/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define _FILE_OFFSET_BITS 64 #define _LARGEFILE64_SOURCE 1 #include #include #include #include #include #include #include #include #include #include #include #include #include "defs.h" #include "output_file.h" #include "sparse_crc32.h" #include "sparse_format.h" #include #ifndef _WIN32 #define O_BINARY 0 #else #define ftruncate64 ftruncate #endif #if defined(__APPLE__) && defined(__MACH__) #define lseek64 lseek #define ftruncate64 ftruncate #define off64_t off_t #endif #define SPARSE_HEADER_MAJOR_VER 1 #define SPARSE_HEADER_MINOR_VER 0 #define SPARSE_HEADER_LEN (sizeof(sparse_header_t)) #define CHUNK_HEADER_LEN (sizeof(chunk_header_t)) #define FILL_ZERO_BUFSIZE (2 * 1024 * 1024) #define container_of(inner, outer_t, elem) ((outer_t*)((char*)(inner)-offsetof(outer_t, elem))) static constexpr size_t kMaxMmapSize = 256 * 1024 * 1024; struct output_file_ops { int (*open)(struct output_file*, int fd); int (*skip)(struct output_file*, int64_t); int (*pad)(struct output_file*, int64_t); int (*write)(struct output_file*, void*, size_t); void (*close)(struct output_file*); }; struct sparse_file_ops { int (*write_data_chunk)(struct output_file* out, uint64_t len, void* data); int (*write_fill_chunk)(struct output_file* out, uint64_t len, uint32_t fill_val); int (*write_skip_chunk)(struct output_file* out, uint64_t len); int (*write_end_chunk)(struct output_file* out); int (*write_fd_chunk)(struct output_file* out, uint64_t len, int fd, int64_t offset); }; struct output_file { int64_t cur_out_ptr; unsigned int chunk_cnt; uint32_t crc32; struct output_file_ops* ops; struct sparse_file_ops* sparse_ops; int use_crc; unsigned int block_size; int64_t len; char* zero_buf; uint32_t* fill_buf; char* buf; }; struct output_file_gz { struct output_file out; gzFile gz_fd; }; #define to_output_file_gz(_o) container_of((_o), struct output_file_gz, out) struct output_file_normal { struct output_file out; int fd; }; #define to_output_file_normal(_o) container_of((_o), struct output_file_normal, out) struct output_file_callback { struct output_file out; void* priv; int (*write)(void* priv, const void* buf, size_t len); }; #define to_output_file_callback(_o) container_of((_o), struct output_file_callback, out) static int file_open(struct output_file* out, int fd) { struct output_file_normal* outn = to_output_file_normal(out); outn->fd = fd; return 0; } static int file_skip(struct output_file* out, int64_t cnt) { off64_t ret; struct output_file_normal* outn = to_output_file_normal(out); ret = lseek64(outn->fd, cnt, SEEK_CUR); if (ret < 0) { error_errno("lseek64"); return -1; } return 0; } static int file_pad(struct output_file* out, int64_t len) { int ret; struct output_file_normal* outn = to_output_file_normal(out); ret = ftruncate64(outn->fd, len); if (ret < 0) { return -errno; } return 0; } static int file_write(struct output_file* out, void* data, size_t len) { ssize_t ret; struct output_file_normal* outn = to_output_file_normal(out); while (len > 0) { ret = write(outn->fd, data, len); if (ret < 0) { if (errno == EINTR) { continue; } error_errno("write"); return -1; } data = (char*)data + ret; len -= ret; } return 0; } static void file_close(struct output_file* out) { struct output_file_normal* outn = to_output_file_normal(out); free(outn); } static struct output_file_ops file_ops = { .open = file_open, .skip = file_skip, .pad = file_pad, .write = file_write, .close = file_close, }; static int gz_file_open(struct output_file* out, int fd) { struct output_file_gz* outgz = to_output_file_gz(out); outgz->gz_fd = gzdopen(fd, "wb9"); if (!outgz->gz_fd) { error_errno("gzopen"); return -errno; } return 0; } static int gz_file_skip(struct output_file* out, int64_t cnt) { off64_t ret; struct output_file_gz* outgz = to_output_file_gz(out); ret = gzseek(outgz->gz_fd, cnt, SEEK_CUR); if (ret < 0) { error_errno("gzseek"); return -1; } return 0; } static int gz_file_pad(struct output_file* out, int64_t len) { off64_t ret; struct output_file_gz* outgz = to_output_file_gz(out); ret = gztell(outgz->gz_fd); if (ret < 0) { return -1; } if (ret >= len) { return 0; } ret = gzseek(outgz->gz_fd, len - 1, SEEK_SET); if (ret < 0) { return -1; } gzwrite(outgz->gz_fd, "", 1); return 0; } static int gz_file_write(struct output_file* out, void* data, size_t len) { int ret; struct output_file_gz* outgz = to_output_file_gz(out); while (len > 0) { ret = gzwrite(outgz->gz_fd, data, std::min(len, (unsigned int)INT_MAX)); if (ret == 0) { error("gzwrite %s", gzerror(outgz->gz_fd, nullptr)); return -1; } len -= ret; data = (char*)data + ret; } return 0; } static void gz_file_close(struct output_file* out) { struct output_file_gz* outgz = to_output_file_gz(out); gzclose(outgz->gz_fd); free(outgz); } static struct output_file_ops gz_file_ops = { .open = gz_file_open, .skip = gz_file_skip, .pad = gz_file_pad, .write = gz_file_write, .close = gz_file_close, }; static int callback_file_open(struct output_file* out __unused, int fd __unused) { return 0; } static int callback_file_skip(struct output_file* out, int64_t off) { struct output_file_callback* outc = to_output_file_callback(out); int to_write; int ret; while (off > 0) { to_write = std::min(off, (int64_t)INT_MAX); ret = outc->write(outc->priv, nullptr, to_write); if (ret < 0) { return ret; } off -= to_write; } return 0; } static int callback_file_pad(struct output_file* out __unused, int64_t len __unused) { return -1; } static int callback_file_write(struct output_file* out, void* data, size_t len) { struct output_file_callback* outc = to_output_file_callback(out); return outc->write(outc->priv, data, len); } static void callback_file_close(struct output_file* out) { struct output_file_callback* outc = to_output_file_callback(out); free(outc); } static struct output_file_ops callback_file_ops = { .open = callback_file_open, .skip = callback_file_skip, .pad = callback_file_pad, .write = callback_file_write, .close = callback_file_close, }; int read_all(int fd, void* buf, size_t len) { size_t total = 0; int ret; char* ptr = reinterpret_cast(buf); while (total < len) { ret = read(fd, ptr, len - total); if (ret < 0) return -errno; if (ret == 0) return -EINVAL; ptr += ret; total += ret; } return 0; } template static bool write_fd_chunk_range(int fd, int64_t offset, uint64_t len, T callback) { uint64_t bytes_written = 0; int64_t current_offset = offset; while (bytes_written < len) { size_t mmap_size = std::min(static_cast(kMaxMmapSize), len - bytes_written); auto m = android::base::MappedFile::FromFd(fd, current_offset, mmap_size, PROT_READ); if (!m) { error("failed to mmap region of length %zu", mmap_size); return false; } if (!callback(m->data(), mmap_size)) { return false; } bytes_written += mmap_size; current_offset += mmap_size; } return true; } static int write_sparse_skip_chunk(struct output_file* out, uint64_t skip_len) { chunk_header_t chunk_header; int ret; if (skip_len % out->block_size) { error("don't care size %" PRIi64 " is not a multiple of the block size %u", skip_len, out->block_size); return -1; } /* We are skipping data, so emit a don't care chunk. */ chunk_header.chunk_type = CHUNK_TYPE_DONT_CARE; chunk_header.reserved1 = 0; chunk_header.chunk_sz = skip_len / out->block_size; chunk_header.total_sz = CHUNK_HEADER_LEN; ret = out->ops->write(out, &chunk_header, sizeof(chunk_header)); if (ret < 0) return -1; out->cur_out_ptr += skip_len; out->chunk_cnt++; return 0; } static int write_sparse_fill_chunk(struct output_file* out, uint64_t len, uint32_t fill_val) { chunk_header_t chunk_header; uint64_t rnd_up_len; int count; int ret; /* Round up the fill length to a multiple of the block size */ rnd_up_len = ALIGN(len, out->block_size); /* Finally we can safely emit a chunk of data */ chunk_header.chunk_type = CHUNK_TYPE_FILL; chunk_header.reserved1 = 0; chunk_header.chunk_sz = rnd_up_len / out->block_size; chunk_header.total_sz = CHUNK_HEADER_LEN + sizeof(fill_val); ret = out->ops->write(out, &chunk_header, sizeof(chunk_header)); if (ret < 0) return -1; ret = out->ops->write(out, &fill_val, sizeof(fill_val)); if (ret < 0) return -1; if (out->use_crc) { count = out->block_size / sizeof(uint32_t); while (count--) out->crc32 = sparse_crc32(out->crc32, &fill_val, sizeof(uint32_t)); } out->cur_out_ptr += rnd_up_len; out->chunk_cnt++; return 0; } static int write_sparse_data_chunk(struct output_file* out, uint64_t len, void* data) { chunk_header_t chunk_header; uint64_t rnd_up_len, zero_len; int ret; /* Round up the data length to a multiple of the block size */ rnd_up_len = ALIGN(len, out->block_size); zero_len = rnd_up_len - len; /* Finally we can safely emit a chunk of data */ chunk_header.chunk_type = CHUNK_TYPE_RAW; chunk_header.reserved1 = 0; chunk_header.chunk_sz = rnd_up_len / out->block_size; chunk_header.total_sz = CHUNK_HEADER_LEN + rnd_up_len; ret = out->ops->write(out, &chunk_header, sizeof(chunk_header)); if (ret < 0) return -1; ret = out->ops->write(out, data, len); if (ret < 0) return -1; if (zero_len) { uint64_t len = zero_len; uint64_t write_len; while (len) { write_len = std::min(len, (uint64_t)FILL_ZERO_BUFSIZE); ret = out->ops->write(out, out->zero_buf, write_len); if (ret < 0) { return ret; } len -= write_len; } } if (out->use_crc) { out->crc32 = sparse_crc32(out->crc32, data, len); if (zero_len) { uint64_t len = zero_len; uint64_t write_len; while (len) { write_len = std::min(len, (uint64_t)FILL_ZERO_BUFSIZE); out->crc32 = sparse_crc32(out->crc32, out->zero_buf, write_len); len -= write_len; } } } out->cur_out_ptr += rnd_up_len; out->chunk_cnt++; return 0; } static int write_sparse_fd_chunk(struct output_file* out, uint64_t len, int fd, int64_t offset) { chunk_header_t chunk_header; uint64_t rnd_up_len, zero_len; int ret; /* Round up the data length to a multiple of the block size */ rnd_up_len = ALIGN(len, out->block_size); zero_len = rnd_up_len - len; /* Finally we can safely emit a chunk of data */ chunk_header.chunk_type = CHUNK_TYPE_RAW; chunk_header.reserved1 = 0; chunk_header.chunk_sz = rnd_up_len / out->block_size; chunk_header.total_sz = CHUNK_HEADER_LEN + rnd_up_len; ret = out->ops->write(out, &chunk_header, sizeof(chunk_header)); if (ret < 0) return -1; bool ok = write_fd_chunk_range(fd, offset, len, [&ret, out](char* data, size_t size) -> bool { ret = out->ops->write(out, data, size); if (ret < 0) return false; if (out->use_crc) { out->crc32 = sparse_crc32(out->crc32, data, size); } return true; }); if (!ok) return -1; if (zero_len) { uint64_t len = zero_len; uint64_t write_len; while (len) { write_len = std::min(len, (uint64_t)FILL_ZERO_BUFSIZE); ret = out->ops->write(out, out->zero_buf, write_len); if (ret < 0) { return ret; } len -= write_len; } if (out->use_crc) { uint64_t len = zero_len; uint64_t write_len; while (len) { write_len = std::min(len, (uint64_t)FILL_ZERO_BUFSIZE); out->crc32 = sparse_crc32(out->crc32, out->zero_buf, write_len); len -= write_len; } } } out->cur_out_ptr += rnd_up_len; out->chunk_cnt++; return 0; } int write_sparse_end_chunk(struct output_file* out) { chunk_header_t chunk_header; int ret; if (out->use_crc) { chunk_header.chunk_type = CHUNK_TYPE_CRC32; chunk_header.reserved1 = 0; chunk_header.chunk_sz = 0; chunk_header.total_sz = CHUNK_HEADER_LEN + 4; ret = out->ops->write(out, &chunk_header, sizeof(chunk_header)); if (ret < 0) { return ret; } out->ops->write(out, &out->crc32, 4); if (ret < 0) { return ret; } out->chunk_cnt++; } return 0; } static struct sparse_file_ops sparse_file_ops = { .write_data_chunk = write_sparse_data_chunk, .write_fill_chunk = write_sparse_fill_chunk, .write_skip_chunk = write_sparse_skip_chunk, .write_end_chunk = write_sparse_end_chunk, .write_fd_chunk = write_sparse_fd_chunk, }; static int write_normal_data_chunk(struct output_file* out, uint64_t len, void* data) { int ret; uint64_t rnd_up_len = ALIGN(len, out->block_size); ret = out->ops->write(out, data, len); if (ret < 0) { return ret; } if (rnd_up_len > len) { ret = out->ops->skip(out, rnd_up_len - len); } return ret; } static int write_normal_fill_chunk(struct output_file* out, uint64_t len, uint32_t fill_val) { int ret; unsigned int i; uint64_t write_len; /* Initialize fill_buf with the fill_val */ for (i = 0; i < FILL_ZERO_BUFSIZE / sizeof(uint32_t); i++) { out->fill_buf[i] = fill_val; } while (len) { write_len = std::min(len, (uint64_t)FILL_ZERO_BUFSIZE); ret = out->ops->write(out, out->fill_buf, write_len); if (ret < 0) { return ret; } len -= write_len; } return 0; } static int write_normal_fd_chunk(struct output_file* out, uint64_t len, int fd, int64_t offset) { int ret; uint64_t rnd_up_len = ALIGN(len, out->block_size); bool ok = write_fd_chunk_range(fd, offset, len, [&ret, out](char* data, size_t size) -> bool { ret = out->ops->write(out, data, size); return ret >= 0; }); if (!ok) return ret; if (rnd_up_len > len) { ret = out->ops->skip(out, rnd_up_len - len); } return ret; } static int write_normal_skip_chunk(struct output_file* out, uint64_t len) { return out->ops->skip(out, len); } int write_normal_end_chunk(struct output_file* out) { return out->ops->pad(out, out->len); } static struct sparse_file_ops normal_file_ops = { .write_data_chunk = write_normal_data_chunk, .write_fill_chunk = write_normal_fill_chunk, .write_skip_chunk = write_normal_skip_chunk, .write_end_chunk = write_normal_end_chunk, .write_fd_chunk = write_normal_fd_chunk, }; void output_file_close(struct output_file* out) { out->sparse_ops->write_end_chunk(out); free(out->zero_buf); free(out->fill_buf); out->zero_buf = nullptr; out->fill_buf = nullptr; out->ops->close(out); } static int output_file_init(struct output_file* out, int block_size, int64_t len, bool sparse, int chunks, bool crc) { int ret; out->len = len; out->block_size = block_size; out->cur_out_ptr = 0LL; out->chunk_cnt = 0; out->crc32 = 0; out->use_crc = crc; // don't use sparse format block size as it can takes up to 32GB out->zero_buf = reinterpret_cast(calloc(FILL_ZERO_BUFSIZE, 1)); if (!out->zero_buf) { error_errno("malloc zero_buf"); return -ENOMEM; } // don't use sparse format block size as it can takes up to 32GB out->fill_buf = reinterpret_cast(calloc(FILL_ZERO_BUFSIZE, 1)); if (!out->fill_buf) { error_errno("malloc fill_buf"); ret = -ENOMEM; goto err_fill_buf; } if (sparse) { out->sparse_ops = &sparse_file_ops; } else { out->sparse_ops = &normal_file_ops; } if (sparse) { sparse_header_t sparse_header = { .magic = SPARSE_HEADER_MAGIC, .major_version = SPARSE_HEADER_MAJOR_VER, .minor_version = SPARSE_HEADER_MINOR_VER, .file_hdr_sz = SPARSE_HEADER_LEN, .chunk_hdr_sz = CHUNK_HEADER_LEN, .blk_sz = out->block_size, .total_blks = static_cast(DIV_ROUND_UP(out->len, out->block_size)), .total_chunks = static_cast(chunks), .image_checksum = 0}; if (out->use_crc) { sparse_header.total_chunks++; } ret = out->ops->write(out, &sparse_header, sizeof(sparse_header)); if (ret < 0) { goto err_write; } } return 0; err_write: free(out->fill_buf); err_fill_buf: free(out->zero_buf); return ret; } static struct output_file* output_file_new_gz(void) { struct output_file_gz* outgz = reinterpret_cast(calloc(1, sizeof(struct output_file_gz))); if (!outgz) { error_errno("malloc struct outgz"); return nullptr; } outgz->out.ops = &gz_file_ops; return &outgz->out; } static struct output_file* output_file_new_normal(void) { struct output_file_normal* outn = reinterpret_cast(calloc(1, sizeof(struct output_file_normal))); if (!outn) { error_errno("malloc struct outn"); return nullptr; } outn->out.ops = &file_ops; return &outn->out; } struct output_file* output_file_open_callback(int (*write)(void*, const void*, size_t), void* priv, unsigned int block_size, int64_t len, int gz __unused, int sparse, int chunks, int crc) { int ret; struct output_file_callback* outc; outc = reinterpret_cast(calloc(1, sizeof(struct output_file_callback))); if (!outc) { error_errno("malloc struct outc"); return nullptr; } outc->out.ops = &callback_file_ops; outc->priv = priv; outc->write = write; ret = output_file_init(&outc->out, block_size, len, sparse, chunks, crc); if (ret < 0) { free(outc); return nullptr; } return &outc->out; } struct output_file* output_file_open_fd(int fd, unsigned int block_size, int64_t len, int gz, int sparse, int chunks, int crc) { int ret; struct output_file* out; if (gz) { out = output_file_new_gz(); } else { out = output_file_new_normal(); } if (!out) { return nullptr; } out->ops->open(out, fd); ret = output_file_init(out, block_size, len, sparse, chunks, crc); if (ret < 0) { free(out); return nullptr; } return out; } /* Write a contiguous region of data blocks from a memory buffer */ int write_data_chunk(struct output_file* out, uint64_t len, void* data) { return out->sparse_ops->write_data_chunk(out, len, data); } /* Write a contiguous region of data blocks with a fill value */ int write_fill_chunk(struct output_file* out, uint64_t len, uint32_t fill_val) { return out->sparse_ops->write_fill_chunk(out, len, fill_val); } int write_fd_chunk(struct output_file* out, uint64_t len, int fd, int64_t offset) { return out->sparse_ops->write_fd_chunk(out, len, fd, offset); } /* Write a contiguous region of data blocks from a file */ int write_file_chunk(struct output_file* out, uint64_t len, const char* file, int64_t offset) { int ret; int file_fd = open(file, O_RDONLY | O_BINARY); if (file_fd < 0) { return -errno; } ret = write_fd_chunk(out, len, file_fd, offset); close(file_fd); return ret; } int write_skip_chunk(struct output_file* out, uint64_t len) { return out->sparse_ops->write_skip_chunk(out, len); }