/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace android::meminfo; pid_t pid = -1; class ValidateProcMemInfo : public ::testing::Test { protected: void SetUp() override { ASSERT_EQ(0, pm_kernel_create(&ker)); ASSERT_EQ(0, pm_process_create(ker, pid, &proc)); proc_mem = new ProcMemInfo(pid); ASSERT_NE(proc_mem, nullptr); } void TearDown() override { delete proc_mem; pm_process_destroy(proc); pm_kernel_destroy(ker); } pm_kernel_t* ker; pm_process_t* proc; ProcMemInfo* proc_mem; }; TEST_F(ValidateProcMemInfo, TestMapsSize) { const std::vector& maps = proc_mem->Maps(); ASSERT_FALSE(maps.empty()) << "Process " << getpid() << " maps are empty"; } TEST_F(ValidateProcMemInfo, TestMapsEquality) { const std::vector& maps = proc_mem->Maps(); ASSERT_EQ(proc->num_maps, maps.size()); for (size_t i = 0; i < maps.size(); ++i) { EXPECT_EQ(proc->maps[i]->start, maps[i].start); EXPECT_EQ(proc->maps[i]->end, maps[i].end); EXPECT_EQ(proc->maps[i]->offset, maps[i].offset); EXPECT_EQ(std::string(proc->maps[i]->name), maps[i].name); } } TEST_F(ValidateProcMemInfo, TestMapsUsage) { const std::vector& maps = proc_mem->Maps(); ASSERT_FALSE(maps.empty()); ASSERT_EQ(proc->num_maps, maps.size()); pm_memusage_t map_usage, proc_usage; pm_memusage_zero(&map_usage); pm_memusage_zero(&proc_usage); for (size_t i = 0; i < maps.size(); i++) { ASSERT_EQ(0, pm_map_usage(proc->maps[i], &map_usage)); EXPECT_EQ(map_usage.vss, maps[i].usage.vss) << "VSS mismatch for map: " << maps[i].name; EXPECT_EQ(map_usage.rss, maps[i].usage.rss) << "RSS mismatch for map: " << maps[i].name; EXPECT_EQ(map_usage.pss, maps[i].usage.pss) << "PSS mismatch for map: " << maps[i].name; EXPECT_EQ(map_usage.uss, maps[i].usage.uss) << "USS mismatch for map: " << maps[i].name; pm_memusage_add(&proc_usage, &map_usage); } EXPECT_EQ(proc_usage.vss, proc_mem->Usage().vss); EXPECT_EQ(proc_usage.rss, proc_mem->Usage().rss); EXPECT_EQ(proc_usage.pss, proc_mem->Usage().pss); EXPECT_EQ(proc_usage.uss, proc_mem->Usage().uss); } class ValidateProcMemInfoWss : public ::testing::Test { protected: void SetUp() override { ASSERT_EQ(0, pm_kernel_create(&ker)); ASSERT_EQ(0, pm_process_create(ker, pid, &proc)); proc_mem = new ProcMemInfo(pid, true); ASSERT_NE(proc_mem, nullptr); } void TearDown() override { delete proc_mem; pm_process_destroy(proc); pm_kernel_destroy(ker); } pm_kernel_t* ker; pm_process_t* proc; ProcMemInfo* proc_mem; }; TEST_F(ValidateProcMemInfoWss, TestWorkingTestReset) { // Expect reset to succeed EXPECT_TRUE(proc_mem->WssReset()); } TEST_F(ValidateProcMemInfoWss, TestWssEquality) { // Read wss using libpagemap pm_memusage_t wss_pagemap; EXPECT_EQ(0, pm_process_workingset(proc, &wss_pagemap, 0)); // Read wss using libmeminfo MemUsage wss = proc_mem->Wss(); // compare EXPECT_EQ(wss_pagemap.rss, wss.rss); EXPECT_EQ(wss_pagemap.pss, wss.pss); EXPECT_EQ(wss_pagemap.uss, wss.uss); } class ValidatePageAcct : public ::testing::Test { protected: void SetUp() override { ASSERT_EQ(0, pm_kernel_create(&ker)); ASSERT_EQ(0, pm_process_create(ker, pid, &proc)); } void TearDown() override { pm_process_destroy(proc); pm_kernel_destroy(ker); } pm_kernel_t* ker; pm_process_t* proc; }; TEST_F(ValidatePageAcct, TestPageFlags) { PageAcct& pi = PageAcct::Instance(); pi.InitPageAcct(false); uint64_t* pagemap; size_t num_pages; for (size_t i = 0; i < proc->num_maps; i++) { ASSERT_EQ(0, pm_map_pagemap(proc->maps[i], &pagemap, &num_pages)); for (size_t j = 0; j < num_pages; j++) { if (!PM_PAGEMAP_PRESENT(pagemap[j])) continue; uint64_t pfn = PM_PAGEMAP_PFN(pagemap[j]); uint64_t page_flags_pagemap, page_flags_meminfo; ASSERT_EQ(0, pm_kernel_flags(ker, pfn, &page_flags_pagemap)); ASSERT_TRUE(pi.PageFlags(pfn, &page_flags_meminfo)); // check if page flags equal EXPECT_EQ(page_flags_pagemap, page_flags_meminfo); } free(pagemap); } } TEST_F(ValidatePageAcct, TestPageCounts) { PageAcct& pi = PageAcct::Instance(); pi.InitPageAcct(false); uint64_t* pagemap; size_t num_pages; for (size_t i = 0; i < proc->num_maps; i++) { ASSERT_EQ(0, pm_map_pagemap(proc->maps[i], &pagemap, &num_pages)); for (size_t j = 0; j < num_pages; j++) { uint64_t pfn = PM_PAGEMAP_PFN(pagemap[j]); uint64_t map_count_pagemap, map_count_meminfo; ASSERT_EQ(0, pm_kernel_count(ker, pfn, &map_count_pagemap)); ASSERT_TRUE(pi.PageMapCount(pfn, &map_count_meminfo)); // check if map counts are equal EXPECT_EQ(map_count_pagemap, map_count_meminfo); } free(pagemap); } } TEST_F(ValidatePageAcct, TestPageIdle) { // skip the test if idle page tracking isn't enabled if (pm_kernel_init_page_idle(ker) != 0) { return; } PageAcct& pi = PageAcct::Instance(); ASSERT_TRUE(pi.InitPageAcct(true)); uint64_t* pagemap; size_t num_pages; for (size_t i = 0; i < proc->num_maps; i++) { ASSERT_EQ(0, pm_map_pagemap(proc->maps[i], &pagemap, &num_pages)); for (size_t j = 0; j < num_pages; j++) { if (!PM_PAGEMAP_PRESENT(pagemap[j])) continue; uint64_t pfn = PM_PAGEMAP_PFN(pagemap[j]); ASSERT_EQ(0, pm_kernel_mark_page_idle(ker, &pfn, 1)); int idle_status_pagemap = pm_kernel_get_page_idle(ker, pfn); int idle_status_meminfo = pi.IsPageIdle(pfn); EXPECT_EQ(idle_status_pagemap, idle_status_meminfo); } free(pagemap); } } TEST(SysMemInfoParser, TestSysMemInfoFile) { std::string meminfo = R"meminfo(MemTotal: 3019740 kB MemFree: 1809728 kB MemAvailable: 2546560 kB Buffers: 54736 kB Cached: 776052 kB SwapCached: 0 kB Active: 445856 kB Inactive: 459092 kB Active(anon): 78492 kB Inactive(anon): 2240 kB Active(file): 367364 kB Inactive(file): 456852 kB Unevictable: 3096 kB Mlocked: 3096 kB SwapTotal: 0 kB SwapFree: 0 kB Dirty: 32 kB Writeback: 0 kB AnonPages: 74988 kB Mapped: 62624 kB Shmem: 4020 kB Slab: 86464 kB SReclaimable: 44432 kB SUnreclaim: 42032 kB KernelStack: 4880 kB PageTables: 2900 kB NFS_Unstable: 0 kB Bounce: 0 kB WritebackTmp: 0 kB CommitLimit: 1509868 kB Committed_AS: 80296 kB VmallocTotal: 263061440 kB VmallocUsed: 0 kB VmallocChunk: 0 kB AnonHugePages: 6144 kB ShmemHugePages: 0 kB ShmemPmdMapped: 0 kB CmaTotal: 131072 kB CmaFree: 130380 kB HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 2048 kB)meminfo"; TemporaryFile tf; ASSERT_TRUE(tf.fd != -1); ASSERT_TRUE(::android::base::WriteStringToFd(meminfo, tf.fd)); SysMemInfo mi; ASSERT_TRUE(mi.ReadMemInfo(tf.path)); EXPECT_EQ(mi.mem_total_kb(), 3019740); EXPECT_EQ(mi.mem_page_tables_kb(), 2900); } TEST(SysMemInfoParser, TestEmptyFile) { TemporaryFile tf; std::string empty_string = ""; ASSERT_TRUE(tf.fd != -1); ASSERT_TRUE(::android::base::WriteStringToFd(empty_string, tf.fd)); SysMemInfo mi; EXPECT_TRUE(mi.ReadMemInfo(tf.path)); EXPECT_EQ(mi.mem_total_kb(), 0); } int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); if (argc <= 1) { cerr << "Pid of a permanently sleeping process must be provided." << endl; exit(EXIT_FAILURE); } ::android::base::InitLogging(argv, android::base::StderrLogger); pid = std::stoi(std::string(argv[1])); return RUN_ALL_TESTS(); }