/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif // #define DEBUG 1 #if DEBUG #ifdef USE_LIBLOG #define LOG_TAG "usbhost" #include "log/log.h" #define D ALOGD #else #define D printf #endif #else #define D(...) #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "usbhost/usbhost.h" #define DEV_DIR "/dev" #define DEV_BUS_DIR DEV_DIR "/bus" #define USB_FS_DIR DEV_BUS_DIR "/usb" #define USB_FS_ID_SCANNER USB_FS_DIR "/%d/%d" #define USB_FS_ID_FORMAT USB_FS_DIR "/%03d/%03d" // Some devices fail to send string descriptors if we attempt reading > 255 bytes #define MAX_STRING_DESCRIPTOR_LENGTH 255 #define MAX_USBFS_WD_COUNT 10 struct usb_host_context { int fd; usb_device_added_cb cb_added; usb_device_removed_cb cb_removed; void *data; int wds[MAX_USBFS_WD_COUNT]; int wdd; int wddbus; }; #define MAX_DESCRIPTORS_LENGTH 4096 struct usb_device { char dev_name[64]; unsigned char desc[MAX_DESCRIPTORS_LENGTH]; int desc_length; int fd; int writeable; }; static inline int badname(const char *name) { while(*name) { if(!isdigit(*name++)) return 1; } return 0; } static int find_existing_devices_bus(char *busname, usb_device_added_cb added_cb, void *client_data) { char devname[32]; DIR *devdir; struct dirent *de; int done = 0; devdir = opendir(busname); if(devdir == 0) return 0; while ((de = readdir(devdir)) && !done) { if(badname(de->d_name)) continue; snprintf(devname, sizeof(devname), "%s/%s", busname, de->d_name); done = added_cb(devname, client_data); } // end of devdir while closedir(devdir); return done; } /* returns true if one of the callbacks indicates we are done */ static int find_existing_devices(usb_device_added_cb added_cb, void *client_data) { char busname[32]; DIR *busdir; struct dirent *de; int done = 0; busdir = opendir(USB_FS_DIR); if(busdir == 0) return 0; while ((de = readdir(busdir)) != 0 && !done) { if(badname(de->d_name)) continue; snprintf(busname, sizeof(busname), USB_FS_DIR "/%s", de->d_name); done = find_existing_devices_bus(busname, added_cb, client_data); } //end of busdir while closedir(busdir); return done; } static void watch_existing_subdirs(struct usb_host_context *context, int *wds, int wd_count) { char path[100]; int i, ret; wds[0] = inotify_add_watch(context->fd, USB_FS_DIR, IN_CREATE | IN_DELETE); if (wds[0] < 0) return; /* watch existing subdirectories of USB_FS_DIR */ for (i = 1; i < wd_count; i++) { snprintf(path, sizeof(path), USB_FS_DIR "/%03d", i); ret = inotify_add_watch(context->fd, path, IN_CREATE | IN_DELETE); if (ret >= 0) wds[i] = ret; } } struct usb_host_context *usb_host_init() { struct usb_host_context *context = calloc(1, sizeof(struct usb_host_context)); if (!context) { fprintf(stderr, "out of memory in usb_host_context\n"); return NULL; } context->fd = inotify_init(); if (context->fd < 0) { fprintf(stderr, "inotify_init failed\n"); free(context); return NULL; } return context; } void usb_host_cleanup(struct usb_host_context *context) { close(context->fd); free(context); } int usb_host_get_fd(struct usb_host_context *context) { return context->fd; } /* usb_host_get_fd() */ int usb_host_load(struct usb_host_context *context, usb_device_added_cb added_cb, usb_device_removed_cb removed_cb, usb_discovery_done_cb discovery_done_cb, void *client_data) { int done = 0; int i; context->cb_added = added_cb; context->cb_removed = removed_cb; context->data = client_data; D("Created device discovery thread\n"); /* watch for files added and deleted within USB_FS_DIR */ context->wddbus = -1; for (i = 0; i < MAX_USBFS_WD_COUNT; i++) context->wds[i] = -1; /* watch the root for new subdirectories */ context->wdd = inotify_add_watch(context->fd, DEV_DIR, IN_CREATE | IN_DELETE); if (context->wdd < 0) { fprintf(stderr, "inotify_add_watch failed\n"); if (discovery_done_cb) discovery_done_cb(client_data); return done; } watch_existing_subdirs(context, context->wds, MAX_USBFS_WD_COUNT); /* check for existing devices first, after we have inotify set up */ done = find_existing_devices(added_cb, client_data); if (discovery_done_cb) done |= discovery_done_cb(client_data); return done; } /* usb_host_load() */ int usb_host_read_event(struct usb_host_context *context) { struct inotify_event* event; char event_buf[512]; char path[100]; int i, ret, done = 0; int offset = 0; int wd; ret = read(context->fd, event_buf, sizeof(event_buf)); if (ret >= (int)sizeof(struct inotify_event)) { while (offset < ret && !done) { event = (struct inotify_event*)&event_buf[offset]; done = 0; wd = event->wd; if (wd == context->wdd) { if ((event->mask & IN_CREATE) && !strcmp(event->name, "bus")) { context->wddbus = inotify_add_watch(context->fd, DEV_BUS_DIR, IN_CREATE | IN_DELETE); if (context->wddbus < 0) { done = 1; } else { watch_existing_subdirs(context, context->wds, MAX_USBFS_WD_COUNT); done = find_existing_devices(context->cb_added, context->data); } } } else if (wd == context->wddbus) { if ((event->mask & IN_CREATE) && !strcmp(event->name, "usb")) { watch_existing_subdirs(context, context->wds, MAX_USBFS_WD_COUNT); done = find_existing_devices(context->cb_added, context->data); } else if ((event->mask & IN_DELETE) && !strcmp(event->name, "usb")) { for (i = 0; i < MAX_USBFS_WD_COUNT; i++) { if (context->wds[i] >= 0) { inotify_rm_watch(context->fd, context->wds[i]); context->wds[i] = -1; } } } } else if (wd == context->wds[0]) { i = atoi(event->name); snprintf(path, sizeof(path), USB_FS_DIR "/%s", event->name); D("%s subdirectory %s: index: %d\n", (event->mask & IN_CREATE) ? "new" : "gone", path, i); if (i > 0 && i < MAX_USBFS_WD_COUNT) { int local_ret = 0; if (event->mask & IN_CREATE) { local_ret = inotify_add_watch(context->fd, path, IN_CREATE | IN_DELETE); if (local_ret >= 0) context->wds[i] = local_ret; done = find_existing_devices_bus(path, context->cb_added, context->data); } else if (event->mask & IN_DELETE) { inotify_rm_watch(context->fd, context->wds[i]); context->wds[i] = -1; } } } else { for (i = 1; (i < MAX_USBFS_WD_COUNT) && !done; i++) { if (wd == context->wds[i]) { snprintf(path, sizeof(path), USB_FS_DIR "/%03d/%s", i, event->name); if (event->mask == IN_CREATE) { D("new device %s\n", path); done = context->cb_added(path, context->data); } else if (event->mask == IN_DELETE) { D("gone device %s\n", path); done = context->cb_removed(path, context->data); } } } } offset += sizeof(struct inotify_event) + event->len; } } return done; } /* usb_host_read_event() */ void usb_host_run(struct usb_host_context *context, usb_device_added_cb added_cb, usb_device_removed_cb removed_cb, usb_discovery_done_cb discovery_done_cb, void *client_data) { int done; done = usb_host_load(context, added_cb, removed_cb, discovery_done_cb, client_data); while (!done) { done = usb_host_read_event(context); } } /* usb_host_run() */ struct usb_device *usb_device_open(const char *dev_name) { int fd, attempts, writeable = 1; const int SLEEP_BETWEEN_ATTEMPTS_US = 100000; /* 100 ms */ const int64_t MAX_ATTEMPTS = 10; /* 1s */ D("usb_device_open %s\n", dev_name); /* Hack around waiting for permissions to be set on the USB device node. * Should really be a timeout instead of attempt count, and should REALLY * be triggered by the perm change via inotify rather than polling. */ for (attempts = 0; attempts < MAX_ATTEMPTS; ++attempts) { if (access(dev_name, R_OK | W_OK) == 0) { writeable = 1; break; } else { if (access(dev_name, R_OK) == 0) { /* double check that write permission didn't just come along too! */ writeable = (access(dev_name, R_OK | W_OK) == 0); break; } } /* not writeable or readable - sleep and try again. */ D("usb_device_open no access sleeping\n"); usleep(SLEEP_BETWEEN_ATTEMPTS_US); } if (writeable) { fd = open(dev_name, O_RDWR); } else { fd = open(dev_name, O_RDONLY); } D("usb_device_open open returned %d writeable %d errno %d\n", fd, writeable, errno); if (fd < 0) return NULL; struct usb_device* result = usb_device_new(dev_name, fd); if (result) result->writeable = writeable; return result; } void usb_device_close(struct usb_device *device) { close(device->fd); free(device); } struct usb_device *usb_device_new(const char *dev_name, int fd) { struct usb_device *device = calloc(1, sizeof(struct usb_device)); int length; D("usb_device_new %s fd: %d\n", dev_name, fd); if (lseek(fd, 0, SEEK_SET) != 0) goto failed; length = read(fd, device->desc, sizeof(device->desc)); D("usb_device_new read returned %d errno %d\n", length, errno); if (length < 0) goto failed; strncpy(device->dev_name, dev_name, sizeof(device->dev_name) - 1); device->fd = fd; device->desc_length = length; // assume we are writeable, since usb_device_get_fd will only return writeable fds device->writeable = 1; return device; failed: // TODO It would be more appropriate to have callers do this // since this function doesn't "own" this file descriptor. close(fd); free(device); return NULL; } static int usb_device_reopen_writeable(struct usb_device *device) { if (device->writeable) return 1; int fd = open(device->dev_name, O_RDWR); if (fd >= 0) { close(device->fd); device->fd = fd; device->writeable = 1; return 1; } D("usb_device_reopen_writeable failed errno %d\n", errno); return 0; } int usb_device_get_fd(struct usb_device *device) { if (!usb_device_reopen_writeable(device)) return -1; return device->fd; } const char* usb_device_get_name(struct usb_device *device) { return device->dev_name; } int usb_device_get_unique_id(struct usb_device *device) { int bus = 0, dev = 0; sscanf(device->dev_name, USB_FS_ID_SCANNER, &bus, &dev); return bus * 1000 + dev; } int usb_device_get_unique_id_from_name(const char* name) { int bus = 0, dev = 0; sscanf(name, USB_FS_ID_SCANNER, &bus, &dev); return bus * 1000 + dev; } char* usb_device_get_name_from_unique_id(int id) { int bus = id / 1000; int dev = id % 1000; char* result = (char *)calloc(1, strlen(USB_FS_ID_FORMAT)); snprintf(result, strlen(USB_FS_ID_FORMAT) - 1, USB_FS_ID_FORMAT, bus, dev); return result; } uint16_t usb_device_get_vendor_id(struct usb_device *device) { struct usb_device_descriptor* desc = (struct usb_device_descriptor*)device->desc; return __le16_to_cpu(desc->idVendor); } uint16_t usb_device_get_product_id(struct usb_device *device) { struct usb_device_descriptor* desc = (struct usb_device_descriptor*)device->desc; return __le16_to_cpu(desc->idProduct); } const struct usb_device_descriptor* usb_device_get_device_descriptor(struct usb_device* device) { return (struct usb_device_descriptor*)device->desc; } size_t usb_device_get_descriptors_length(const struct usb_device* device) { return device->desc_length; } const unsigned char* usb_device_get_raw_descriptors(const struct usb_device* device) { return device->desc; } /* Returns a USB descriptor string for the given string ID. * Return value: < 0 on error. 0 on success. * The string is returned in ucs2_out in USB-native UCS-2 encoding. * * parameters: * id - the string descriptor index. * timeout - in milliseconds (see Documentation/driver-api/usb/usb.rst) * ucs2_out - Must point to null on call. * Will be filled in with a buffer on success. * If this is non-null on return, it must be free()d. * response_size - size, in bytes, of ucs-2 string in ucs2_out. * The size isn't guaranteed to include null termination. * Call free() to free the result when you are done with it. */ int usb_device_get_string_ucs2(struct usb_device* device, int id, int timeout, void** ucs2_out, size_t* response_size) { __u16 languages[MAX_STRING_DESCRIPTOR_LENGTH / sizeof(__u16)]; char response[MAX_STRING_DESCRIPTOR_LENGTH]; int result; int languageCount = 0; if (id == 0) return -1; if (*ucs2_out != NULL) return -1; memset(languages, 0, sizeof(languages)); // read list of supported languages result = usb_device_control_transfer(device, USB_DIR_IN|USB_TYPE_STANDARD|USB_RECIP_DEVICE, USB_REQ_GET_DESCRIPTOR, (USB_DT_STRING << 8) | 0, 0, languages, sizeof(languages), timeout); if (result > 0) languageCount = (result - 2) / 2; for (int i = 1; i <= languageCount; i++) { memset(response, 0, sizeof(response)); result = usb_device_control_transfer( device, USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE, USB_REQ_GET_DESCRIPTOR, (USB_DT_STRING << 8) | id, languages[i], response, sizeof(response), timeout); if (result >= 2) { // string contents begin at offset 2. int descriptor_len = result - 2; char* out = malloc(descriptor_len + 3); if (out == NULL) { return -1; } memcpy(out, response + 2, descriptor_len); // trail with three additional NULLs, so that there's guaranteed // to be a UCS-2 NULL character beyond whatever USB returned. // The returned string length is still just what USB returned. memset(out + descriptor_len, '\0', 3); *ucs2_out = (void*)out; *response_size = descriptor_len; return 0; } } return -1; } /* Warning: previously this blindly returned the lower 8 bits of * every UCS-2 character in a USB descriptor. Now it will replace * values > 127 with ascii '?'. */ char* usb_device_get_string(struct usb_device* device, int id, int timeout) { char* ascii_string = NULL; size_t raw_string_len = 0; size_t i; if (usb_device_get_string_ucs2(device, id, timeout, (void**)&ascii_string, &raw_string_len) < 0) return NULL; if (ascii_string == NULL) return NULL; for (i = 0; i < raw_string_len / 2; ++i) { // wire format for USB is always little-endian. char lower = ascii_string[2 * i]; char upper = ascii_string[2 * i + 1]; if (upper || (lower & 0x80)) { ascii_string[i] = '?'; } else { ascii_string[i] = lower; } } ascii_string[i] = '\0'; return ascii_string; } char* usb_device_get_manufacturer_name(struct usb_device *device, int timeout) { struct usb_device_descriptor *desc = (struct usb_device_descriptor *)device->desc; return usb_device_get_string(device, desc->iManufacturer, timeout); } char* usb_device_get_product_name(struct usb_device *device, int timeout) { struct usb_device_descriptor *desc = (struct usb_device_descriptor *)device->desc; return usb_device_get_string(device, desc->iProduct, timeout); } int usb_device_get_version(struct usb_device *device) { struct usb_device_descriptor *desc = (struct usb_device_descriptor *)device->desc; return desc->bcdUSB; } char* usb_device_get_serial(struct usb_device *device, int timeout) { struct usb_device_descriptor *desc = (struct usb_device_descriptor *)device->desc; return usb_device_get_string(device, desc->iSerialNumber, timeout); } int usb_device_is_writeable(struct usb_device *device) { return device->writeable; } void usb_descriptor_iter_init(struct usb_device *device, struct usb_descriptor_iter *iter) { iter->config = device->desc; iter->config_end = device->desc + device->desc_length; iter->curr_desc = device->desc; } struct usb_descriptor_header *usb_descriptor_iter_next(struct usb_descriptor_iter *iter) { struct usb_descriptor_header* next; if (iter->curr_desc >= iter->config_end) return NULL; next = (struct usb_descriptor_header*)iter->curr_desc; // Corrupt descriptor with zero length, cannot continue iterating if (next->bLength == 0) { D("usb_descriptor_iter_next got zero length USB descriptor, ending iteration\n"); return NULL; } iter->curr_desc += next->bLength; return next; } int usb_device_claim_interface(struct usb_device *device, unsigned int interface) { return ioctl(device->fd, USBDEVFS_CLAIMINTERFACE, &interface); } int usb_device_release_interface(struct usb_device *device, unsigned int interface) { return ioctl(device->fd, USBDEVFS_RELEASEINTERFACE, &interface); } int usb_device_connect_kernel_driver(struct usb_device *device, unsigned int interface, int connect) { struct usbdevfs_ioctl ctl; ctl.ifno = interface; ctl.ioctl_code = (connect ? USBDEVFS_CONNECT : USBDEVFS_DISCONNECT); ctl.data = NULL; return ioctl(device->fd, USBDEVFS_IOCTL, &ctl); } int usb_device_set_configuration(struct usb_device *device, int configuration) { return ioctl(device->fd, USBDEVFS_SETCONFIGURATION, &configuration); } int usb_device_set_interface(struct usb_device *device, unsigned int interface, unsigned int alt_setting) { struct usbdevfs_setinterface ctl; ctl.interface = interface; ctl.altsetting = alt_setting; return ioctl(device->fd, USBDEVFS_SETINTERFACE, &ctl); } int usb_device_control_transfer(struct usb_device *device, int requestType, int request, int value, int index, void* buffer, int length, unsigned int timeout) { struct usbdevfs_ctrltransfer ctrl; // this usually requires read/write permission if (!usb_device_reopen_writeable(device)) return -1; memset(&ctrl, 0, sizeof(ctrl)); ctrl.bRequestType = requestType; ctrl.bRequest = request; ctrl.wValue = value; ctrl.wIndex = index; ctrl.wLength = length; ctrl.data = buffer; ctrl.timeout = timeout; return ioctl(device->fd, USBDEVFS_CONTROL, &ctrl); } int usb_device_bulk_transfer(struct usb_device *device, int endpoint, void* buffer, unsigned int length, unsigned int timeout) { struct usbdevfs_bulktransfer ctrl; memset(&ctrl, 0, sizeof(ctrl)); ctrl.ep = endpoint; ctrl.len = length; ctrl.data = buffer; ctrl.timeout = timeout; return ioctl(device->fd, USBDEVFS_BULK, &ctrl); } int usb_device_reset(struct usb_device *device) { return ioctl(device->fd, USBDEVFS_RESET); } struct usb_request *usb_request_new(struct usb_device *dev, const struct usb_endpoint_descriptor *ep_desc) { struct usbdevfs_urb *urb = calloc(1, sizeof(struct usbdevfs_urb)); if (!urb) return NULL; if ((ep_desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK) urb->type = USBDEVFS_URB_TYPE_BULK; else if ((ep_desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT) urb->type = USBDEVFS_URB_TYPE_INTERRUPT; else { D("Unsupported endpoint type %d", ep_desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK); free(urb); return NULL; } urb->endpoint = ep_desc->bEndpointAddress; struct usb_request *req = calloc(1, sizeof(struct usb_request)); if (!req) { free(urb); return NULL; } req->dev = dev; req->max_packet_size = __le16_to_cpu(ep_desc->wMaxPacketSize); req->private_data = urb; req->endpoint = urb->endpoint; urb->usercontext = req; return req; } void usb_request_free(struct usb_request *req) { free(req->private_data); free(req); } int usb_request_queue(struct usb_request *req) { struct usbdevfs_urb *urb = (struct usbdevfs_urb*)req->private_data; int res; urb->status = -1; urb->buffer = req->buffer; urb->buffer_length = req->buffer_length; do { res = ioctl(req->dev->fd, USBDEVFS_SUBMITURB, urb); } while((res < 0) && (errno == EINTR)); return res; } struct usb_request *usb_request_wait(struct usb_device *dev, int timeoutMillis) { // Poll until a request becomes available if there is a timeout if (timeoutMillis > 0) { struct pollfd p = {.fd = dev->fd, .events = POLLOUT, .revents = 0}; int res = poll(&p, 1, timeoutMillis); if (res != 1 || p.revents != POLLOUT) { D("[ poll - event %d, error %d]\n", p.revents, errno); return NULL; } } // Read the request. This should usually succeed as we polled before, but it can fail e.g. when // two threads are reading usb requests at the same time and only a single request is available. struct usbdevfs_urb *urb = NULL; int res = TEMP_FAILURE_RETRY(ioctl(dev->fd, timeoutMillis == -1 ? USBDEVFS_REAPURB : USBDEVFS_REAPURBNDELAY, &urb)); D("%s returned %d\n", timeoutMillis == -1 ? "USBDEVFS_REAPURB" : "USBDEVFS_REAPURBNDELAY", res); if (res < 0) { D("[ reap urb - error %d]\n", errno); return NULL; } else { D("[ urb @%p status = %d, actual = %d ]\n", urb, urb->status, urb->actual_length); struct usb_request *req = (struct usb_request*)urb->usercontext; req->actual_length = urb->actual_length; return req; } } int usb_request_cancel(struct usb_request *req) { struct usbdevfs_urb *urb = ((struct usbdevfs_urb*)req->private_data); return ioctl(req->dev->fd, USBDEVFS_DISCARDURB, urb); }