/* * Copyright (C) 2005 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Vector" #include #include #include #include #include #include #include "SharedBuffer.h" /*****************************************************************************/ namespace android { // ---------------------------------------------------------------------------- const size_t kMinVectorCapacity = 4; static inline size_t max(size_t a, size_t b) { return a>b ? a : b; } // ---------------------------------------------------------------------------- VectorImpl::VectorImpl(size_t itemSize, uint32_t flags) : mStorage(nullptr), mCount(0), mFlags(flags), mItemSize(itemSize) { } VectorImpl::VectorImpl(const VectorImpl& rhs) : mStorage(rhs.mStorage), mCount(rhs.mCount), mFlags(rhs.mFlags), mItemSize(rhs.mItemSize) { if (mStorage) { SharedBuffer::bufferFromData(mStorage)->acquire(); } } VectorImpl::~VectorImpl() { ALOGW_IF(mCount, "[%p] subclasses of VectorImpl must call finish_vector()" " in their destructor. Leaking %d bytes.", this, (int)(mCount*mItemSize)); // We can't call _do_destroy() here because the vtable is already gone. } VectorImpl& VectorImpl::operator = (const VectorImpl& rhs) { LOG_ALWAYS_FATAL_IF(mItemSize != rhs.mItemSize, "Vector<> have different types (this=%p, rhs=%p)", this, &rhs); if (this != &rhs) { release_storage(); if (rhs.mCount) { mStorage = rhs.mStorage; mCount = rhs.mCount; SharedBuffer::bufferFromData(mStorage)->acquire(); } else { mStorage = nullptr; mCount = 0; } } return *this; } void* VectorImpl::editArrayImpl() { if (mStorage) { const SharedBuffer* sb = SharedBuffer::bufferFromData(mStorage); SharedBuffer* editable = sb->attemptEdit(); if (editable == nullptr) { // If we're here, we're not the only owner of the buffer. // We must make a copy of it. editable = SharedBuffer::alloc(sb->size()); // Fail instead of returning a pointer to storage that's not // editable. Otherwise we'd be editing the contents of a buffer // for which we're not the only owner, which is undefined behaviour. LOG_ALWAYS_FATAL_IF(editable == nullptr); _do_copy(editable->data(), mStorage, mCount); release_storage(); mStorage = editable->data(); } } return mStorage; } size_t VectorImpl::capacity() const { if (mStorage) { return SharedBuffer::bufferFromData(mStorage)->size() / mItemSize; } return 0; } ssize_t VectorImpl::insertVectorAt(const VectorImpl& vector, size_t index) { return insertArrayAt(vector.arrayImpl(), index, vector.size()); } ssize_t VectorImpl::appendVector(const VectorImpl& vector) { return insertVectorAt(vector, size()); } ssize_t VectorImpl::insertArrayAt(const void* array, size_t index, size_t length) { if (index > size()) return BAD_INDEX; void* where = _grow(index, length); if (where) { _do_copy(where, array, length); } return where ? index : (ssize_t)NO_MEMORY; } ssize_t VectorImpl::appendArray(const void* array, size_t length) { return insertArrayAt(array, size(), length); } ssize_t VectorImpl::insertAt(size_t index, size_t numItems) { return insertAt(nullptr, index, numItems); } ssize_t VectorImpl::insertAt(const void* item, size_t index, size_t numItems) { if (index > size()) return BAD_INDEX; void* where = _grow(index, numItems); if (where) { if (item) { _do_splat(where, item, numItems); } else { _do_construct(where, numItems); } } return where ? index : (ssize_t)NO_MEMORY; } static int sortProxy(const void* lhs, const void* rhs, void* func) { return (*(VectorImpl::compar_t)func)(lhs, rhs); } status_t VectorImpl::sort(VectorImpl::compar_t cmp) { return sort(sortProxy, (void*)cmp); } status_t VectorImpl::sort(VectorImpl::compar_r_t cmp, void* state) { // the sort must be stable. we're using insertion sort which // is well suited for small and already sorted arrays // for big arrays, it could be better to use mergesort const ssize_t count = size(); if (count > 1) { void* array = const_cast(arrayImpl()); void* temp = nullptr; ssize_t i = 1; while (i < count) { void* item = reinterpret_cast(array) + mItemSize*(i); void* curr = reinterpret_cast(array) + mItemSize*(i-1); if (cmp(curr, item, state) > 0) { if (!temp) { // we're going to have to modify the array... array = editArrayImpl(); if (!array) return NO_MEMORY; temp = malloc(mItemSize); if (!temp) return NO_MEMORY; item = reinterpret_cast(array) + mItemSize*(i); curr = reinterpret_cast(array) + mItemSize*(i-1); } else { _do_destroy(temp, 1); } _do_copy(temp, item, 1); ssize_t j = i-1; void* next = reinterpret_cast(array) + mItemSize*(i); do { _do_destroy(next, 1); _do_copy(next, curr, 1); next = curr; --j; curr = nullptr; if (j >= 0) { curr = reinterpret_cast(array) + mItemSize*(j); } } while (j>=0 && (cmp(curr, temp, state) > 0)); _do_destroy(next, 1); _do_copy(next, temp, 1); } i++; } if (temp) { _do_destroy(temp, 1); free(temp); } } return NO_ERROR; } void VectorImpl::pop() { if (size()) removeItemsAt(size()-1, 1); } void VectorImpl::push() { push(nullptr); } void VectorImpl::push(const void* item) { insertAt(item, size()); } ssize_t VectorImpl::add() { return add(nullptr); } ssize_t VectorImpl::add(const void* item) { return insertAt(item, size()); } ssize_t VectorImpl::replaceAt(size_t index) { return replaceAt(nullptr, index); } ssize_t VectorImpl::replaceAt(const void* prototype, size_t index) { ALOG_ASSERT(index= size()) { return BAD_INDEX; } void* item = editItemLocation(index); if (item != prototype) { if (item == nullptr) return NO_MEMORY; _do_destroy(item, 1); if (prototype == nullptr) { _do_construct(item, 1); } else { _do_copy(item, prototype, 1); } } return ssize_t(index); } ssize_t VectorImpl::removeItemsAt(size_t index, size_t count) { ALOG_ASSERT((index+count)<=size(), "[%p] remove: index=%d, count=%d, size=%d", this, (int)index, (int)count, (int)size()); if ((index+count) > size()) return BAD_VALUE; _shrink(index, count); return index; } void VectorImpl::finish_vector() { release_storage(); mStorage = nullptr; mCount = 0; } void VectorImpl::clear() { _shrink(0, mCount); } void* VectorImpl::editItemLocation(size_t index) { ALOG_ASSERT(index(buffer) + index*mItemSize; } } return nullptr; } const void* VectorImpl::itemLocation(size_t index) const { ALOG_ASSERT(index(buffer) + index*mItemSize; } } return nullptr; } ssize_t VectorImpl::setCapacity(size_t new_capacity) { // The capacity must always be greater than or equal to the size // of this vector. if (new_capacity <= size()) { return capacity(); } size_t new_allocation_size = 0; LOG_ALWAYS_FATAL_IF(!safe_mul(&new_allocation_size, new_capacity, mItemSize)); SharedBuffer* sb = SharedBuffer::alloc(new_allocation_size); if (sb) { void* array = sb->data(); _do_copy(array, mStorage, size()); release_storage(); mStorage = const_cast(array); } else { return NO_MEMORY; } return new_capacity; } ssize_t VectorImpl::resize(size_t size) { ssize_t result = NO_ERROR; if (size > mCount) { result = insertAt(mCount, size - mCount); } else if (size < mCount) { result = removeItemsAt(size, mCount - size); } return result < 0 ? result : size; } void VectorImpl::release_storage() { if (mStorage) { const SharedBuffer* sb = SharedBuffer::bufferFromData(mStorage); if (sb->release(SharedBuffer::eKeepStorage) == 1) { _do_destroy(mStorage, mCount); SharedBuffer::dealloc(sb); } } } void* VectorImpl::_grow(size_t where, size_t amount) { // ALOGV("_grow(this=%p, where=%d, amount=%d) count=%d, capacity=%d", // this, (int)where, (int)amount, (int)mCount, (int)capacity()); ALOG_ASSERT(where <= mCount, "[%p] _grow: where=%d, amount=%d, count=%d", this, (int)where, (int)amount, (int)mCount); // caller already checked size_t new_size; LOG_ALWAYS_FATAL_IF(!safe_add(&new_size, mCount, amount), "new_size overflow"); if (capacity() < new_size) { // NOTE: This implementation used to resize vectors as per ((3*x + 1) / 2) // (sigh..). Also note, the " + 1" was necessary to handle the special case // where x == 1, where the resized_capacity will be equal to the old // capacity without the +1. The old calculation wouldn't work properly // if x was zero. // // This approximates the old calculation, using (x + (x/2) + 1) instead. size_t new_capacity = 0; LOG_ALWAYS_FATAL_IF(!safe_add(&new_capacity, new_size, (new_size / 2)), "new_capacity overflow"); LOG_ALWAYS_FATAL_IF(!safe_add(&new_capacity, new_capacity, static_cast(1u)), "new_capacity overflow"); new_capacity = max(kMinVectorCapacity, new_capacity); size_t new_alloc_size = 0; LOG_ALWAYS_FATAL_IF(!safe_mul(&new_alloc_size, new_capacity, mItemSize), "new_alloc_size overflow"); // ALOGV("grow vector %p, new_capacity=%d", this, (int)new_capacity); if ((mStorage) && (mCount==where) && (mFlags & HAS_TRIVIAL_COPY) && (mFlags & HAS_TRIVIAL_DTOR)) { const SharedBuffer* cur_sb = SharedBuffer::bufferFromData(mStorage); SharedBuffer* sb = cur_sb->editResize(new_alloc_size); if (sb) { mStorage = sb->data(); } else { return nullptr; } } else { SharedBuffer* sb = SharedBuffer::alloc(new_alloc_size); if (sb) { void* array = sb->data(); if (where != 0) { _do_copy(array, mStorage, where); } if (where != mCount) { const void* from = reinterpret_cast(mStorage) + where*mItemSize; void* dest = reinterpret_cast(array) + (where+amount)*mItemSize; _do_copy(dest, from, mCount-where); } release_storage(); mStorage = const_cast(array); } else { return nullptr; } } } else { void* array = editArrayImpl(); if (where != mCount) { const void* from = reinterpret_cast(array) + where*mItemSize; void* to = reinterpret_cast(array) + (where+amount)*mItemSize; _do_move_forward(to, from, mCount - where); } } mCount = new_size; void* free_space = const_cast(itemLocation(where)); return free_space; } void VectorImpl::_shrink(size_t where, size_t amount) { if (!mStorage) return; // ALOGV("_shrink(this=%p, where=%d, amount=%d) count=%d, capacity=%d", // this, (int)where, (int)amount, (int)mCount, (int)capacity()); ALOG_ASSERT(where + amount <= mCount, "[%p] _shrink: where=%d, amount=%d, count=%d", this, (int)where, (int)amount, (int)mCount); // caller already checked size_t new_size; LOG_ALWAYS_FATAL_IF(!safe_sub(&new_size, mCount, amount)); if (new_size < (capacity() / 2)) { // NOTE: (new_size * 2) is safe because capacity didn't overflow and // new_size < (capacity / 2)). const size_t new_capacity = max(kMinVectorCapacity, new_size * 2); // NOTE: (new_capacity * mItemSize), (where * mItemSize) and // ((where + amount) * mItemSize) beyond this point are safe because // we are always reducing the capacity of the underlying SharedBuffer. // In other words, (old_capacity * mItemSize) did not overflow, and // where < (where + amount) < new_capacity < old_capacity. if ((where == new_size) && (mFlags & HAS_TRIVIAL_COPY) && (mFlags & HAS_TRIVIAL_DTOR)) { const SharedBuffer* cur_sb = SharedBuffer::bufferFromData(mStorage); SharedBuffer* sb = cur_sb->editResize(new_capacity * mItemSize); if (sb) { mStorage = sb->data(); } else { return; } } else { SharedBuffer* sb = SharedBuffer::alloc(new_capacity * mItemSize); if (sb) { void* array = sb->data(); if (where != 0) { _do_copy(array, mStorage, where); } if (where != new_size) { const void* from = reinterpret_cast(mStorage) + (where+amount)*mItemSize; void* dest = reinterpret_cast(array) + where*mItemSize; _do_copy(dest, from, new_size - where); } release_storage(); mStorage = const_cast(array); } else{ return; } } } else { void* array = editArrayImpl(); void* to = reinterpret_cast(array) + where*mItemSize; _do_destroy(to, amount); if (where != new_size) { const void* from = reinterpret_cast(array) + (where+amount)*mItemSize; _do_move_backward(to, from, new_size - where); } } mCount = new_size; } size_t VectorImpl::itemSize() const { return mItemSize; } void VectorImpl::_do_construct(void* storage, size_t num) const { if (!(mFlags & HAS_TRIVIAL_CTOR)) { do_construct(storage, num); } } void VectorImpl::_do_destroy(void* storage, size_t num) const { if (!(mFlags & HAS_TRIVIAL_DTOR)) { do_destroy(storage, num); } } void VectorImpl::_do_copy(void* dest, const void* from, size_t num) const { if (!(mFlags & HAS_TRIVIAL_COPY)) { do_copy(dest, from, num); } else { memcpy(dest, from, num*itemSize()); } } void VectorImpl::_do_splat(void* dest, const void* item, size_t num) const { do_splat(dest, item, num); } void VectorImpl::_do_move_forward(void* dest, const void* from, size_t num) const { do_move_forward(dest, from, num); } void VectorImpl::_do_move_backward(void* dest, const void* from, size_t num) const { do_move_backward(dest, from, num); } /*****************************************************************************/ SortedVectorImpl::SortedVectorImpl(size_t itemSize, uint32_t flags) : VectorImpl(itemSize, flags) { } SortedVectorImpl::SortedVectorImpl(const VectorImpl& rhs) : VectorImpl(rhs) { } SortedVectorImpl::~SortedVectorImpl() { } SortedVectorImpl& SortedVectorImpl::operator = (const SortedVectorImpl& rhs) { return static_cast( VectorImpl::operator = (static_cast(rhs)) ); } ssize_t SortedVectorImpl::indexOf(const void* item) const { return _indexOrderOf(item); } size_t SortedVectorImpl::orderOf(const void* item) const { size_t o; _indexOrderOf(item, &o); return o; } ssize_t SortedVectorImpl::_indexOrderOf(const void* item, size_t* order) const { if (order) *order = 0; if (isEmpty()) { return NAME_NOT_FOUND; } // binary search ssize_t err = NAME_NOT_FOUND; ssize_t l = 0; ssize_t h = size()-1; ssize_t mid; const void* a = arrayImpl(); const size_t s = itemSize(); while (l <= h) { mid = l + (h - l)/2; const void* const curr = reinterpret_cast(a) + (mid*s); const int c = do_compare(curr, item); if (c == 0) { err = l = mid; break; } else if (c < 0) { l = mid + 1; } else { h = mid - 1; } } if (order) *order = l; return err; } ssize_t SortedVectorImpl::add(const void* item) { size_t order; ssize_t index = _indexOrderOf(item, &order); if (index < 0) { index = VectorImpl::insertAt(item, order, 1); } else { index = VectorImpl::replaceAt(item, index); } return index; } ssize_t SortedVectorImpl::merge(const VectorImpl& vector) { // naive merge... if (!vector.isEmpty()) { const void* buffer = vector.arrayImpl(); const size_t is = itemSize(); size_t s = vector.size(); for (size_t i=0 ; i(buffer) + i*is ); if (err<0) { return err; } } } return NO_ERROR; } ssize_t SortedVectorImpl::merge(const SortedVectorImpl& vector) { // we've merging a sorted vector... nice! ssize_t err = NO_ERROR; if (!vector.isEmpty()) { // first take care of the case where the vectors are sorted together if (do_compare(vector.itemLocation(vector.size()-1), arrayImpl()) <= 0) { err = VectorImpl::insertVectorAt(static_cast(vector), 0); } else if (do_compare(vector.arrayImpl(), itemLocation(size()-1)) >= 0) { err = VectorImpl::appendVector(static_cast(vector)); } else { // this could be made a little better err = merge(static_cast(vector)); } } return err; } ssize_t SortedVectorImpl::remove(const void* item) { ssize_t i = indexOf(item); if (i>=0) { VectorImpl::removeItemsAt(i, 1); } return i; } /*****************************************************************************/ }; // namespace android