/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include "ArmExidx.h" #include "Log.h" #include "LogFake.h" #include "MemoryFake.h" class ArmExidxDecodeTest : public ::testing::TestWithParam { protected: void Init(Memory* process_memory = nullptr) { TearDown(); if (process_memory == nullptr) { process_memory = &process_memory_; } regs32_.reset(new Regs32(0, 1, 32)); for (size_t i = 0; i < 32; i++) { (*regs32_)[i] = 0; } exidx_.reset(new ArmExidx(regs32_.get(), &elf_memory_, process_memory)); if (log_) { exidx_->set_log(true); exidx_->set_log_indent(0); exidx_->set_log_skip_execution(false); } data_ = exidx_->data(); exidx_->set_cfa(0x10000); } void SetUp() override { if (GetParam() != "no_logging") { log_ = false; } else { log_ = true; } ResetLogs(); elf_memory_.Clear(); process_memory_.Clear(); Init(); } std::unique_ptr exidx_; std::unique_ptr regs32_; std::deque* data_; MemoryFake elf_memory_; MemoryFake process_memory_; bool log_; }; TEST_P(ArmExidxDecodeTest, vsp_incr) { // 00xxxxxx: vsp = vsp + (xxxxxx << 2) + 4 data_->push_back(0x00); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind vsp = vsp + 4\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10004U, exidx_->cfa()); ResetLogs(); data_->clear(); data_->push_back(0x01); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind vsp = vsp + 8\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x1000cU, exidx_->cfa()); ResetLogs(); data_->clear(); data_->push_back(0x3f); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind vsp = vsp + 256\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x1010cU, exidx_->cfa()); } TEST_P(ArmExidxDecodeTest, vsp_decr) { // 01xxxxxx: vsp = vsp - (xxxxxx << 2) + 4 data_->push_back(0x40); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind vsp = vsp - 4\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0xfffcU, exidx_->cfa()); ResetLogs(); data_->clear(); data_->push_back(0x41); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind vsp = vsp - 8\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0xfff4U, exidx_->cfa()); ResetLogs(); data_->clear(); data_->push_back(0x7f); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind vsp = vsp - 256\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0xfef4U, exidx_->cfa()); } TEST_P(ArmExidxDecodeTest, refuse_unwind) { // 10000000 00000000: Refuse to unwind data_->push_back(0x80); data_->push_back(0x00); ASSERT_FALSE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind Refuse to unwind\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(ARM_STATUS_NO_UNWIND, exidx_->status()); } TEST_P(ArmExidxDecodeTest, pop_up_to_12) { // 1000iiii iiiiiiii: Pop up to 12 integer registers data_->push_back(0x80); data_->push_back(0x01); process_memory_.SetData(0x10000, 0x10); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {r4}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10004U, exidx_->cfa()); ASSERT_EQ(0x10U, (*exidx_->regs())[4]); ResetLogs(); data_->push_back(0x8f); data_->push_back(0xff); for (size_t i = 0; i < 12; i++) { process_memory_.SetData(0x10004 + i * 4, i + 0x20); } ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } // Popping r13 results in a modified cfa. ASSERT_EQ(0x29U, exidx_->cfa()); ASSERT_EQ(0x20U, (*exidx_->regs())[4]); ASSERT_EQ(0x21U, (*exidx_->regs())[5]); ASSERT_EQ(0x22U, (*exidx_->regs())[6]); ASSERT_EQ(0x23U, (*exidx_->regs())[7]); ASSERT_EQ(0x24U, (*exidx_->regs())[8]); ASSERT_EQ(0x25U, (*exidx_->regs())[9]); ASSERT_EQ(0x26U, (*exidx_->regs())[10]); ASSERT_EQ(0x27U, (*exidx_->regs())[11]); ASSERT_EQ(0x28U, (*exidx_->regs())[12]); ASSERT_EQ(0x29U, (*exidx_->regs())[13]); ASSERT_EQ(0x2aU, (*exidx_->regs())[14]); ASSERT_EQ(0x2bU, (*exidx_->regs())[15]); ResetLogs(); exidx_->set_cfa(0x10034); data_->push_back(0x81); data_->push_back(0x28); process_memory_.SetData(0x10034, 0x11); process_memory_.SetData(0x10038, 0x22); process_memory_.SetData(0x1003c, 0x33); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {r7, r9, r12}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10040U, exidx_->cfa()); ASSERT_EQ(0x11U, (*exidx_->regs())[7]); ASSERT_EQ(0x22U, (*exidx_->regs())[9]); ASSERT_EQ(0x33U, (*exidx_->regs())[12]); } TEST_P(ArmExidxDecodeTest, set_vsp_from_register) { // 1001nnnn: Set vsp = r[nnnn] (nnnn != 13, 15) exidx_->set_cfa(0x100); for (size_t i = 0; i < 15; i++) { (*regs32_)[i] = i + 1; } data_->push_back(0x90); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind vsp = r0\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(1U, exidx_->cfa()); ResetLogs(); data_->push_back(0x93); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind vsp = r3\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(4U, exidx_->cfa()); ResetLogs(); data_->push_back(0x9e); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind vsp = r14\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(15U, exidx_->cfa()); } TEST_P(ArmExidxDecodeTest, reserved_prefix) { // 10011101: Reserved as prefix for ARM register to register moves data_->push_back(0x9d); ASSERT_FALSE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind [Reserved]\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(ARM_STATUS_RESERVED, exidx_->status()); // 10011111: Reserved as prefix for Intel Wireless MMX register to register moves ResetLogs(); data_->push_back(0x9f); ASSERT_FALSE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind [Reserved]\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(ARM_STATUS_RESERVED, exidx_->status()); } TEST_P(ArmExidxDecodeTest, pop_registers) { // 10100nnn: Pop r4-r[4+nnn] data_->push_back(0xa0); process_memory_.SetData(0x10000, 0x14); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {r4}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10004U, exidx_->cfa()); ASSERT_EQ(0x14U, (*exidx_->regs())[4]); ResetLogs(); data_->push_back(0xa3); process_memory_.SetData(0x10004, 0x20); process_memory_.SetData(0x10008, 0x30); process_memory_.SetData(0x1000c, 0x40); process_memory_.SetData(0x10010, 0x50); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {r4-r7}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10014U, exidx_->cfa()); ASSERT_EQ(0x20U, (*exidx_->regs())[4]); ASSERT_EQ(0x30U, (*exidx_->regs())[5]); ASSERT_EQ(0x40U, (*exidx_->regs())[6]); ASSERT_EQ(0x50U, (*exidx_->regs())[7]); ResetLogs(); data_->push_back(0xa7); process_memory_.SetData(0x10014, 0x41); process_memory_.SetData(0x10018, 0x51); process_memory_.SetData(0x1001c, 0x61); process_memory_.SetData(0x10020, 0x71); process_memory_.SetData(0x10024, 0x81); process_memory_.SetData(0x10028, 0x91); process_memory_.SetData(0x1002c, 0xa1); process_memory_.SetData(0x10030, 0xb1); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {r4-r11}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10034U, exidx_->cfa()); ASSERT_EQ(0x41U, (*exidx_->regs())[4]); ASSERT_EQ(0x51U, (*exidx_->regs())[5]); ASSERT_EQ(0x61U, (*exidx_->regs())[6]); ASSERT_EQ(0x71U, (*exidx_->regs())[7]); ASSERT_EQ(0x81U, (*exidx_->regs())[8]); ASSERT_EQ(0x91U, (*exidx_->regs())[9]); ASSERT_EQ(0xa1U, (*exidx_->regs())[10]); ASSERT_EQ(0xb1U, (*exidx_->regs())[11]); } TEST_P(ArmExidxDecodeTest, pop_registers_with_r14) { // 10101nnn: Pop r4-r[4+nnn], r14 data_->push_back(0xa8); process_memory_.SetData(0x10000, 0x12); process_memory_.SetData(0x10004, 0x22); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {r4, r14}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10008U, exidx_->cfa()); ASSERT_EQ(0x12U, (*exidx_->regs())[4]); ASSERT_EQ(0x22U, (*exidx_->regs())[14]); ResetLogs(); data_->push_back(0xab); process_memory_.SetData(0x10008, 0x1); process_memory_.SetData(0x1000c, 0x2); process_memory_.SetData(0x10010, 0x3); process_memory_.SetData(0x10014, 0x4); process_memory_.SetData(0x10018, 0x5); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {r4-r7, r14}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x1001cU, exidx_->cfa()); ASSERT_EQ(0x1U, (*exidx_->regs())[4]); ASSERT_EQ(0x2U, (*exidx_->regs())[5]); ASSERT_EQ(0x3U, (*exidx_->regs())[6]); ASSERT_EQ(0x4U, (*exidx_->regs())[7]); ASSERT_EQ(0x5U, (*exidx_->regs())[14]); ResetLogs(); data_->push_back(0xaf); process_memory_.SetData(0x1001c, 0x1a); process_memory_.SetData(0x10020, 0x2a); process_memory_.SetData(0x10024, 0x3a); process_memory_.SetData(0x10028, 0x4a); process_memory_.SetData(0x1002c, 0x5a); process_memory_.SetData(0x10030, 0x6a); process_memory_.SetData(0x10034, 0x7a); process_memory_.SetData(0x10038, 0x8a); process_memory_.SetData(0x1003c, 0x9a); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {r4-r11, r14}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10040U, exidx_->cfa()); ASSERT_EQ(0x1aU, (*exidx_->regs())[4]); ASSERT_EQ(0x2aU, (*exidx_->regs())[5]); ASSERT_EQ(0x3aU, (*exidx_->regs())[6]); ASSERT_EQ(0x4aU, (*exidx_->regs())[7]); ASSERT_EQ(0x5aU, (*exidx_->regs())[8]); ASSERT_EQ(0x6aU, (*exidx_->regs())[9]); ASSERT_EQ(0x7aU, (*exidx_->regs())[10]); ASSERT_EQ(0x8aU, (*exidx_->regs())[11]); ASSERT_EQ(0x9aU, (*exidx_->regs())[14]); } TEST_P(ArmExidxDecodeTest, finish) { // 10110000: Finish data_->push_back(0xb0); ASSERT_FALSE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind finish\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10000U, exidx_->cfa()); ASSERT_EQ(ARM_STATUS_FINISH, exidx_->status()); } TEST_P(ArmExidxDecodeTest, spare) { // 10110001 00000000: Spare data_->push_back(0xb1); data_->push_back(0x00); ASSERT_FALSE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind Spare\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10000U, exidx_->cfa()); ASSERT_EQ(ARM_STATUS_SPARE, exidx_->status()); // 10110001 xxxxyyyy: Spare (xxxx != 0000) for (size_t x = 1; x < 16; x++) { for (size_t y = 0; y < 16; y++) { ResetLogs(); data_->push_back(0xb1); data_->push_back((x << 4) | y); ASSERT_FALSE(exidx_->Decode()) << "x, y = " << x << ", " << y; ASSERT_EQ("", GetFakeLogBuf()) << "x, y = " << x << ", " << y; if (log_) { ASSERT_EQ("4 unwind Spare\n", GetFakeLogPrint()) << "x, y = " << x << ", " << y; } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10000U, exidx_->cfa()) << "x, y = " << x << ", " << y; ASSERT_EQ(ARM_STATUS_SPARE, exidx_->status()); } } // 101101nn: Spare for (size_t n = 0; n < 4; n++) { ResetLogs(); data_->push_back(0xb4 | n); ASSERT_FALSE(exidx_->Decode()) << "n = " << n; ASSERT_EQ("", GetFakeLogBuf()) << "n = " << n; if (log_) { ASSERT_EQ("4 unwind Spare\n", GetFakeLogPrint()) << "n = " << n; } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10000U, exidx_->cfa()) << "n = " << n; ASSERT_EQ(ARM_STATUS_SPARE, exidx_->status()); } // 11000111 00000000: Spare ResetLogs(); data_->push_back(0xc7); data_->push_back(0x00); ASSERT_FALSE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind Spare\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10000U, exidx_->cfa()); ASSERT_EQ(ARM_STATUS_SPARE, exidx_->status()); // 11000111 xxxxyyyy: Spare (xxxx != 0000) for (size_t x = 1; x < 16; x++) { for (size_t y = 0; y < 16; y++) { ResetLogs(); data_->push_back(0xc7); data_->push_back(0x10); ASSERT_FALSE(exidx_->Decode()) << "x, y = " << x << ", " << y; ASSERT_EQ("", GetFakeLogBuf()) << "x, y = " << x << ", " << y; if (log_) { ASSERT_EQ("4 unwind Spare\n", GetFakeLogPrint()) << "x, y = " << x << ", " << y; } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10000U, exidx_->cfa()) << "x, y = " << x << ", " << y; ASSERT_EQ(ARM_STATUS_SPARE, exidx_->status()); } } // 11001yyy: Spare (yyy != 000, 001) for (size_t y = 2; y < 8; y++) { ResetLogs(); data_->push_back(0xc8 | y); ASSERT_FALSE(exidx_->Decode()) << "y = " << y; ASSERT_EQ("", GetFakeLogBuf()) << "y = " << y; if (log_) { ASSERT_EQ("4 unwind Spare\n", GetFakeLogPrint()) << "y = " << y; } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10000U, exidx_->cfa()) << "y = " << y; ASSERT_EQ(ARM_STATUS_SPARE, exidx_->status()); } // 11xxxyyy: Spare (xxx != 000, 001, 010) for (size_t x = 3; x < 8; x++) { for (size_t y = 0; y < 8; y++) { ResetLogs(); data_->push_back(0xc0 | (x << 3) | y); ASSERT_FALSE(exidx_->Decode()) << "x, y = " << x << ", " << y; ASSERT_EQ("", GetFakeLogBuf()) << "x, y = " << x << ", " << y; if (log_) { ASSERT_EQ("4 unwind Spare\n", GetFakeLogPrint()) << "x, y = " << x << ", " << y; } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10000U, exidx_->cfa()) << "x, y = " << x << ", " << y; ASSERT_EQ(ARM_STATUS_SPARE, exidx_->status()); } } } TEST_P(ArmExidxDecodeTest, pop_registers_under_mask) { // 10110001 0000iiii: Pop integer registers {r0, r1, r2, r3} data_->push_back(0xb1); data_->push_back(0x01); process_memory_.SetData(0x10000, 0x45); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {r0}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10004U, exidx_->cfa()); ASSERT_EQ(0x45U, (*exidx_->regs())[0]); ResetLogs(); data_->push_back(0xb1); data_->push_back(0x0a); process_memory_.SetData(0x10004, 0x23); process_memory_.SetData(0x10008, 0x24); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {r1, r3}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x1000cU, exidx_->cfa()); ASSERT_EQ(0x23U, (*exidx_->regs())[1]); ASSERT_EQ(0x24U, (*exidx_->regs())[3]); ResetLogs(); data_->push_back(0xb1); data_->push_back(0x0f); process_memory_.SetData(0x1000c, 0x65); process_memory_.SetData(0x10010, 0x54); process_memory_.SetData(0x10014, 0x43); process_memory_.SetData(0x10018, 0x32); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {r0, r1, r2, r3}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x1001cU, exidx_->cfa()); ASSERT_EQ(0x65U, (*exidx_->regs())[0]); ASSERT_EQ(0x54U, (*exidx_->regs())[1]); ASSERT_EQ(0x43U, (*exidx_->regs())[2]); ASSERT_EQ(0x32U, (*exidx_->regs())[3]); } TEST_P(ArmExidxDecodeTest, vsp_large_incr) { // 10110010 uleb128: vsp = vsp + 0x204 + (uleb128 << 2) data_->push_back(0xb2); data_->push_back(0x7f); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind vsp = vsp + 1024\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10400U, exidx_->cfa()); ResetLogs(); data_->push_back(0xb2); data_->push_back(0xff); data_->push_back(0x02); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind vsp = vsp + 2048\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10c00U, exidx_->cfa()); ResetLogs(); data_->push_back(0xb2); data_->push_back(0xff); data_->push_back(0x82); data_->push_back(0x30); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind vsp = vsp + 3147776\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x311400U, exidx_->cfa()); } TEST_P(ArmExidxDecodeTest, pop_vfp_fstmfdx) { // 10110011 sssscccc: Pop VFP double precision registers D[ssss]-D[ssss+cccc] by FSTMFDX data_->push_back(0xb3); data_->push_back(0x00); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {d0}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x1000cU, exidx_->cfa()); ResetLogs(); data_->push_back(0xb3); data_->push_back(0x48); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {d4-d12}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10058U, exidx_->cfa()); } TEST_P(ArmExidxDecodeTest, pop_vfp8_fstmfdx) { // 10111nnn: Pop VFP double precision registers D[8]-D[8+nnn] by FSTMFDX data_->push_back(0xb8); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {d8}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x1000cU, exidx_->cfa()); ResetLogs(); data_->push_back(0xbb); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {d8-d11}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10030U, exidx_->cfa()); ResetLogs(); data_->push_back(0xbf); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {d8-d15}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10074U, exidx_->cfa()); } TEST_P(ArmExidxDecodeTest, pop_mmx_wr10) { // 11000nnn: Intel Wireless MMX pop wR[10]-wR[10+nnn] (nnn != 6, 7) data_->push_back(0xc0); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {wR10}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10008U, exidx_->cfa()); ResetLogs(); data_->push_back(0xc2); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {wR10-wR12}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10020U, exidx_->cfa()); ResetLogs(); data_->push_back(0xc5); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {wR10-wR15}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10050U, exidx_->cfa()); } TEST_P(ArmExidxDecodeTest, pop_mmx_wr) { // 11000110 sssscccc: Intel Wireless MMX pop wR[ssss]-wR[ssss+cccc] data_->push_back(0xc6); data_->push_back(0x00); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {wR0}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10008U, exidx_->cfa()); ResetLogs(); data_->push_back(0xc6); data_->push_back(0x25); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {wR2-wR7}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10038U, exidx_->cfa()); ResetLogs(); data_->push_back(0xc6); data_->push_back(0xff); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {wR15-wR30}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x100b8U, exidx_->cfa()); } TEST_P(ArmExidxDecodeTest, pop_mmx_wcgr) { // 11000111 0000iiii: Intel Wireless MMX pop wCGR registes {wCGR0,1,2,3} data_->push_back(0xc7); data_->push_back(0x01); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {wCGR0}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10004U, exidx_->cfa()); ResetLogs(); data_->push_back(0xc7); data_->push_back(0x0a); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {wCGR1, wCGR3}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x1000cU, exidx_->cfa()); ResetLogs(); data_->push_back(0xc7); data_->push_back(0x0f); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {wCGR0, wCGR1, wCGR2, wCGR3}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x1001cU, exidx_->cfa()); } TEST_P(ArmExidxDecodeTest, pop_vfp16_vpush) { // 11001000 sssscccc: Pop VFP double precision registers d[16+ssss]-D[16+ssss+cccc] by VPUSH data_->push_back(0xc8); data_->push_back(0x00); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {d16}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10008U, exidx_->cfa()); ResetLogs(); data_->push_back(0xc8); data_->push_back(0x14); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {d17-d21}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10030U, exidx_->cfa()); ResetLogs(); data_->push_back(0xc8); data_->push_back(0xff); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {d31-d46}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x100b0U, exidx_->cfa()); } TEST_P(ArmExidxDecodeTest, pop_vfp_vpush) { // 11001001 sssscccc: Pop VFP double precision registers d[ssss]-D[ssss+cccc] by VPUSH data_->push_back(0xc9); data_->push_back(0x00); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {d0}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10008U, exidx_->cfa()); ResetLogs(); data_->push_back(0xc9); data_->push_back(0x23); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {d2-d5}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10028U, exidx_->cfa()); ResetLogs(); data_->push_back(0xc9); data_->push_back(0xff); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {d15-d30}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x100a8U, exidx_->cfa()); } TEST_P(ArmExidxDecodeTest, pop_vfp8_vpush) { // 11010nnn: Pop VFP double precision registers D[8]-D[8+nnn] by VPUSH data_->push_back(0xd0); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {d8}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10008U, exidx_->cfa()); ResetLogs(); data_->push_back(0xd2); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {d8-d10}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10020U, exidx_->cfa()); ResetLogs(); data_->push_back(0xd7); ASSERT_TRUE(exidx_->Decode()); ASSERT_EQ("", GetFakeLogBuf()); if (log_) { ASSERT_EQ("4 unwind pop {d8-d15}\n", GetFakeLogPrint()); } else { ASSERT_EQ("", GetFakeLogPrint()); } ASSERT_EQ(0x10060U, exidx_->cfa()); } TEST_P(ArmExidxDecodeTest, expect_truncated) { // This test verifies that any op that requires extra ops will // fail if the data is not present. data_->push_back(0x80); ASSERT_FALSE(exidx_->Decode()); ASSERT_EQ(ARM_STATUS_TRUNCATED, exidx_->status()); data_->clear(); data_->push_back(0xb1); ASSERT_FALSE(exidx_->Decode()); ASSERT_EQ(ARM_STATUS_TRUNCATED, exidx_->status()); data_->clear(); data_->push_back(0xb2); ASSERT_FALSE(exidx_->Decode()); ASSERT_EQ(ARM_STATUS_TRUNCATED, exidx_->status()); data_->clear(); data_->push_back(0xb3); ASSERT_FALSE(exidx_->Decode()); ASSERT_EQ(ARM_STATUS_TRUNCATED, exidx_->status()); data_->clear(); data_->push_back(0xc6); ASSERT_FALSE(exidx_->Decode()); ASSERT_EQ(ARM_STATUS_TRUNCATED, exidx_->status()); data_->clear(); data_->push_back(0xc7); ASSERT_FALSE(exidx_->Decode()); ASSERT_EQ(ARM_STATUS_TRUNCATED, exidx_->status()); data_->clear(); data_->push_back(0xc8); ASSERT_FALSE(exidx_->Decode()); ASSERT_EQ(ARM_STATUS_TRUNCATED, exidx_->status()); data_->clear(); data_->push_back(0xc9); ASSERT_FALSE(exidx_->Decode()); ASSERT_EQ(ARM_STATUS_TRUNCATED, exidx_->status()); } TEST_P(ArmExidxDecodeTest, verify_no_truncated) { // This test verifies that no pattern results in a crash or truncation. MemoryFakeAlwaysReadZero memory_zero; Init(&memory_zero); for (size_t x = 0; x < 256; x++) { if (x == 0xb2) { // This opcode is followed by an uleb128, so just skip this one. continue; } for (size_t y = 0; y < 256; y++) { data_->clear(); data_->push_back(x); data_->push_back(y); if (!exidx_->Decode()) { ASSERT_NE(ARM_STATUS_TRUNCATED, exidx_->status()) << "x y = 0x" << std::hex << x << " 0x" << y; ASSERT_NE(ARM_STATUS_READ_FAILED, exidx_->status()) << "x y = 0x" << std::hex << x << " 0x" << y; } } } } INSTANTIATE_TEST_CASE_P(, ArmExidxDecodeTest, ::testing::Values("logging", "no_logging"));