with the parent namespace but will still allow mount events from the parent // namespace to propagate to the child. if (mount("rootfs", "/", nullptr, (MS_SLAVE | MS_REC), nullptr) == -1) { return ErrnoError() << "Could not remount(/) recursively as slave"; } // umount() then mount() /proc and/or /sys // Note that it is not sufficient to mount with MS_REMOUNT. if (namespace_flags_ & CLONE_NEWPID) { if (umount("/proc") == -1) { return ErrnoError() << "Could not umount(/proc)"; } if (mount("", "/proc", "proc", kSafeFlags, "") == -1) { return ErrnoError() << "Could not mount(/proc)"; } } bool remount_sys = std::any_of(namespaces_to_enter_.begin(), namespaces_to_enter_.end(), [](const auto& entry) { return entry.first == CLONE_NEWNET; }); if (remount_sys) { if (umount2("/sys", MNT_DETACH) == -1) { return ErrnoError() << "Could not umount(/sys)"; } if (mount("", "/sys", "sysfs", kSafeFlags, "") == -1) { return ErrnoError() << "Could not mount(/sys)"; } } return Success(); } Result Service::SetUpPreApexdMounts() const { // If a pre-apexd service is 're' launched after the runtime APEX is // available, unmount the linker and bionic libs which are currently // bind mounted to the files in the runtime APEX. This will reveal // the hidden mount points (targetting the bootstrap ones in the // system partition) which were setup before the runtime APEX was // started. Note that these unmounts are done in a separate mount namespace // for the process. It does not affect other processes including the init. if (pre_apexd_ && ServiceList::GetInstance().IsRuntimeAvailable()) { if (access(kLinkerMountPoint, F_OK) == 0) { if (umount(kLinkerMountPoint) == -1) { return ErrnoError() << "Could not umount " << kLinkerMountPoint; } for (const auto& libname : kBionicLibFileNames) { std::string mount_point = kBionicLibsMountPointDir + libname; if (umount(mount_point.c_str()) == -1) { return ErrnoError() << "Could not umount " << mount_point; } } } if (access(kLinkerMountPoint64, F_OK) == 0) { if (umount(kLinkerMountPoint64) == -1) { return ErrnoError() << "Could not umount " << kLinkerMountPoint64; } for (const auto& libname : kBionicLibFileNames) { std::string mount_point = kBionicLibsMountPointDir64 + libname; std::string source = kBootstrapBionicLibsDir64 + libname; if (umount(mount_point.c_str()) == -1) { return ErrnoError() << "Could not umount " << mount_point; } } } } return Success(); } Result Service::SetUpPidNamespace() const { if (prctl(PR_SET_NAME, name_.c_str()) == -1) { return ErrnoError() << "Could not set name"; } pid_t child_pid = fork(); if (child_pid == -1) { return ErrnoError() << "Could not fork init inside the PID namespace"; } if (child_pid > 0) { // So that we exit with the right status. static int init_exitstatus = 0; signal(SIGTERM, [](int) { _exit(init_exitstatus); }); pid_t waited_pid; int status; while ((waited_pid = wait(&status)) > 0) { // This loop will end when there are no processes left inside the // PID namespace or when the init process inside the PID namespace // gets a signal. if (waited_pid == child_pid) { init_exitstatus = status; } } if (!WIFEXITED(init_exitstatus)) { _exit(EXIT_FAILURE); } _exit(WEXITSTATUS(init_exitstatus)); } return Success(); } Result Service::EnterNamespaces() const { for (const auto& [nstype, path] : namespaces_to_enter_) { auto fd = unique_fd{open(path.c_str(), O_RDONLY | O_CLOEXEC)}; if (!fd) { return ErrnoError() << "Could not open namespace at " << path; } if (setns(fd, nstype) == -1) { return ErrnoError() << "Could not setns() namespace at " << path; } } return Success(); } static bool ExpandArgsAndExecv(const std::vector& args, bool sigstop) { std::vector expanded_args; std::vector c_strings; expanded_args.resize(args.size()); c_strings.push_back(const_cast(args[0].data())); for (std::size_t i = 1; i < args.size(); ++i) { if (!expand_props(args[i], &expanded_args[i])) { LOG(FATAL) << args[0] << ": cannot expand '" << args[i] << "'"; } c_strings.push_back(expanded_args[i].data()); } c_strings.push_back(nullptr); if (sigstop) { kill(getpid(), SIGSTOP); } return execv(c_strings[0], c_strings.data()) == 0; } unsigned long Service::next_start_order_ = 1; bool Service::is_exec_service_running_ = false; Service::Service(const std::string& name, Subcontext* subcontext_for_restart_commands, const std::vector& args) : Service(name, 0, 0, 0, {}, 0, 0, "", subcontext_for_restart_commands, args) {} Service::Service(const std::string& name, unsigned flags, uid_t uid, gid_t gid, const std::vector& supp_gids, const CapSet& capabilities, unsigned namespace_flags, const std::string& seclabel, Subcontext* subcontext_for_restart_commands, const std::vector& args) : name_(name), classnames_({"default"}), flags_(flags), pid_(0), crash_count_(0), uid_(uid), gid_(gid), supp_gids_(supp_gids), capabilities_(capabilities), namespace_flags_(namespace_flags), seclabel_(seclabel), onrestart_(false, subcontext_for_restart_commands, "", 0, "onrestart", {}), ioprio_class_(IoSchedClass_NONE), ioprio_pri_(0), priority_(0), oom_score_adjust_(-1000), start_order_(0), args_(args) {} void Service::NotifyStateChange(const std::string& new_state) const { if ((flags_ & SVC_TEMPORARY) != 0) { // Services created by 'exec' are temporary and don't have properties tracking their state. return; } std::string prop_name = "init.svc." + name_; property_set(prop_name, new_state); if (new_state == "running") { uint64_t start_ns = time_started_.time_since_epoch().count(); std::string boottime_property = "ro.boottime." + name_; if (GetProperty(boottime_property, "").empty()) { property_set(boottime_property, std::to_string(start_ns)); } } } void Service::KillProcessGroup(int signal) { // If we've already seen a successful result from killProcessGroup*(), then we have removed // the cgroup already and calling these functions a second time will simply result in an error. // This is true regardless of which signal was sent. // These functions handle their own logging, so no additional logging is needed. if (!process_cgroup_empty_) { LOG(INFO) << "Sending signal " << signal << " to service '" << name_ << "' (pid " << pid_ << ") process group..."; int r; if (signal == SIGTERM) { r = killProcessGroupOnce(uid_, pid_, signal); } else { r = killProcessGroup(uid_, pid_, signal); } if (r == 0) process_cgroup_empty_ = true; } } void Service::SetProcessAttributes() { for (const auto& rlimit : rlimits_) { if (setrlimit(rlimit.first, &rlimit.second) == -1) { LOG(FATAL) << StringPrintf("setrlimit(%d, {rlim_cur=%ld, rlim_max=%ld}) failed", rlimit.first, rlimit.second.rlim_cur, rlimit.second.rlim_max); } } // Keep capabilites on uid change. if (capabilities_.any() && uid_) { // If Android is running in a container, some securebits might already // be locked, so don't change those. unsigned long securebits = prctl(PR_GET_SECUREBITS); if (securebits == -1UL) { PLOG(FATAL) << "prctl(PR_GET_SECUREBITS) failed for " << name_; } securebits |= SECBIT_KEEP_CAPS | SECBIT_KEEP_CAPS_LOCKED; if (prctl(PR_SET_SECUREBITS, securebits) != 0) { PLOG(FATAL) << "prctl(PR_SET_SECUREBITS) failed for " << name_; } } // TODO: work out why this fails for `console` then upgrade to FATAL. if (setpgid(0, getpid()) == -1) PLOG(ERROR) << "setpgid failed for " << name_; if (gid_) { if (setgid(gid_) != 0) { PLOG(FATAL) << "setgid failed for " << name_; } } if (setgroups(supp_gids_.size(), &supp_gids_[0]) != 0) { PLOG(FATAL) << "setgroups failed for " << name_; } if (uid_) { if (setuid(uid_) != 0) { PLOG(FATAL) << "setuid failed for " << name_; } } if (!seclabel_.empty()) { if (setexeccon(seclabel_.c_str()) < 0) { PLOG(FATAL) << "cannot setexeccon('" << seclabel_ << "') for " << name_; } } if (priority_ != 0) { if (setpriority(PRIO_PROCESS, 0, priority_) != 0) { PLOG(FATAL) << "setpriority failed for " << name_; } } if (capabilities_.any()) { if (!SetCapsForExec(capabilities_)) { LOG(FATAL) << "cannot set capabilities for " << name_; } } else if (uid_) { // Inheritable caps can be non-zero when running in a container. if (!DropInheritableCaps()) { LOG(FATAL) << "cannot drop inheritable caps for " << name_; } } } void Service::Reap(const siginfo_t& siginfo) { if (!(flags_ & SVC_ONESHOT) || (flags_ & SVC_RESTART)) { KillProcessGroup(SIGKILL); } // Remove any descriptor resources we may have created. std::for_each(descriptors_.begin(), descriptors_.end(), std::bind(&DescriptorInfo::Clean, std::placeholders::_1)); for (const auto& f : reap_callbacks_) { f(siginfo); } if (flags_ & SVC_EXEC) UnSetExec(); if (flags_ & SVC_TEMPORARY) return; pid_ = 0; flags_ &= (~SVC_RUNNING); start_order_ = 0; // Oneshot processes go into the disabled state on exit, // except when manually restarted. if ((flags_ & SVC_ONESHOT) && !(flags_ & SVC_RESTART)) { flags_ |= SVC_DISABLED; } // Disabled and reset processes do not get restarted automatically. if (flags_ & (SVC_DISABLED | SVC_RESET)) { NotifyStateChange("stopped"); return; } // If we crash > 4 times in 4 minutes, reboot into bootloader or set crashing property boot_clock::time_point now = boot_clock::now(); if (((flags_ & SVC_CRITICAL) || classnames_.count("updatable")) && !(flags_ & SVC_RESTART)) { if (now < time_crashed_ + 4min) { if (++crash_count_ > 4) { if (flags_ & SVC_CRITICAL) { // Aborts into bootloader LOG(FATAL) << "critical process '" << name_ << "' exited 4 times in 4 minutes"; } else { LOG(ERROR) << "updatable process '" << name_ << "' exited 4 times in 4 minutes"; // Notifies update_verifier and apexd property_set("ro.init.updatable_crashing", "1"); } } } else { time_crashed_ = now; crash_count_ = 1; } } flags_ &= (~SVC_RESTART); flags_ |= SVC_RESTARTING; // Execute all onrestart commands for this service. onrestart_.ExecuteAllCommands(); NotifyStateChange("restarting"); return; } void Service::DumpState() const { LOG(INFO) << "service " << name_; LOG(INFO) << " class '" << Join(classnames_, " ") << "'"; LOG(INFO) << " exec " << Join(args_, " "); std::for_each(descriptors_.begin(), descriptors_.end(), [] (const auto& info) { LOG(INFO) << *info; }); } Result Service::ParseCapabilities(std::vector&& args) { capabilities_ = 0; if (!CapAmbientSupported()) { return Error() << "capabilities requested but the kernel does not support ambient capabilities"; } unsigned int last_valid_cap = GetLastValidCap(); if (last_valid_cap >= capabilities_.size()) { LOG(WARNING) << "last valid run-time capability is larger than CAP_LAST_CAP"; } for (size_t i = 1; i < args.size(); i++) { const std::string& arg = args[i]; int res = LookupCap(arg); if (res < 0) { return Error() << StringPrintf("invalid capability '%s'", arg.c_str()); } unsigned int cap = static_cast(res); // |res| is >= 0. if (cap > last_valid_cap) { return Error() << StringPrintf("capability '%s' not supported by the kernel", arg.c_str()); } capabilities_[cap] = true; } return Success(); } Result Service::ParseClass(std::vector&& args) { classnames_ = std::set(args.begin() + 1, args.end()); return Success(); } Result Service::ParseConsole(std::vector&& args) { flags_ |= SVC_CONSOLE; console_ = args.size() > 1 ? "/dev/" + args[1] : ""; return Success(); } Result Service::ParseCritical(std::vector&& args) { flags_ |= SVC_CRITICAL; return Success(); } Result Service::ParseDisabled(std::vector&& args) { flags_ |= SVC_DISABLED; flags_ |= SVC_RC_DISABLED; return Success(); } Result Service::ParseEnterNamespace(std::vector&& args) { if (args[1] != "net") { return Error() << "Init only supports entering network namespaces"; } if (!namespaces_to_enter_.empty()) { return Error() << "Only one network namespace may be entered"; } // Network namespaces require that /sys is remounted, otherwise the old adapters will still be // present. Therefore, they also require mount namespaces. namespace_flags_ |= CLONE_NEWNS; namespaces_to_enter_.emplace_back(CLONE_NEWNET, std::move(args[2])); return Success(); } Result Service::ParseGroup(std::vector&& args) { auto gid = DecodeUid(args[1]); if (!gid) { return Error() << "Unable to decode GID for '" << args[1] << "': " << gid.error(); } gid_ = *gid; for (std::size_t n = 2; n < args.size(); n++) { gid = DecodeUid(args[n]); if (!gid) { return Error() << "Unable to decode GID for '" << args[n] << "': " << gid.error(); } supp_gids_.emplace_back(*gid); } return Success(); } Result Service::ParsePriority(std::vector&& args) { priority_ = 0; if (!ParseInt(args[1], &priority_, static_cast(ANDROID_PRIORITY_HIGHEST), // highest is negative static_cast(ANDROID_PRIORITY_LOWEST))) { return Error() << StringPrintf("process priority value must be range %d - %d", ANDROID_PRIORITY_HIGHEST, ANDROID_PRIORITY_LOWEST); } return Success(); } Result Service::ParseInterface(std::vector&& args) { const std::string& interface_name = args[1]; const std::string& instance_name = args[2]; FQName fq_name; if (!FQName::parse(interface_name, &fq_name)) { return Error() << "Invalid fully-qualified name for interface '" << interface_name << "'"; } if (!fq_name.isFullyQualified()) { return Error() << "Interface name not fully-qualified '" << interface_name << "'"; } if (fq_name.isValidValueName()) { return Error() << "Interface name must not be a value name '" << interface_name << "'"; } const std::string fullname = interface_name + "/" + instance_name; for (const auto& svc : ServiceList::GetInstance()) { if (svc->interfaces().count(fullname) > 0) { return Error() << "Interface '" << fullname << "' redefined in " << name() << " but is already defined by " << svc->name(); } } interfaces_.insert(fullname); return Success(); } Result Service::ParseIoprio(std::vector&& args) { if (!ParseInt(args[2], &ioprio_pri_, 0, 7)) { return Error() << "priority value must be range 0 - 7"; } if (args[1] == "rt") { ioprio_class_ = IoSchedClass_RT; } else if (args[1] == "be") { ioprio_class_ = IoSchedClass_BE; } else if (args[1] == "idle") { ioprio_class_ = IoSchedClass_IDLE; } else { return Error() << "ioprio option usage: ioprio <0-7>"; } return Success(); } Result Service::ParseKeycodes(std::vector&& args) { auto it = args.begin() + 1; if (args.size() == 2 && StartsWith(args[1], "$")) { std::string expanded; if (!expand_props(args[1], &expanded)) { return Error() << "Could not expand property '" << args[1] << "'"; } // If the property is not set, it defaults to none, in which case there are no keycodes // for this service. if (expanded == "none") { return Success(); } args = Split(expanded, ","); it = args.begin(); } for (; it != args.end(); ++it) { int code; if (ParseInt(*it, &code, 0, KEY_MAX)) { for (auto& key : keycodes_) { if (key == code) return Error() << "duplicate keycode: " << *it; } keycodes_.insert(std::upper_bound(keycodes_.begin(), keycodes_.end(), code), code); } else { return Error() << "invalid keycode: " << *it; } } return Success(); } Result Service::ParseOneshot(std::vector&& args) { flags_ |= SVC_ONESHOT; return Success(); } Result Service::ParseOnrestart(std::vector&& args) { args.erase(args.begin()); int line = onrestart_.NumCommands() + 1; if (auto result = onrestart_.AddCommand(std::move(args), line); !result) { return Error() << "cannot add Onrestart command: " << result.error(); } return Success(); } Result Service::ParseNamespace(std::vector&& args) { for (size_t i = 1; i < args.size(); i++) { if (args[i] == "pid") { namespace_flags_ |= CLONE_NEWPID; // PID namespaces require mount namespaces. namespace_flags_ |= CLONE_NEWNS; } else if (args[i] == "mnt") { namespace_flags_ |= CLONE_NEWNS; } else { return Error() << "namespace must be 'pid' or 'mnt'"; } } return Success(); } Result Service::ParseOomScoreAdjust(std::vector&& args) { if (!ParseInt(args[1], &oom_score_adjust_, -1000, 1000)) { return Error() << "oom_score_adjust value must be in range -1000 - +1000"; } return Success(); } Result Service::ParseOverride(std::vector&& args) { override_ = true; return Success(); } Result Service::ParseMemcgSwappiness(std::vector&& args) { if (!ParseInt(args[1], &swappiness_, 0)) { return Error() << "swappiness value must be equal or greater than 0"; } return Success(); } Result Service::ParseMemcgLimitInBytes(std::vector&& args) { if (!ParseInt(args[1], &limit_in_bytes_, 0)) { return Error() << "limit_in_bytes value must be equal or greater than 0"; } return Success(); } Result Service::ParseMemcgLimitPercent(std::vector&& args) { if (!ParseInt(args[1], &limit_percent_, 0)) { return Error() << "limit_percent value must be equal or greater than 0"; } return Success(); } Result Service::ParseMemcgLimitProperty(std::vector&& args) { limit_property_ = std::move(args[1]); return Success(); } Result Service::ParseMemcgSoftLimitInBytes(std::vector&& args) { if (!ParseInt(args[1], &soft_limit_in_bytes_, 0)) { return Error() << "soft_limit_in_bytes value must be equal or greater than 0"; } return Success(); } Result Service::ParseProcessRlimit(std::vector&& args) { auto rlimit = ParseRlimit(args); if (!rlimit) return rlimit.error(); rlimits_.emplace_back(*rlimit); return Success(); } Result Service::ParseRestartPeriod(std::vector&& args) { int period; if (!ParseInt(args[1], &period, 5)) { return Error() << "restart_period value must be an integer >= 5"; } restart_period_ = std::chrono::seconds(period); return Success(); } Result Service::ParseSeclabel(std::vector&& args) { seclabel_ = std::move(args[1]); return Success(); } Result Service::ParseSigstop(std::vector&& args) { sigstop_ = true; return Success(); } Result Service::ParseSetenv(std::vector&& args) { environment_vars_.emplace_back(std::move(args[1]), std::move(args[2])); return Success(); } Result Service::ParseShutdown(std::vector&& args) { if (args[1] == "critical") { flags_ |= SVC_SHUTDOWN_CRITICAL; return Success(); } return Error() << "Invalid shutdown option"; } Result Service::ParseTimeoutPeriod(std::vector&& args) { int period; if (!ParseInt(args[1], &period, 1)) { return Error() << "timeout_period value must be an integer >= 1"; } timeout_period_ = std::chrono::seconds(period); return Success(); } template Result Service::AddDescriptor(std::vector&& args) { int perm = args.size() > 3 ? std::strtoul(args[3].c_str(), 0, 8) : -1; Result uid = 0; Result gid = 0; std::string context = args.size() > 6 ? args[6] : ""; if (args.size() > 4) { uid = DecodeUid(args[4]); if (!uid) { return Error() << "Unable to find UID for '" << args[4] << "': " << uid.error(); } } if (args.size() > 5) { gid = DecodeUid(args[5]); if (!gid) { return Error() << "Unable to find GID for '" << args[5] << "': " << gid.error(); } } auto descriptor = std::make_unique(args[1], args[2], *uid, *gid, perm, context); auto old = std::find_if(descriptors_.begin(), descriptors_.end(), [&descriptor] (const auto& other) { return descriptor.get() == other.get(); }); if (old != descriptors_.end()) { return Error() << "duplicate descriptor " << args[1] << " " << args[2]; } descriptors_.emplace_back(std::move(descriptor)); return Success(); } // name type perm [ uid gid context ] Result Service::ParseSocket(std::vector&& args) { if (!StartsWith(args[2], "dgram") && !StartsWith(args[2], "stream") && !StartsWith(args[2], "seqpacket")) { return Error() << "socket type must be 'dgram', 'stream' or 'seqpacket'"; } return AddDescriptor(std::move(args)); } // name type perm [ uid gid context ] Result Service::ParseFile(std::vector&& args) { if (args[2] != "r" && args[2] != "w" && args[2] != "rw") { return Error() << "file type must be 'r', 'w' or 'rw'"; } if ((args[1][0] != '/') || (args[1].find("../") != std::string::npos)) { return Error() << "file name must not be relative"; } return AddDescriptor(std::move(args)); } Result Service::ParseUser(std::vector&& args) { auto uid = DecodeUid(args[1]); if (!uid) { return Error() << "Unable to find UID for '" << args[1] << "': " << uid.error(); } uid_ = *uid; return Success(); } Result Service::ParseWritepid(std::vector&& args) { args.erase(args.begin()); writepid_files_ = std::move(args); return Success(); } Result Service::ParseUpdatable(std::vector&& args) { updatable_ = true; return Success(); } class Service::OptionParserMap : public KeywordMap { public: OptionParserMap() {} private: const Map& map() const override; }; const Service::OptionParserMap::Map& Service::OptionParserMap::map() const { constexpr std::size_t kMax = std::numeric_limits::max(); // clang-format off static const Map option_parsers = { {"capabilities", {1, kMax, &Service::ParseCapabilities}}, {"class", {1, kMax, &Service::ParseClass}}, {"console", {0, 1, &Service::ParseConsole}}, {"critical", {0, 0, &Service::ParseCritical}}, {"disabled", {0, 0, &Service::ParseDisabled}}, {"enter_namespace", {2, 2, &Service::ParseEnterNamespace}}, {"file", {2, 2, &Service::ParseFile}}, {"group", {1, NR_SVC_SUPP_GIDS + 1, &Service::ParseGroup}}, {"interface", {2, 2, &Service::ParseInterface}}, {"ioprio", {2, 2, &Service::ParseIoprio}}, {"keycodes", {1, kMax, &Service::ParseKeycodes}}, {"memcg.limit_in_bytes", {1, 1, &Service::ParseMemcgLimitInBytes}}, {"memcg.limit_percent", {1, 1, &Service::ParseMemcgLimitPercent}}, {"memcg.limit_property", {1, 1, &Service::ParseMemcgLimitProperty}}, {"memcg.soft_limit_in_bytes", {1, 1, &Service::ParseMemcgSoftLimitInBytes}}, {"memcg.swappiness", {1, 1, &Service::ParseMemcgSwappiness}}, {"namespace", {1, 2, &Service::ParseNamespace}}, {"oneshot", {0, 0, &Service::ParseOneshot}}, {"onrestart", {1, kMax, &Service::ParseOnrestart}}, {"oom_score_adjust", {1, 1, &Service::ParseOomScoreAdjust}}, {"override", {0, 0, &Service::ParseOverride}}, {"priority", {1, 1, &Service::ParsePriority}}, {"restart_period", {1, 1, &Service::ParseRestartPeriod}}, {"rlimit", {3, 3, &Service::ParseProcessRlimit}}, {"seclabel", {1, 1, &Service::ParseSeclabel}}, {"setenv", {2, 2, &Service::ParseSetenv}}, {"shutdown", {1, 1, &Service::ParseShutdown}}, {"sigstop", {0, 0, &Service::ParseSigstop}}, {"socket", {3, 6, &Service::ParseSocket}}, {"timeout_period", {1, 1, &Service::ParseTimeoutPeriod}}, {"updatable", {0, 0, &Service::ParseUpdatable}}, {"user", {1, 1, &Service::ParseUser}}, {"writepid", {1, kMax, &Service::ParseWritepid}}, }; // clang-format on return option_parsers; } Result Service::ParseLine(std::vector&& args) { static const OptionParserMap parser_map; auto parser = parser_map.FindFunction(args); if (!parser) return parser.error(); return std::invoke(*parser, this, std::move(args)); } Result Service::ExecStart() { if (is_updatable() && !ServiceList::GetInstance().IsServicesUpdated()) { // Don't delay the service for ExecStart() as the semantic is that // the caller might depend on the side effect of the execution. return Error() << "Cannot start an updatable service '" << name_ << "' before configs from APEXes are all loaded"; } flags_ |= SVC_ONESHOT; if (auto result = Start(); !result) { return result; } flags_ |= SVC_EXEC; is_exec_service_running_ = true; LOG(INFO) << "SVC_EXEC service '" << name_ << "' pid " << pid_ << " (uid " << uid_ << " gid " << gid_ << "+" << supp_gids_.size() << " context " << (!seclabel_.empty() ? seclabel_ : "default") << ") started; waiting..."; return Success(); } Result Service::Start() { if (is_updatable() && !ServiceList::GetInstance().IsServicesUpdated()) { ServiceList::GetInstance().DelayService(*this); return Error() << "Cannot start an updatable service '" << name_ << "' before configs from APEXes are all loaded. " << "Queued for execution."; } bool disabled = (flags_ & (SVC_DISABLED | SVC_RESET)); // Starting a service removes it from the disabled or reset state and // immediately takes it out of the restarting state if it was in there. flags_ &= (~(SVC_DISABLED|SVC_RESTARTING|SVC_RESET|SVC_RESTART|SVC_DISABLED_START)); // Running processes require no additional work --- if they're in the // process of exiting, we've ensured that they will immediately restart // on exit, unless they are ONESHOT. For ONESHOT service, if it's in // stopping status, we just set SVC_RESTART flag so it will get restarted // in Reap(). if (flags_ & SVC_RUNNING) { if ((flags_ & SVC_ONESHOT) && disabled) { flags_ |= SVC_RESTART; } // It is not an error to try to start a service that is already running. return Success(); } bool needs_console = (flags_ & SVC_CONSOLE); if (needs_console) { if (console_.empty()) { console_ = default_console; } // Make sure that open call succeeds to ensure a console driver is // properly registered for the device node int console_fd = open(console_.c_str(), O_RDWR | O_CLOEXEC); if (console_fd < 0) { flags_ |= SVC_DISABLED; return ErrnoError() << "Couldn't open console '" << console_ << "'"; } close(console_fd); } struct stat sb; if (stat(args_[0].c_str(), &sb) == -1) { flags_ |= SVC_DISABLED; return ErrnoError() << "Cannot find '" << args_[0] << "'"; } std::string scon; if (!seclabel_.empty()) { scon = seclabel_; } else { auto result = ComputeContextFromExecutable(args_[0]); if (!result) { return result.error(); } scon = *result; } if (!ServiceList::GetInstance().IsRuntimeAvailable() && !pre_apexd_) { // If this service is started before the runtime APEX gets available, // mark it as pre-apexd one. Note that this marking is permanent. So // for example, if the service is re-launched (e.g., due to crash), // it is still recognized as pre-apexd... for consistency. pre_apexd_ = true; } LOG(INFO) << "starting service '" << name_ << "'..."; pid_t pid = -1; if (namespace_flags_) { pid = clone(nullptr, nullptr, namespace_flags_ | SIGCHLD, nullptr); } else { pid = fork(); } if (pid == 0) { umask(077); if (auto result = EnterNamespaces(); !result) { LOG(FATAL) << "Service '" << name_ << "' could not enter namespaces: " << result.error(); } if (pre_apexd_) { // pre-apexd process gets a private copy of the mount namespace. // However, this does not mean that mount/unmount events are not // shared across pre-apexd processes and post-apexd processes. // *Most* of the events are still shared because the propagation // type of / is set to 'shared'. (see `mount rootfs rootfs /shared // rec` in init.rc) // // This unsharing is required to not propagate the mount events // under /system/lib/{libc|libdl|libm}.so and /system/bin/linker(64) // whose propagation type is set to private. With this, // bind-mounting the bionic libs and the dynamic linker from the // runtime APEX to the mount points does not affect pre-apexd // processes which should use the bootstrap ones. if (unshare(CLONE_NEWNS) != 0) { LOG(FATAL) << "Creating a new mount namespace for service" << " '" << name_ << "' failed: " << strerror(errno); } } if (namespace_flags_ & CLONE_NEWNS) { if (auto result = SetUpMountNamespace(); !result) { LOG(FATAL) << "Service '" << name_ << "' could not set up mount namespace: " << result.error(); } } if (pre_apexd_ && ServiceList::GetInstance().IsRuntimeAvailable()) { if (auto result = SetUpPreApexdMounts(); !result) { LOG(FATAL) << "Pre-apexd service '" << name_ << "' could not setup the mount points: " << result.error(); } } if (namespace_flags_ & CLONE_NEWPID) { // This will fork again to run an init process inside the PID // namespace. if (auto result = SetUpPidNamespace(); !result) { LOG(FATAL) << "Service '" << name_ << "' could not set up PID namespace: " << result.error(); } } for (const auto& [key, value] : environment_vars_) { setenv(key.c_str(), value.c_str(), 1); } std::for_each(descriptors_.begin(), descriptors_.end(), std::bind(&DescriptorInfo::CreateAndPublish, std::placeholders::_1, scon)); // See if there were "writepid" instructions to write to files under /dev/cpuset/. auto cpuset_predicate = [](const std::string& path) { return StartsWith(path, "/dev/cpuset/"); }; auto iter = std::find_if(writepid_files_.begin(), writepid_files_.end(), cpuset_predicate); if (iter == writepid_files_.end()) { // There were no "writepid" instructions for cpusets, check if the system default // cpuset is specified to be used for the process. std::string default_cpuset = GetProperty("ro.cpuset.default", ""); if (!default_cpuset.empty()) { // Make sure the cpuset name starts and ends with '/'. // A single '/' means the 'root' cpuset. if (default_cpuset.front() != '/') { default_cpuset.insert(0, 1, '/'); } if (default_cpuset.back() != '/') { default_cpuset.push_back('/'); } writepid_files_.push_back( StringPrintf("/dev/cpuset%stasks", default_cpuset.c_str())); } } std::string pid_str = std::to_string(getpid()); for (const auto& file : writepid_files_) { if (!WriteStringToFile(pid_str, file)) { PLOG(ERROR) << "couldn't write " << pid_str << " to " << file; } } if (ioprio_class_ != IoSchedClass_NONE) { if (android_set_ioprio(getpid(), ioprio_class_, ioprio_pri_)) { PLOG(ERROR) << "failed to set pid " << getpid() << " ioprio=" << ioprio_class_ << "," << ioprio_pri_; } } if (needs_console) { setsid(); OpenConsole(); } else { ZapStdio(); } // As requested, set our gid, supplemental gids, uid, context, and // priority. Aborts on failure. SetProcessAttributes(); if (!ExpandArgsAndExecv(args_, sigstop_)) { PLOG(ERROR) << "cannot execve('" << args_[0] << "')"; } _exit(127); } if (pid < 0) { pid_ = 0; return ErrnoError() << "Failed to fork"; } if (oom_score_adjust_ != -1000) { std::string oom_str = std::to_string(oom_score_adjust_); std::string oom_file = StringPrintf("/proc/%d/oom_score_adj", pid); if (!WriteStringToFile(oom_str, oom_file)) { PLOG(ERROR) << "couldn't write oom_score_adj: " << strerror(errno); } } time_started_ = boot_clock::now(); pid_ = pid; flags_ |= SVC_RUNNING; start_order_ = next_start_order_++; process_cgroup_empty_ = false; bool use_memcg = swappiness_ != -1 || soft_limit_in_bytes_ != -1 || limit_in_bytes_ != -1 || limit_percent_ != -1 || !limit_property_.empty(); errno = -createProcessGroup(uid_, pid_, use_memcg); if (errno != 0) { PLOG(ERROR) << "createProcessGroup(" << uid_ << ", " << pid_ << ") failed for service '" << name_ << "'"; } else if (use_memcg) { if (swappiness_ != -1) { if (!setProcessGroupSwappiness(uid_, pid_, swappiness_)) { PLOG(ERROR) << "setProcessGroupSwappiness failed"; } } if (soft_limit_in_bytes_ != -1) { if (!setProcessGroupSoftLimit(uid_, pid_, soft_limit_in_bytes_)) { PLOG(ERROR) << "setProcessGroupSoftLimit failed"; } } size_t computed_limit_in_bytes = limit_in_bytes_; if (limit_percent_ != -1) { long page_size = sysconf(_SC_PAGESIZE); long num_pages = sysconf(_SC_PHYS_PAGES); if (page_size > 0 && num_pages > 0) { size_t max_mem = SIZE_MAX; if (size_t(num_pages) < SIZE_MAX / size_t(page_size)) { max_mem = size_t(num_pages) * size_t(page_size); } computed_limit_in_bytes = std::min(computed_limit_in_bytes, max_mem / 100 * limit_percent_); } } if (!limit_property_.empty()) { // This ends up overwriting computed_limit_in_bytes but only if the // property is defined. computed_limit_in_bytes = android::base::GetUintProperty( limit_property_, computed_limit_in_bytes, SIZE_MAX); } if (computed_limit_in_bytes != size_t(-1)) { if (!setProcessGroupLimit(uid_, pid_, computed_limit_in_bytes)) { PLOG(ERROR) << "setProcessGroupLimit failed"; } } } NotifyStateChange("running"); return Success(); } Result Service::StartIfNotDisabled() { if (!(flags_ & SVC_DISABLED)) { return Start(); } else { flags_ |= SVC_DISABLED_START; } return Success(); } Result Service::Enable() { flags_ &= ~(SVC_DISABLED | SVC_RC_DISABLED); if (flags_ & SVC_DISABLED_START) { return Start(); } return Success(); } void Service::Reset() { StopOrReset(SVC_RESET); } void Service::Stop() { StopOrReset(SVC_DISABLED); } void Service::Terminate() { flags_ &= ~(SVC_RESTARTING | SVC_DISABLED_START); flags_ |= SVC_DISABLED; if (pid_) { KillProcessGroup(SIGTERM); NotifyStateChange("stopping"); } } void Service::Timeout() { // All process state flags will be taken care of in Reap(), we really just want to kill the // process here when it times out. Oneshot processes will transition to be disabled, and // all other processes will transition to be restarting. LOG(INFO) << "Service '" << name_ << "' expired its timeout of " << timeout_period_->count() << " seconds and will now be killed"; if (pid_) { KillProcessGroup(SIGKILL); NotifyStateChange("stopping"); } } void Service::Restart() { if (flags_ & SVC_RUNNING) { /* Stop, wait, then start the service. */ StopOrReset(SVC_RESTART); } else if (!(flags_ & SVC_RESTARTING)) { /* Just start the service since it's not running. */ if (auto result = Start(); !result) { LOG(ERROR) << "Could not restart '" << name_ << "': " << result.error(); } } /* else: Service is restarting anyways. */ } // The how field should be either SVC_DISABLED, SVC_RESET, or SVC_RESTART. void Service::StopOrReset(int how) { // The service is still SVC_RUNNING until its process exits, but if it has // already exited it shoudn't attempt a restart yet. flags_ &= ~(SVC_RESTARTING | SVC_DISABLED_START); if ((how != SVC_DISABLED) && (how != SVC_RESET) && (how != SVC_RESTART)) { // An illegal flag: default to SVC_DISABLED. how = SVC_DISABLED; } // If the service has not yet started, prevent it from auto-starting with its class. if (how == SVC_RESET) { flags_ |= (flags_ & SVC_RC_DISABLED) ? SVC_DISABLED : SVC_RESET; } else { flags_ |= how; } // Make sure it's in right status when a restart immediately follow a // stop/reset or vice versa. if (how == SVC_RESTART) { flags_ &= (~(SVC_DISABLED | SVC_RESET)); } else { flags_ &= (~SVC_RESTART); } if (pid_) { KillProcessGroup(SIGKILL); NotifyStateChange("stopping"); } else { NotifyStateChange("stopped"); } } void Service::ZapStdio() const { int fd; fd = open("/dev/null", O_RDWR); dup2(fd, 0); dup2(fd, 1); dup2(fd, 2); close(fd); } void Service::OpenConsole() const { int fd = open(console_.c_str(), O_RDWR); if (fd == -1) fd = open("/dev/null", O_RDWR); ioctl(fd, TIOCSCTTY, 0); dup2(fd, 0); dup2(fd, 1); dup2(fd, 2); close(fd); } ServiceList::ServiceList() {} ServiceList& ServiceList::GetInstance() { static ServiceList instance; return instance; } void ServiceList::AddService(std::unique_ptr service) { services_.emplace_back(std::move(service)); } std::unique_ptr Service::MakeTemporaryOneshotService(const std::vector& args) { // Parse the arguments: exec [SECLABEL [UID [GID]*] --] COMMAND ARGS... // SECLABEL can be a - to denote default std::size_t command_arg = 1; for (std::size_t i = 1; i < args.size(); ++i) { if (args[i] == "--") { command_arg = i + 1; break; } } if (command_arg > 4 + NR_SVC_SUPP_GIDS) { LOG(ERROR) << "exec called with too many supplementary group ids"; return nullptr; } if (command_arg >= args.size()) { LOG(ERROR) << "exec called without command"; return nullptr; } std::vector str_args(args.begin() + command_arg, args.end()); static size_t exec_count = 0; exec_count++; std::string name = "exec " + std::to_string(exec_count) + " (" + Join(str_args, " ") + ")"; unsigned flags = SVC_ONESHOT | SVC_TEMPORARY; CapSet no_capabilities; unsigned namespace_flags = 0; std::string seclabel = ""; if (command_arg > 2 && args[1] != "-") { seclabel = args[1]; } Result uid = 0; if (command_arg > 3) { uid = DecodeUid(args[2]); if (!uid) { LOG(ERROR) << "Unable to decode UID for '" << args[2] << "': " << uid.error(); return nullptr; } } Result gid = 0; std::vector supp_gids; if (command_arg > 4) { gid = DecodeUid(args[3]); if (!gid) { LOG(ERROR) << "Unable to decode GID for '" << args[3] << "': " << gid.error(); return nullptr; } std::size_t nr_supp_gids = command_arg - 1 /* -- */ - 4 /* exec SECLABEL UID GID */; for (size_t i = 0; i < nr_supp_gids; ++i) { auto supp_gid = DecodeUid(args[4 + i]); if (!supp_gid) { LOG(ERROR) << "Unable to decode GID for '" << args[4 + i] << "': " << supp_gid.error(); return nullptr; } supp_gids.push_back(*supp_gid); } } return std::make_unique(name, flags, *uid, *gid, supp_gids, no_capabilities, namespace_flags, seclabel, nullptr, str_args); } // Shutdown services in the opposite order that they were started. const std::vector ServiceList::services_in_shutdown_order() const { std::vector shutdown_services; for (const auto& service : services_) { if (service->start_order() > 0) shutdown_services.emplace_back(service.get()); } std::sort(shutdown_services.begin(), shutdown_services.end(), [](const auto& a, const auto& b) { return a->start_order() > b->start_order(); }); return shutdown_services; } void ServiceList::RemoveService(const Service& svc) { auto svc_it = std::find_if(services_.begin(), services_.end(), [&svc] (const std::unique_ptr& s) { return svc.name() == s->name(); }); if (svc_it == services_.end()) { return; } services_.erase(svc_it); } void ServiceList::DumpState() const { for (const auto& s : services_) { s->DumpState(); } } void ServiceList::MarkServicesUpdate() { services_update_finished_ = true; // start the delayed services for (const auto& name : delayed_service_names_) { Service* service = FindService(name); if (service == nullptr) { LOG(ERROR) << "delayed service '" << name << "' could not be found."; continue; } if (auto result = service->Start(); !result) { LOG(ERROR) << result.error_string(); } } delayed_service_names_.clear(); } void ServiceList::MarkRuntimeAvailable() { runtime_available_ = true; } void ServiceList::DelayService(const Service& service) { if (services_update_finished_) { LOG(ERROR) << "Cannot delay the start of service '" << service.name() << "' because all services are already updated. Ignoring."; return; } delayed_service_names_.emplace_back(service.name()); } Result ServiceParser::ParseSection(std::vector&& args, const std::string& filename, int line) { if (args.size() < 3) { return Error() << "services must have a name and a program"; } const std::string& name = args[1]; if (!IsValidName(name)) { return Error() << "invalid service name '" << name << "'"; } filename_ = filename; Subcontext* restart_action_subcontext = nullptr; if (subcontexts_) { for (auto& subcontext : *subcontexts_) { if (StartsWith(filename, subcontext.path_prefix())) { restart_action_subcontext = &subcontext; break; } } } std::vector str_args(args.begin() + 2, args.end()); if (SelinuxGetVendorAndroidVersion() <= __ANDROID_API_P__) { if (str_args[0] == "/sbin/watchdogd") { str_args[0] = "/system/bin/watchdogd"; } } service_ = std::make_unique(name, restart_action_subcontext, str_args); return Success(); } Result ServiceParser::ParseLineSection(std::vector&& args, int line) { return service_ ? service_->ParseLine(std::move(args)) : Success(); } Result ServiceParser::EndSection() { if (service_) { Service* old_service = service_list_->FindService(service_->name()); if (old_service) { if (!service_->is_override()) { return Error() << "ignored duplicate definition of service '" << service_->name() << "'"; } if (StartsWith(filename_, "/apex/") && !old_service->is_updatable()) { return Error() << "cannot update a non-updatable service '" << service_->name() << "' with a config in APEX"; } service_list_->RemoveService(*old_service); old_service = nullptr; } service_list_->AddService(std::move(service_)); } return Success(); } bool ServiceParser::IsValidName(const std::string& name) const { // Property names can be any length, but may only contain certain characters. // Property values can contain any characters, but may only be a certain length. // (The latter restriction is needed because `start` and `stop` work by writing // the service name to the "ctl.start" and "ctl.stop" properties.) return IsLegalPropertyName("init.svc." + name) && name.size() <= PROP_VALUE_MAX; } } // namespace init } // namespace android