/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "init.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #define _REALLY_INCLUDE_SYS__SYSTEM_PROPERTIES_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "action.h" #include "action_manager.h" #include "action_parser.h" #include "apex_init_util.h" #include "epoll.h" #include "first_stage_init.h" #include "first_stage_mount.h" #include "import_parser.h" #include "keychords.h" #include "lmkd_service.h" #include "mount_handler.h" #include "mount_namespace.h" #include "property_service.h" #include "proto_utils.h" #include "reboot.h" #include "reboot_utils.h" #include "second_stage_resources.h" #include "security.h" #include "selabel.h" #include "selinux.h" #include "service.h" #include "service_list.h" #include "service_parser.h" #include "sigchld_handler.h" #include "snapuserd_transition.h" #include "subcontext.h" #include "system/core/init/property_service.pb.h" #include "util.h" #ifndef RECOVERY #include "com_android_apex.h" #endif // RECOVERY using namespace std::chrono_literals; using namespace std::string_literals; using android::base::boot_clock; using android::base::ConsumePrefix; using android::base::GetProperty; using android::base::ReadFileToString; using android::base::SetProperty; using android::base::StringPrintf; using android::base::Timer; using android::base::Trim; using android::base::unique_fd; using android::fs_mgr::AvbHandle; using android::snapshot::SnapshotManager; namespace android { namespace init { static int property_triggers_enabled = 0; static int sigterm_fd = -1; static int property_fd = -1; struct PendingControlMessage { std::string message; std::string name; pid_t pid; int fd; }; static std::mutex pending_control_messages_lock; static std::queue pending_control_messages; // Init epolls various FDs to wait for various inputs. It previously waited on property changes // with a blocking socket that contained the information related to the change, however, it was easy // to fill that socket and deadlock the system. Now we use locks to handle the property changes // directly in the property thread, however we still must wake the epoll to inform init that there // is a change to process, so we use this FD. It is non-blocking, since we do not care how many // times WakeMainInitThread() is called, only that the epoll will wake. static int wake_main_thread_fd = -1; static void InstallInitNotifier(Epoll* epoll) { wake_main_thread_fd = eventfd(0, EFD_CLOEXEC); if (wake_main_thread_fd == -1) { PLOG(FATAL) << "Failed to create eventfd for waking init"; } auto clear_eventfd = [] { uint64_t counter; TEMP_FAILURE_RETRY(read(wake_main_thread_fd, &counter, sizeof(counter))); }; if (auto result = epoll->RegisterHandler(wake_main_thread_fd, clear_eventfd); !result.ok()) { LOG(FATAL) << result.error(); } } static void WakeMainInitThread() { uint64_t counter = 1; TEMP_FAILURE_RETRY(write(wake_main_thread_fd, &counter, sizeof(counter))); } static class PropWaiterState { public: bool StartWaiting(const char* name, const char* value) { auto lock = std::lock_guard{lock_}; if (waiting_for_prop_) { return false; } if (GetProperty(name, "") != value) { // Current property value is not equal to expected value wait_prop_name_ = name; wait_prop_value_ = value; waiting_for_prop_.reset(new Timer()); } else { LOG(INFO) << "start_waiting_for_property(\"" << name << "\", \"" << value << "\"): already set"; } return true; } void ResetWaitForProp() { auto lock = std::lock_guard{lock_}; ResetWaitForPropLocked(); } void CheckAndResetWait(const std::string& name, const std::string& value) { auto lock = std::lock_guard{lock_}; // We always record how long init waited for ueventd to tell us cold boot finished. // If we aren't waiting on this property, it means that ueventd finished before we even // started to wait. if (name == kColdBootDoneProp) { auto time_waited = waiting_for_prop_ ? waiting_for_prop_->duration().count() : 0; std::thread([time_waited] { SetProperty("ro.boottime.init.cold_boot_wait", std::to_string(time_waited)); }).detach(); } if (waiting_for_prop_) { if (wait_prop_name_ == name && wait_prop_value_ == value) { LOG(INFO) << "Wait for property '" << wait_prop_name_ << "=" << wait_prop_value_ << "' took " << *waiting_for_prop_; ResetWaitForPropLocked(); WakeMainInitThread(); } } } // This is not thread safe because it releases the lock when it returns, so the waiting state // may change. However, we only use this function to prevent running commands in the main // thread loop when we are waiting, so we do not care about false positives; only false // negatives. StartWaiting() and this function are always called from the same thread, so false // negatives are not possible and therefore we're okay. bool MightBeWaiting() { auto lock = std::lock_guard{lock_}; return static_cast(waiting_for_prop_); } private: void ResetWaitForPropLocked() EXCLUSIVE_LOCKS_REQUIRED(lock_) { wait_prop_name_.clear(); wait_prop_value_.clear(); waiting_for_prop_.reset(); } std::mutex lock_; GUARDED_BY(lock_) std::unique_ptr waiting_for_prop_{nullptr}; GUARDED_BY(lock_) std::string wait_prop_name_; GUARDED_BY(lock_) std::string wait_prop_value_; } prop_waiter_state; bool start_waiting_for_property(const char* name, const char* value) { return prop_waiter_state.StartWaiting(name, value); } void ResetWaitForProp() { prop_waiter_state.ResetWaitForProp(); } static class ShutdownState { public: void TriggerShutdown(const std::string& command) { // We can't call HandlePowerctlMessage() directly in this function, // because it modifies the contents of the action queue, which can cause the action queue // to get into a bad state if this function is called from a command being executed by the // action queue. Instead we set this flag and ensure that shutdown happens before the next // command is run in the main init loop. auto lock = std::lock_guard{shutdown_command_lock_}; shutdown_command_ = command; do_shutdown_ = true; WakeMainInitThread(); } std::optional CheckShutdown() __attribute__((warn_unused_result)) { auto lock = std::lock_guard{shutdown_command_lock_}; if (do_shutdown_ && !IsShuttingDown()) { do_shutdown_ = false; return shutdown_command_; } return {}; } private: std::mutex shutdown_command_lock_; std::string shutdown_command_ GUARDED_BY(shutdown_command_lock_); bool do_shutdown_ = false; } shutdown_state; void DumpState() { ServiceList::GetInstance().DumpState(); ActionManager::GetInstance().DumpState(); } Parser CreateParser(ActionManager& action_manager, ServiceList& service_list) { Parser parser; parser.AddSectionParser("service", std::make_unique( &service_list, GetSubcontext(), std::nullopt)); parser.AddSectionParser("on", std::make_unique(&action_manager, GetSubcontext())); parser.AddSectionParser("import", std::make_unique(&parser)); return parser; } #ifndef RECOVERY template struct LibXmlErrorHandler { T handler_; template LibXmlErrorHandler(Handler&& handler) : handler_(std::move(handler)) { xmlSetGenericErrorFunc(nullptr, &ErrorHandler); } ~LibXmlErrorHandler() { xmlSetGenericErrorFunc(nullptr, nullptr); } static void ErrorHandler(void*, const char* msg, ...) { va_list args; va_start(args, msg); char* formatted; if (vasprintf(&formatted, msg, args) >= 0) { LOG(ERROR) << formatted; } free(formatted); va_end(args); } }; template LibXmlErrorHandler(Handler&&) -> LibXmlErrorHandler; #endif // RECOVERY // Returns a Parser that accepts scripts from APEX modules. It supports `service` and `on`. Parser CreateApexConfigParser(ActionManager& action_manager, ServiceList& service_list) { Parser parser; auto subcontext = GetSubcontext(); #ifndef RECOVERY if (subcontext) { const auto apex_info_list_file = "/apex/apex-info-list.xml"; auto error_handler = LibXmlErrorHandler([&](const auto& error_message) { LOG(ERROR) << "Failed to read " << apex_info_list_file << ":" << error_message; }); const auto apex_info_list = com::android::apex::readApexInfoList(apex_info_list_file); if (apex_info_list.has_value()) { std::vector subcontext_apexes; for (const auto& info : apex_info_list->getApexInfo()) { if (info.hasPreinstalledModulePath() && subcontext->PathMatchesSubcontext(info.getPreinstalledModulePath())) { subcontext_apexes.push_back(info.getModuleName()); } } subcontext->SetApexList(std::move(subcontext_apexes)); } } #endif // RECOVERY parser.AddSectionParser("service", std::make_unique(&service_list, subcontext, std::nullopt)); parser.AddSectionParser("on", std::make_unique(&action_manager, subcontext)); return parser; } static void LoadBootScripts(ActionManager& action_manager, ServiceList& service_list) { Parser parser = CreateParser(action_manager, service_list); std::string bootscript = GetProperty("ro.boot.init_rc", ""); if (bootscript.empty()) { parser.ParseConfig("/system/etc/init/hw/init.rc"); if (!parser.ParseConfig("/system/etc/init")) { late_import_paths.emplace_back("/system/etc/init"); } // late_import is available only in Q and earlier release. As we don't // have system_ext in those versions, skip late_import for system_ext. parser.ParseConfig("/system_ext/etc/init"); if (!parser.ParseConfig("/vendor/etc/init")) { late_import_paths.emplace_back("/vendor/etc/init"); } if (!parser.ParseConfig("/odm/etc/init")) { late_import_paths.emplace_back("/odm/etc/init"); } if (!parser.ParseConfig("/product/etc/init")) { late_import_paths.emplace_back("/product/etc/init"); } } else { parser.ParseConfig(bootscript); } } void PropertyChanged(const std::string& name, const std::string& value) { // If the property is sys.powerctl, we bypass the event queue and immediately handle it. // This is to ensure that init will always and immediately shutdown/reboot, regardless of // if there are other pending events to process or if init is waiting on an exec service or // waiting on a property. // In non-thermal-shutdown case, 'shutdown' trigger will be fired to let device specific // commands to be executed. if (name == "sys.powerctl") { trigger_shutdown(value); } if (property_triggers_enabled) { ActionManager::GetInstance().QueuePropertyChange(name, value); WakeMainInitThread(); } prop_waiter_state.CheckAndResetWait(name, value); } static std::optional HandleProcessActions() { std::optional next_process_action_time; for (const auto& s : ServiceList::GetInstance()) { if ((s->flags() & SVC_RUNNING) && s->timeout_period()) { auto timeout_time = s->time_started() + *s->timeout_period(); if (boot_clock::now() > timeout_time) { s->Timeout(); } else { if (!next_process_action_time || timeout_time < *next_process_action_time) { next_process_action_time = timeout_time; } } } if (!(s->flags() & SVC_RESTARTING)) continue; auto restart_time = s->time_started() + s->restart_period(); if (boot_clock::now() > restart_time) { if (auto result = s->Start(); !result.ok()) { LOG(ERROR) << "Could not restart process '" << s->name() << "': " << result.error(); } } else { if (!next_process_action_time || restart_time < *next_process_action_time) { next_process_action_time = restart_time; } } } return next_process_action_time; } static Result DoControlStart(Service* service) { return service->Start(); } static Result DoControlStop(Service* service) { service->Stop(); return {}; } static Result DoControlRestart(Service* service) { service->Restart(); return {}; } int StopServicesFromApex(const std::string& apex_name) { auto services = ServiceList::GetInstance().FindServicesByApexName(apex_name); if (services.empty()) { LOG(INFO) << "No service found for APEX: " << apex_name; return 0; } std::set service_names; for (const auto& service : services) { service_names.emplace(service->name()); } constexpr std::chrono::milliseconds kServiceStopTimeout = 10s; int still_running = StopServicesAndLogViolations(service_names, kServiceStopTimeout, true /*SIGTERM*/); // Send SIGKILL to ones that didn't terminate cleanly. if (still_running > 0) { still_running = StopServicesAndLogViolations(service_names, 0ms, false /*SIGKILL*/); } return still_running; } void RemoveServiceAndActionFromApex(const std::string& apex_name) { // Remove services and actions that match apex name ActionManager::GetInstance().RemoveActionIf([&](const std::unique_ptr& action) -> bool { if (GetApexNameFromFileName(action->filename()) == apex_name) { return true; } return false; }); ServiceList::GetInstance().RemoveServiceIf([&](const std::unique_ptr& s) -> bool { if (GetApexNameFromFileName(s->filename()) == apex_name) { return true; } return false; }); } static Result DoUnloadApex(const std::string& apex_name) { if (StopServicesFromApex(apex_name) > 0) { return Error() << "Unable to stop all service from " << apex_name; } RemoveServiceAndActionFromApex(apex_name); return {}; } static Result UpdateApexLinkerConfig(const std::string& apex_name) { // Do not invoke linkerconfig when there's no bin/ in the apex. const std::string bin_path = "/apex/" + apex_name + "/bin"; if (access(bin_path.c_str(), R_OK) != 0) { return {}; } const char* linkerconfig_binary = "/apex/com.android.runtime/bin/linkerconfig"; const char* linkerconfig_target = "/linkerconfig"; const char* arguments[] = {linkerconfig_binary, "--target", linkerconfig_target, "--apex", apex_name.c_str(), "--strict"}; if (logwrap_fork_execvp(arraysize(arguments), arguments, nullptr, false, LOG_KLOG, false, nullptr) != 0) { return ErrnoError() << "failed to execute linkerconfig"; } LOG(INFO) << "Generated linker configuration for " << apex_name; return {}; } static Result DoLoadApex(const std::string& apex_name) { if (auto result = ParseRcScriptsFromApex(apex_name); !result.ok()) { return result.error(); } if (auto result = UpdateApexLinkerConfig(apex_name); !result.ok()) { return result.error(); } return {}; } enum class ControlTarget { SERVICE, // function gets called for the named service INTERFACE, // action gets called for every service that holds this interface }; using ControlMessageFunction = std::function(Service*)>; static const std::map>& GetControlMessageMap() { // clang-format off static const std::map> control_message_functions = { {"sigstop_on", [](auto* service) { service->set_sigstop(true); return Result{}; }}, {"sigstop_off", [](auto* service) { service->set_sigstop(false); return Result{}; }}, {"oneshot_on", [](auto* service) { service->set_oneshot(true); return Result{}; }}, {"oneshot_off", [](auto* service) { service->set_oneshot(false); return Result{}; }}, {"start", DoControlStart}, {"stop", DoControlStop}, {"restart", DoControlRestart}, }; // clang-format on return control_message_functions; } static Result HandleApexControlMessage(std::string_view action, const std::string& name, std::string_view message) { if (action == "load") { return DoLoadApex(name); } else if (action == "unload") { return DoUnloadApex(name); } else { return Error() << "Unknown control msg '" << message << "'"; } } static bool HandleControlMessage(std::string_view message, const std::string& name, pid_t from_pid) { std::string cmdline_path = StringPrintf("proc/%d/cmdline", from_pid); std::string process_cmdline; if (ReadFileToString(cmdline_path, &process_cmdline)) { std::replace(process_cmdline.begin(), process_cmdline.end(), '\0', ' '); process_cmdline = Trim(process_cmdline); } else { process_cmdline = "unknown process"; } auto action = message; if (ConsumePrefix(&action, "apex_")) { if (auto result = HandleApexControlMessage(action, name, message); !result.ok()) { LOG(ERROR) << "Control message: Could not ctl." << message << " for '" << name << "' from pid: " << from_pid << " (" << process_cmdline << "): " << result.error(); return false; } LOG(INFO) << "Control message: Processed ctl." << message << " for '" << name << "' from pid: " << from_pid << " (" << process_cmdline << ")"; return true; } Service* service = nullptr; if (ConsumePrefix(&action, "interface_")) { service = ServiceList::GetInstance().FindInterface(name); } else { service = ServiceList::GetInstance().FindService(name); } if (service == nullptr) { LOG(ERROR) << "Control message: Could not find '" << name << "' for ctl." << message << " from pid: " << from_pid << " (" << process_cmdline << ")"; return false; } const auto& map = GetControlMessageMap(); const auto it = map.find(action); if (it == map.end()) { LOG(ERROR) << "Unknown control msg '" << message << "'"; return false; } const auto& function = it->second; if (auto result = function(service); !result.ok()) { LOG(ERROR) << "Control message: Could not ctl." << message << " for '" << name << "' from pid: " << from_pid << " (" << process_cmdline << "): " << result.error(); return false; } LOG(INFO) << "Control message: Processed ctl." << message << " for '" << name << "' from pid: " << from_pid << " (" << process_cmdline << ")"; return true; } bool QueueControlMessage(const std::string& message, const std::string& name, pid_t pid, int fd) { auto lock = std::lock_guard{pending_control_messages_lock}; if (pending_control_messages.size() > 100) { LOG(ERROR) << "Too many pending control messages, dropped '" << message << "' for '" << name << "' from pid: " << pid; return false; } pending_control_messages.push({message, name, pid, fd}); WakeMainInitThread(); return true; } static void HandleControlMessages() { auto lock = std::unique_lock{pending_control_messages_lock}; // Init historically would only execute handle one property message, including control messages // in each iteration of its main loop. We retain this behavior here to prevent starvation of // other actions in the main loop. if (!pending_control_messages.empty()) { auto control_message = pending_control_messages.front(); pending_control_messages.pop(); lock.unlock(); bool success = HandleControlMessage(control_message.message, control_message.name, control_message.pid); uint32_t response = success ? PROP_SUCCESS : PROP_ERROR_HANDLE_CONTROL_MESSAGE; if (control_message.fd != -1) { TEMP_FAILURE_RETRY(send(control_message.fd, &response, sizeof(response), 0)); close(control_message.fd); } lock.lock(); } // If we still have items to process, make sure we wake back up to do so. if (!pending_control_messages.empty()) { WakeMainInitThread(); } } static Result wait_for_coldboot_done_action(const BuiltinArguments& args) { if (!prop_waiter_state.StartWaiting(kColdBootDoneProp, "true")) { LOG(FATAL) << "Could not wait for '" << kColdBootDoneProp << "'"; } return {}; } static Result SetupCgroupsAction(const BuiltinArguments&) { if (!CgroupsAvailable()) { LOG(INFO) << "Cgroups support in kernel is not enabled"; return {}; } // Have to create using make_dir function // for appropriate sepolicy to be set for it make_dir(android::base::Dirname(CGROUPS_RC_PATH), 0711); if (!CgroupSetup()) { return ErrnoError() << "Failed to setup cgroups"; } return {}; } static void export_oem_lock_status() { if (!android::base::GetBoolProperty("ro.oem_unlock_supported", false)) { return; } SetProperty( "ro.boot.flash.locked", android::base::GetProperty("ro.boot.verifiedbootstate", "") == "orange" ? "0" : "1"); } static Result property_enable_triggers_action(const BuiltinArguments& args) { /* Enable property triggers. */ property_triggers_enabled = 1; return {}; } static Result queue_property_triggers_action(const BuiltinArguments& args) { ActionManager::GetInstance().QueueBuiltinAction(property_enable_triggers_action, "enable_property_trigger"); ActionManager::GetInstance().QueueAllPropertyActions(); return {}; } // Set the UDC controller for the ConfigFS USB Gadgets. // Read the UDC controller in use from "/sys/class/udc". // In case of multiple UDC controllers select the first one. static void SetUsbController() { static auto controller_set = false; if (controller_set) return; std::unique_ptrdir(opendir("/sys/class/udc"), closedir); if (!dir) return; dirent* dp; while ((dp = readdir(dir.get())) != nullptr) { if (dp->d_name[0] == '.') continue; SetProperty("sys.usb.controller", dp->d_name); controller_set = true; break; } } /// Set ro.kernel.version property to contain the major.minor pair as returned /// by uname(2). static void SetKernelVersion() { struct utsname uts; unsigned int major, minor; if ((uname(&uts) != 0) || (sscanf(uts.release, "%u.%u", &major, &minor) != 2)) { LOG(ERROR) << "Could not parse the kernel version from uname"; return; } SetProperty("ro.kernel.version", android::base::StringPrintf("%u.%u", major, minor)); } static void HandleSigtermSignal(const signalfd_siginfo& siginfo) { if (siginfo.ssi_pid != 0) { // Drop any userspace SIGTERM requests. LOG(DEBUG) << "Ignoring SIGTERM from pid " << siginfo.ssi_pid; return; } HandlePowerctlMessage("shutdown,container"); } static void HandleSignalFd(int signal) { signalfd_siginfo siginfo; const int signal_fd = signal == SIGCHLD ? Service::GetSigchldFd() : sigterm_fd; ssize_t bytes_read = TEMP_FAILURE_RETRY(read(signal_fd, &siginfo, sizeof(siginfo))); if (bytes_read != sizeof(siginfo)) { PLOG(ERROR) << "Failed to read siginfo from signal_fd"; return; } switch (siginfo.ssi_signo) { case SIGCHLD: ReapAnyOutstandingChildren(); break; case SIGTERM: HandleSigtermSignal(siginfo); break; default: LOG(ERROR) << "signal_fd: received unexpected signal " << siginfo.ssi_signo; break; } } static void UnblockSignals() { const struct sigaction act { .sa_handler = SIG_DFL }; sigaction(SIGCHLD, &act, nullptr); sigset_t mask; sigemptyset(&mask); sigaddset(&mask, SIGCHLD); sigaddset(&mask, SIGTERM); if (sigprocmask(SIG_UNBLOCK, &mask, nullptr) == -1) { PLOG(FATAL) << "failed to unblock signals for PID " << getpid(); } } static Result RegisterSignalFd(Epoll* epoll, int signal, int fd) { return epoll->RegisterHandler( fd, [signal]() { HandleSignalFd(signal); }, EPOLLIN | EPOLLPRI); } static Result CreateAndRegisterSignalFd(Epoll* epoll, int signal) { sigset_t mask; sigemptyset(&mask); sigaddset(&mask, signal); if (sigprocmask(SIG_BLOCK, &mask, nullptr) == -1) { return ErrnoError() << "failed to block signal " << signal; } unique_fd signal_fd(signalfd(-1, &mask, SFD_CLOEXEC)); if (signal_fd.get() < 0) { return ErrnoError() << "failed to create signalfd for signal " << signal; } OR_RETURN(RegisterSignalFd(epoll, signal, signal_fd.get())); return signal_fd.release(); } static void InstallSignalFdHandler(Epoll* epoll) { // Applying SA_NOCLDSTOP to a defaulted SIGCHLD handler prevents the signalfd from receiving // SIGCHLD when a child process stops or continues (b/77867680#comment9). const struct sigaction act { .sa_flags = SA_NOCLDSTOP, .sa_handler = SIG_DFL }; sigaction(SIGCHLD, &act, nullptr); // Register a handler to unblock signals in the child processes. const int result = pthread_atfork(nullptr, nullptr, &UnblockSignals); if (result != 0) { LOG(FATAL) << "Failed to register a fork handler: " << strerror(result); } Result cs_result = RegisterSignalFd(epoll, SIGCHLD, Service::GetSigchldFd()); if (!cs_result.ok()) { PLOG(FATAL) << cs_result.error(); } if (!IsRebootCapable()) { Result cs_result = CreateAndRegisterSignalFd(epoll, SIGTERM); if (!cs_result.ok()) { PLOG(FATAL) << cs_result.error(); } sigterm_fd = cs_result.value(); } } void HandleKeychord(const std::vector& keycodes) { // Only handle keychords if adb is enabled. std::string adb_enabled = android::base::GetProperty("init.svc.adbd", ""); if (adb_enabled != "running") { LOG(WARNING) << "Not starting service for keychord " << android::base::Join(keycodes, ' ') << " because ADB is disabled"; return; } auto found = false; for (const auto& service : ServiceList::GetInstance()) { auto svc = service.get(); if (svc->keycodes() == keycodes) { found = true; LOG(INFO) << "Starting service '" << svc->name() << "' from keychord " << android::base::Join(keycodes, ' '); if (auto result = svc->Start(); !result.ok()) { LOG(ERROR) << "Could not start service '" << svc->name() << "' from keychord " << android::base::Join(keycodes, ' ') << ": " << result.error(); } } } if (!found) { LOG(ERROR) << "Service for keychord " << android::base::Join(keycodes, ' ') << " not found"; } } static void UmountDebugRamdisk() { if (umount("/debug_ramdisk") != 0) { PLOG(ERROR) << "Failed to umount /debug_ramdisk"; } } static void UmountSecondStageRes() { if (umount(kSecondStageRes) != 0) { PLOG(ERROR) << "Failed to umount " << kSecondStageRes; } } static void MountExtraFilesystems() { #define CHECKCALL(x) \ if ((x) != 0) PLOG(FATAL) << #x " failed."; // /apex is used to mount APEXes CHECKCALL(mount("tmpfs", "/apex", "tmpfs", MS_NOEXEC | MS_NOSUID | MS_NODEV, "mode=0755,uid=0,gid=0")); if (NeedsTwoMountNamespaces()) { // /bootstrap-apex is used to mount "bootstrap" APEXes. CHECKCALL(mount("tmpfs", "/bootstrap-apex", "tmpfs", MS_NOEXEC | MS_NOSUID | MS_NODEV, "mode=0755,uid=0,gid=0")); } // /linkerconfig is used to keep generated linker configuration CHECKCALL(mount("tmpfs", "/linkerconfig", "tmpfs", MS_NOEXEC | MS_NOSUID | MS_NODEV, "mode=0755,uid=0,gid=0")); #undef CHECKCALL } static void RecordStageBoottimes(const boot_clock::time_point& second_stage_start_time) { int64_t first_stage_start_time_ns = -1; if (auto first_stage_start_time_str = getenv(kEnvFirstStageStartedAt); first_stage_start_time_str) { SetProperty("ro.boottime.init", first_stage_start_time_str); android::base::ParseInt(first_stage_start_time_str, &first_stage_start_time_ns); } unsetenv(kEnvFirstStageStartedAt); int64_t selinux_start_time_ns = -1; if (auto selinux_start_time_str = getenv(kEnvSelinuxStartedAt); selinux_start_time_str) { android::base::ParseInt(selinux_start_time_str, &selinux_start_time_ns); } unsetenv(kEnvSelinuxStartedAt); if (selinux_start_time_ns == -1) return; if (first_stage_start_time_ns == -1) return; SetProperty("ro.boottime.init.first_stage", std::to_string(selinux_start_time_ns - first_stage_start_time_ns)); SetProperty("ro.boottime.init.selinux", std::to_string(second_stage_start_time.time_since_epoch().count() - selinux_start_time_ns)); if (auto init_module_time_str = getenv(kEnvInitModuleDurationMs); init_module_time_str) { SetProperty("ro.boottime.init.modules", init_module_time_str); unsetenv(kEnvInitModuleDurationMs); } } void SendLoadPersistentPropertiesMessage() { auto init_message = InitMessage{}; init_message.set_load_persistent_properties(true); if (auto result = SendMessage(property_fd, init_message); !result.ok()) { LOG(ERROR) << "Failed to send load persistent properties message: " << result.error(); } } static Result ConnectEarlyStageSnapuserdAction(const BuiltinArguments& args) { auto pid = GetSnapuserdFirstStagePid(); if (!pid) { return {}; } auto info = GetSnapuserdFirstStageInfo(); if (auto iter = std::find(info.begin(), info.end(), "socket"s); iter == info.end()) { // snapuserd does not support socket handoff, so exit early. return {}; } // Socket handoff is supported. auto svc = ServiceList::GetInstance().FindService("snapuserd"); if (!svc) { LOG(FATAL) << "Failed to find snapuserd service entry"; } svc->SetShutdownCritical(); svc->SetStartedInFirstStage(*pid); svc = ServiceList::GetInstance().FindService("snapuserd_proxy"); if (!svc) { LOG(FATAL) << "Failed find snapuserd_proxy service entry, merge will never initiate"; } if (!svc->MarkSocketPersistent("snapuserd")) { LOG(FATAL) << "Could not find snapuserd socket in snapuserd_proxy service entry"; } if (auto result = svc->Start(); !result.ok()) { LOG(FATAL) << "Could not start snapuserd_proxy: " << result.error(); } return {}; } int SecondStageMain(int argc, char** argv) { if (REBOOT_BOOTLOADER_ON_PANIC) { InstallRebootSignalHandlers(); } // No threads should be spin up until signalfd // is registered. If the threads are indeed required, // each of these threads _should_ make sure SIGCHLD signal // is blocked. See b/223076262 boot_clock::time_point start_time = boot_clock::now(); trigger_shutdown = [](const std::string& command) { shutdown_state.TriggerShutdown(command); }; SetStdioToDevNull(argv); InitKernelLogging(argv); LOG(INFO) << "init second stage started!"; SelinuxSetupKernelLogging(); // Update $PATH in the case the second stage init is newer than first stage init, where it is // first set. if (setenv("PATH", _PATH_DEFPATH, 1) != 0) { PLOG(FATAL) << "Could not set $PATH to '" << _PATH_DEFPATH << "' in second stage"; } // Init should not crash because of a dependence on any other process, therefore we ignore // SIGPIPE and handle EPIPE at the call site directly. Note that setting a signal to SIG_IGN // is inherited across exec, but custom signal handlers are not. Since we do not want to // ignore SIGPIPE for child processes, we set a no-op function for the signal handler instead. { struct sigaction action = {.sa_flags = SA_RESTART}; action.sa_handler = [](int) {}; sigaction(SIGPIPE, &action, nullptr); } // Set init and its forked children's oom_adj. if (auto result = WriteFile("/proc/1/oom_score_adj", StringPrintf("%d", DEFAULT_OOM_SCORE_ADJUST)); !result.ok()) { LOG(ERROR) << "Unable to write " << DEFAULT_OOM_SCORE_ADJUST << " to /proc/1/oom_score_adj: " << result.error(); } // Set up a session keyring that all processes will have access to. It // will hold things like FBE encryption keys. No process should override // its session keyring. keyctl_get_keyring_ID(KEY_SPEC_SESSION_KEYRING, 1); // Indicate that booting is in progress to background fw loaders, etc. close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000)); // See if need to load debug props to allow adb root, when the device is unlocked. const char* force_debuggable_env = getenv("INIT_FORCE_DEBUGGABLE"); bool load_debug_prop = false; if (force_debuggable_env && AvbHandle::IsDeviceUnlocked()) { load_debug_prop = "true"s == force_debuggable_env; } unsetenv("INIT_FORCE_DEBUGGABLE"); // Umount the debug ramdisk so property service doesn't read .prop files from there, when it // is not meant to. if (!load_debug_prop) { UmountDebugRamdisk(); } PropertyInit(); // Umount second stage resources after property service has read the .prop files. UmountSecondStageRes(); // Umount the debug ramdisk after property service has read the .prop files when it means to. if (load_debug_prop) { UmountDebugRamdisk(); } // Mount extra filesystems required during second stage init MountExtraFilesystems(); // Now set up SELinux for second stage. SelabelInitialize(); SelinuxRestoreContext(); Epoll epoll; if (auto result = epoll.Open(); !result.ok()) { PLOG(FATAL) << result.error(); } // We always reap children before responding to the other pending functions. This is to // prevent a race where other daemons see that a service has exited and ask init to // start it again via ctl.start before init has reaped it. epoll.SetFirstCallback(ReapAnyOutstandingChildren); InstallSignalFdHandler(&epoll); InstallInitNotifier(&epoll); StartPropertyService(&property_fd); // Make the time that init stages started available for bootstat to log. RecordStageBoottimes(start_time); // Set libavb version for Framework-only OTA match in Treble build. if (const char* avb_version = getenv("INIT_AVB_VERSION"); avb_version != nullptr) { SetProperty("ro.boot.avb_version", avb_version); } unsetenv("INIT_AVB_VERSION"); fs_mgr_vendor_overlay_mount_all(); export_oem_lock_status(); MountHandler mount_handler(&epoll); SetUsbController(); SetKernelVersion(); const BuiltinFunctionMap& function_map = GetBuiltinFunctionMap(); Action::set_function_map(&function_map); if (!SetupMountNamespaces()) { PLOG(FATAL) << "SetupMountNamespaces failed"; } InitializeSubcontext(); ActionManager& am = ActionManager::GetInstance(); ServiceList& sm = ServiceList::GetInstance(); LoadBootScripts(am, sm); // Turning this on and letting the INFO logging be discarded adds 0.2s to // Nexus 9 boot time, so it's disabled by default. if (false) DumpState(); // Make the GSI status available before scripts start running. auto is_running = android::gsi::IsGsiRunning() ? "1" : "0"; SetProperty(gsi::kGsiBootedProp, is_running); auto is_installed = android::gsi::IsGsiInstalled() ? "1" : "0"; SetProperty(gsi::kGsiInstalledProp, is_installed); if (android::gsi::IsGsiRunning()) { std::string dsu_slot; if (android::gsi::GetActiveDsu(&dsu_slot)) { SetProperty(gsi::kDsuSlotProp, dsu_slot); } } am.QueueBuiltinAction(SetupCgroupsAction, "SetupCgroups"); am.QueueBuiltinAction(SetKptrRestrictAction, "SetKptrRestrict"); am.QueueBuiltinAction(TestPerfEventSelinuxAction, "TestPerfEventSelinux"); am.QueueEventTrigger("early-init"); am.QueueBuiltinAction(ConnectEarlyStageSnapuserdAction, "ConnectEarlyStageSnapuserd"); // Queue an action that waits for coldboot done so we know ueventd has set up all of /dev... am.QueueBuiltinAction(wait_for_coldboot_done_action, "wait_for_coldboot_done"); // ... so that we can start queuing up actions that require stuff from /dev. am.QueueBuiltinAction(SetMmapRndBitsAction, "SetMmapRndBits"); Keychords keychords; am.QueueBuiltinAction( [&epoll, &keychords](const BuiltinArguments& args) -> Result { for (const auto& svc : ServiceList::GetInstance()) { keychords.Register(svc->keycodes()); } keychords.Start(&epoll, HandleKeychord); return {}; }, "KeychordInit"); // Trigger all the boot actions to get us started. am.QueueEventTrigger("init"); // Don't mount filesystems or start core system services in charger mode. std::string bootmode = GetProperty("ro.bootmode", ""); if (bootmode == "charger") { am.QueueEventTrigger("charger"); } else { am.QueueEventTrigger("late-init"); } // Run all property triggers based on current state of the properties. am.QueueBuiltinAction(queue_property_triggers_action, "queue_property_triggers"); // Restore prio before main loop setpriority(PRIO_PROCESS, 0, 0); while (true) { // By default, sleep until something happens. Do not convert far_future into // std::chrono::milliseconds because that would trigger an overflow. The unit of boot_clock // is 1ns. const boot_clock::time_point far_future = boot_clock::time_point::max(); boot_clock::time_point next_action_time = far_future; auto shutdown_command = shutdown_state.CheckShutdown(); if (shutdown_command) { LOG(INFO) << "Got shutdown_command '" << *shutdown_command << "' Calling HandlePowerctlMessage()"; HandlePowerctlMessage(*shutdown_command); } if (!(prop_waiter_state.MightBeWaiting() || Service::is_exec_service_running())) { am.ExecuteOneCommand(); // If there's more work to do, wake up again immediately. if (am.HasMoreCommands()) { next_action_time = boot_clock::now(); } } // Since the above code examined pending actions, no new actions must be // queued by the code between this line and the Epoll::Wait() call below // without calling WakeMainInitThread(). if (!IsShuttingDown()) { auto next_process_action_time = HandleProcessActions(); // If there's a process that needs restarting, wake up in time for that. if (next_process_action_time) { next_action_time = std::min(next_action_time, *next_process_action_time); } } std::optional epoll_timeout; if (next_action_time != far_future) { epoll_timeout = std::chrono::ceil( std::max(next_action_time - boot_clock::now(), 0ns)); } auto epoll_result = epoll.Wait(epoll_timeout); if (!epoll_result.ok()) { LOG(ERROR) << epoll_result.error(); } if (!IsShuttingDown()) { HandleControlMessages(); SetUsbController(); } } return 0; } } // namespace init } // namespace android