/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "BacktraceOffline.h" extern "C" { #define UNW_REMOTE_ONLY #include } #include #include #include #include #include #include #include #include #include #include #include #include #include #include #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wunused-parameter" #include #include #include #include #pragma clang diagnostic pop #include "BacktraceLog.h" void Space::Clear() { start = 0; end = 0; data = nullptr; } size_t Space::Read(uint64_t addr, uint8_t* buffer, size_t size) { if (addr >= start && addr < end) { size_t read_size = std::min(size, static_cast(end - addr)); memcpy(buffer, data + (addr - start), read_size); return read_size; } return 0; } static int FindProcInfo(unw_addr_space_t addr_space, unw_word_t ip, unw_proc_info* proc_info, int need_unwind_info, void* arg) { BacktraceOffline* backtrace = reinterpret_cast(arg); bool result = backtrace->FindProcInfo(addr_space, ip, proc_info, need_unwind_info); return result ? 0 : -UNW_EINVAL; } static void PutUnwindInfo(unw_addr_space_t, unw_proc_info_t*, void*) { } static int GetDynInfoListAddr(unw_addr_space_t, unw_word_t*, void*) { return -UNW_ENOINFO; } static int AccessMem(unw_addr_space_t, unw_word_t addr, unw_word_t* value, int write, void* arg) { if (write == 1) { return -UNW_EINVAL; } BacktraceOffline* backtrace = reinterpret_cast(arg); *value = 0; size_t read_size = backtrace->Read(addr, reinterpret_cast(value), sizeof(unw_word_t)); // Strictly we should check if read_size matches sizeof(unw_word_t), but it is possible in // .eh_frame_hdr that the section can end at a position not aligned in sizeof(unw_word_t), and // we should permit the read at the end of the section. return (read_size > 0u ? 0 : -UNW_EINVAL); } static int AccessReg(unw_addr_space_t, unw_regnum_t unwind_reg, unw_word_t* value, int write, void* arg) { if (write == 1) { return -UNW_EINVAL; } BacktraceOffline* backtrace = reinterpret_cast(arg); uint64_t reg_value; bool result = backtrace->ReadReg(unwind_reg, ®_value); if (result) { *value = static_cast(reg_value); } return result ? 0 : -UNW_EINVAL; } static int AccessFpReg(unw_addr_space_t, unw_regnum_t, unw_fpreg_t*, int, void*) { return -UNW_EINVAL; } static int Resume(unw_addr_space_t, unw_cursor_t*, void*) { return -UNW_EINVAL; } static int GetProcName(unw_addr_space_t, unw_word_t, char*, size_t, unw_word_t*, void*) { return -UNW_EINVAL; } static unw_accessors_t accessors = { .find_proc_info = FindProcInfo, .put_unwind_info = PutUnwindInfo, .get_dyn_info_list_addr = GetDynInfoListAddr, .access_mem = AccessMem, .access_reg = AccessReg, .access_fpreg = AccessFpReg, .resume = Resume, .get_proc_name = GetProcName, }; bool BacktraceOffline::Unwind(size_t num_ignore_frames, ucontext_t* context) { if (context == nullptr) { BACK_LOGW("The context is needed for offline backtracing."); error_ = BACKTRACE_UNWIND_ERROR_NO_CONTEXT; return false; } context_ = context; error_ = BACKTRACE_UNWIND_NO_ERROR; unw_addr_space_t addr_space = unw_create_addr_space(&accessors, 0); unw_cursor_t cursor; int ret = unw_init_remote(&cursor, addr_space, this); if (ret != 0) { BACK_LOGW("unw_init_remote failed %d", ret); unw_destroy_addr_space(addr_space); error_ = BACKTRACE_UNWIND_ERROR_SETUP_FAILED; return false; } size_t num_frames = 0; do { unw_word_t pc; ret = unw_get_reg(&cursor, UNW_REG_IP, &pc); if (ret < 0) { BACK_LOGW("Failed to read IP %d", ret); break; } unw_word_t sp; ret = unw_get_reg(&cursor, UNW_REG_SP, &sp); if (ret < 0) { BACK_LOGW("Failed to read SP %d", ret); break; } if (num_ignore_frames == 0) { frames_.resize(num_frames + 1); backtrace_frame_data_t* frame = &frames_[num_frames]; frame->num = num_frames; frame->pc = static_cast(pc); frame->sp = static_cast(sp); frame->stack_size = 0; if (num_frames > 0) { backtrace_frame_data_t* prev = &frames_[num_frames - 1]; prev->stack_size = frame->sp - prev->sp; } frame->func_name = GetFunctionName(frame->pc, &frame->func_offset); FillInMap(frame->pc, &frame->map); num_frames++; } else { num_ignore_frames--; } ret = unw_step(&cursor); } while (ret > 0 && num_frames < MAX_BACKTRACE_FRAMES); unw_destroy_addr_space(addr_space); context_ = nullptr; return true; } bool BacktraceOffline::ReadWord(uintptr_t ptr, word_t* out_value) { size_t bytes_read = Read(ptr, reinterpret_cast(out_value), sizeof(word_t)); return bytes_read == sizeof(word_t); } size_t BacktraceOffline::Read(uintptr_t addr, uint8_t* buffer, size_t bytes) { // Normally, libunwind needs stack information and call frame information to do remote unwinding. // If call frame information is stored in .debug_frame, libunwind can read it from file // by itself. If call frame information is stored in .eh_frame, we need to provide data in // .eh_frame/.eh_frame_hdr sections. // The order of readings below doesn't matter, as the spaces don't overlap with each other. size_t read_size = eh_frame_hdr_space_.Read(addr, buffer, bytes); if (read_size != 0) { return read_size; } read_size = eh_frame_space_.Read(addr, buffer, bytes); if (read_size != 0) { return read_size; } read_size = stack_space_.Read(addr, buffer, bytes); return read_size; } static bool FileOffsetToVaddr( const std::vector& program_headers, uint64_t file_offset, uint64_t* vaddr) { for (auto& header : program_headers) { if (file_offset >= header.file_offset && file_offset < header.file_offset + header.file_size) { // TODO: Consider load_bias? *vaddr = file_offset - header.file_offset + header.vaddr; return true; } } return false; } bool BacktraceOffline::FindProcInfo(unw_addr_space_t addr_space, uint64_t ip, unw_proc_info_t* proc_info, int need_unwind_info) { backtrace_map_t map; FillInMap(ip, &map); if (!BacktraceMap::IsValid(map)) { return false; } const std::string& filename = map.name; DebugFrameInfo* debug_frame = GetDebugFrameInFile(filename); if (debug_frame == nullptr) { return false; } if (debug_frame->is_eh_frame) { uint64_t ip_offset = ip - map.start + map.offset; uint64_t ip_vaddr; // vaddr in the elf file. bool result = FileOffsetToVaddr(debug_frame->eh_frame.program_headers, ip_offset, &ip_vaddr); if (!result) { return false; } // Calculate the addresses where .eh_frame_hdr and .eh_frame stay when the process was running. eh_frame_hdr_space_.start = (ip - ip_vaddr) + debug_frame->eh_frame.eh_frame_hdr_vaddr; eh_frame_hdr_space_.end = eh_frame_hdr_space_.start + debug_frame->eh_frame.eh_frame_hdr_data.size(); eh_frame_hdr_space_.data = debug_frame->eh_frame.eh_frame_hdr_data.data(); eh_frame_space_.start = (ip - ip_vaddr) + debug_frame->eh_frame.eh_frame_vaddr; eh_frame_space_.end = eh_frame_space_.start + debug_frame->eh_frame.eh_frame_data.size(); eh_frame_space_.data = debug_frame->eh_frame.eh_frame_data.data(); unw_dyn_info di; memset(&di, '\0', sizeof(di)); di.start_ip = map.start; di.end_ip = map.end; di.format = UNW_INFO_FORMAT_REMOTE_TABLE; di.u.rti.name_ptr = 0; di.u.rti.segbase = eh_frame_hdr_space_.start; di.u.rti.table_data = eh_frame_hdr_space_.start + debug_frame->eh_frame.fde_table_offset_in_eh_frame_hdr; di.u.rti.table_len = (eh_frame_hdr_space_.end - di.u.rti.table_data) / sizeof(unw_word_t); int ret = dwarf_search_unwind_table(addr_space, ip, &di, proc_info, need_unwind_info, this); return ret == 0; } eh_frame_hdr_space_.Clear(); eh_frame_space_.Clear(); unw_dyn_info_t di; unw_word_t segbase = map.start - map.offset; int found = dwarf_find_debug_frame(0, &di, ip, segbase, filename.c_str(), map.start, map.end); if (found == 1) { int ret = dwarf_search_unwind_table(addr_space, ip, &di, proc_info, need_unwind_info, this); return ret == 0; } return false; } bool BacktraceOffline::ReadReg(size_t reg, uint64_t* value) { bool result = true; #if defined(__arm__) switch (reg) { case UNW_ARM_R0: *value = context_->uc_mcontext.arm_r0; break; case UNW_ARM_R1: *value = context_->uc_mcontext.arm_r1; break; case UNW_ARM_R2: *value = context_->uc_mcontext.arm_r2; break; case UNW_ARM_R3: *value = context_->uc_mcontext.arm_r3; break; case UNW_ARM_R4: *value = context_->uc_mcontext.arm_r4; break; case UNW_ARM_R5: *value = context_->uc_mcontext.arm_r5; break; case UNW_ARM_R6: *value = context_->uc_mcontext.arm_r6; break; case UNW_ARM_R7: *value = context_->uc_mcontext.arm_r7; break; case UNW_ARM_R8: *value = context_->uc_mcontext.arm_r8; break; case UNW_ARM_R9: *value = context_->uc_mcontext.arm_r9; break; case UNW_ARM_R10: *value = context_->uc_mcontext.arm_r10; break; case UNW_ARM_R11: *value = context_->uc_mcontext.arm_fp; break; case UNW_ARM_R12: *value = context_->uc_mcontext.arm_ip; break; case UNW_ARM_R13: *value = context_->uc_mcontext.arm_sp; break; case UNW_ARM_R14: *value = context_->uc_mcontext.arm_lr; break; case UNW_ARM_R15: *value = context_->uc_mcontext.arm_pc; break; default: result = false; } #elif defined(__aarch64__) if (reg <= UNW_AARCH64_PC) { *value = context_->uc_mcontext.regs[reg]; } else { result = false; } #elif defined(__x86_64__) switch (reg) { case UNW_X86_64_R8: *value = context_->uc_mcontext.gregs[REG_R8]; break; case UNW_X86_64_R9: *value = context_->uc_mcontext.gregs[REG_R9]; break; case UNW_X86_64_R10: *value = context_->uc_mcontext.gregs[REG_R10]; break; case UNW_X86_64_R11: *value = context_->uc_mcontext.gregs[REG_R11]; break; case UNW_X86_64_R12: *value = context_->uc_mcontext.gregs[REG_R12]; break; case UNW_X86_64_R13: *value = context_->uc_mcontext.gregs[REG_R13]; break; case UNW_X86_64_R14: *value = context_->uc_mcontext.gregs[REG_R14]; break; case UNW_X86_64_R15: *value = context_->uc_mcontext.gregs[REG_R15]; break; case UNW_X86_64_RDI: *value = context_->uc_mcontext.gregs[REG_RDI]; break; case UNW_X86_64_RSI: *value = context_->uc_mcontext.gregs[REG_RSI]; break; case UNW_X86_64_RBP: *value = context_->uc_mcontext.gregs[REG_RBP]; break; case UNW_X86_64_RBX: *value = context_->uc_mcontext.gregs[REG_RBX]; break; case UNW_X86_64_RDX: *value = context_->uc_mcontext.gregs[REG_RDX]; break; case UNW_X86_64_RAX: *value = context_->uc_mcontext.gregs[REG_RAX]; break; case UNW_X86_64_RCX: *value = context_->uc_mcontext.gregs[REG_RCX]; break; case UNW_X86_64_RSP: *value = context_->uc_mcontext.gregs[REG_RSP]; break; case UNW_X86_64_RIP: *value = context_->uc_mcontext.gregs[REG_RIP]; break; default: result = false; } #elif defined(__i386__) switch (reg) { case UNW_X86_GS: *value = context_->uc_mcontext.gregs[REG_GS]; break; case UNW_X86_FS: *value = context_->uc_mcontext.gregs[REG_FS]; break; case UNW_X86_ES: *value = context_->uc_mcontext.gregs[REG_ES]; break; case UNW_X86_DS: *value = context_->uc_mcontext.gregs[REG_DS]; break; case UNW_X86_EAX: *value = context_->uc_mcontext.gregs[REG_EAX]; break; case UNW_X86_EBX: *value = context_->uc_mcontext.gregs[REG_EBX]; break; case UNW_X86_ECX: *value = context_->uc_mcontext.gregs[REG_ECX]; break; case UNW_X86_EDX: *value = context_->uc_mcontext.gregs[REG_EDX]; break; case UNW_X86_ESI: *value = context_->uc_mcontext.gregs[REG_ESI]; break; case UNW_X86_EDI: *value = context_->uc_mcontext.gregs[REG_EDI]; break; case UNW_X86_EBP: *value = context_->uc_mcontext.gregs[REG_EBP]; break; case UNW_X86_EIP: *value = context_->uc_mcontext.gregs[REG_EIP]; break; case UNW_X86_ESP: *value = context_->uc_mcontext.gregs[REG_ESP]; break; case UNW_X86_TRAPNO: *value = context_->uc_mcontext.gregs[REG_TRAPNO]; break; case UNW_X86_CS: *value = context_->uc_mcontext.gregs[REG_CS]; break; case UNW_X86_EFLAGS: *value = context_->uc_mcontext.gregs[REG_EFL]; break; case UNW_X86_SS: *value = context_->uc_mcontext.gregs[REG_SS]; break; default: result = false; } #endif return result; } std::string BacktraceOffline::GetFunctionNameRaw(uintptr_t, uintptr_t* offset) { // We don't have enough information to support this. And it is expensive. *offset = 0; return ""; } std::unordered_map> BacktraceOffline::debug_frames_; std::unordered_set BacktraceOffline::debug_frame_missing_files_; static DebugFrameInfo* ReadDebugFrameFromFile(const std::string& filename); DebugFrameInfo* BacktraceOffline::GetDebugFrameInFile(const std::string& filename) { if (cache_file_) { auto it = debug_frames_.find(filename); if (it != debug_frames_.end()) { return it->second.get(); } if (debug_frame_missing_files_.find(filename) != debug_frame_missing_files_.end()) { return nullptr; } } DebugFrameInfo* debug_frame = ReadDebugFrameFromFile(filename); if (cache_file_) { if (debug_frame != nullptr) { debug_frames_.emplace(filename, std::unique_ptr(debug_frame)); } else { debug_frame_missing_files_.insert(filename); } } else { if (last_debug_frame_ != nullptr) { delete last_debug_frame_; } last_debug_frame_ = debug_frame; } return debug_frame; } static bool OmitEncodedValue(uint8_t encode, const uint8_t*& p) { if (encode == DW_EH_PE_omit) { return 0; } uint8_t format = encode & 0x0f; switch (format) { case DW_EH_PE_ptr: p += sizeof(unw_word_t); break; case DW_EH_PE_uleb128: case DW_EH_PE_sleb128: while ((*p & 0x80) != 0) { ++p; } ++p; break; case DW_EH_PE_udata2: case DW_EH_PE_sdata2: p += 2; break; case DW_EH_PE_udata4: case DW_EH_PE_sdata4: p += 4; break; case DW_EH_PE_udata8: case DW_EH_PE_sdata8: p += 8; break; default: return false; } return true; } static bool GetFdeTableOffsetInEhFrameHdr(const std::vector& data, uint64_t* table_offset_in_eh_frame_hdr) { const uint8_t* p = data.data(); const uint8_t* end = p + data.size(); if (p + 4 > end) { return false; } uint8_t version = *p++; if (version != 1) { return false; } uint8_t eh_frame_ptr_encode = *p++; uint8_t fde_count_encode = *p++; uint8_t fde_table_encode = *p++; if (fde_table_encode != (DW_EH_PE_datarel | DW_EH_PE_sdata4)) { return false; } if (!OmitEncodedValue(eh_frame_ptr_encode, p) || !OmitEncodedValue(fde_count_encode, p)) { return false; } if (p >= end) { return false; } *table_offset_in_eh_frame_hdr = p - data.data(); return true; } using ProgramHeader = DebugFrameInfo::EhFrame::ProgramHeader; template DebugFrameInfo* ReadDebugFrameFromELFFile(const llvm::object::ELFFile* elf) { bool has_eh_frame_hdr = false; uint64_t eh_frame_hdr_vaddr = 0; std::vector eh_frame_hdr_data; bool has_eh_frame = false; uint64_t eh_frame_vaddr = 0; std::vector eh_frame_data; for (auto it = elf->section_begin(); it != elf->section_end(); ++it) { llvm::ErrorOr name = elf->getSectionName(&*it); if (name) { if (name.get() == ".debug_frame") { DebugFrameInfo* debug_frame = new DebugFrameInfo; debug_frame->is_eh_frame = false; return debug_frame; } if (name.get() == ".eh_frame_hdr") { has_eh_frame_hdr = true; eh_frame_hdr_vaddr = it->sh_addr; llvm::ErrorOr> data = elf->getSectionContents(&*it); if (data) { eh_frame_hdr_data.insert(eh_frame_hdr_data.begin(), data->data(), data->data() + data->size()); } else { return nullptr; } } else if (name.get() == ".eh_frame") { has_eh_frame = true; eh_frame_vaddr = it->sh_addr; llvm::ErrorOr> data = elf->getSectionContents(&*it); if (data) { eh_frame_data.insert(eh_frame_data.begin(), data->data(), data->data() + data->size()); } else { return nullptr; } } } } if (!(has_eh_frame_hdr && has_eh_frame)) { return nullptr; } uint64_t fde_table_offset; if (!GetFdeTableOffsetInEhFrameHdr(eh_frame_hdr_data, &fde_table_offset)) { return nullptr; } std::vector program_headers; for (auto it = elf->program_header_begin(); it != elf->program_header_end(); ++it) { ProgramHeader header; header.vaddr = it->p_vaddr; header.file_offset = it->p_offset; header.file_size = it->p_filesz; program_headers.push_back(header); } DebugFrameInfo* debug_frame = new DebugFrameInfo; debug_frame->is_eh_frame = true; debug_frame->eh_frame.eh_frame_hdr_vaddr = eh_frame_hdr_vaddr; debug_frame->eh_frame.eh_frame_vaddr = eh_frame_vaddr; debug_frame->eh_frame.fde_table_offset_in_eh_frame_hdr = fde_table_offset; debug_frame->eh_frame.eh_frame_hdr_data = std::move(eh_frame_hdr_data); debug_frame->eh_frame.eh_frame_data = std::move(eh_frame_data); debug_frame->eh_frame.program_headers = program_headers; return debug_frame; } static bool IsValidElfPath(const std::string& filename) { static const char elf_magic[] = {0x7f, 'E', 'L', 'F'}; struct stat st; if (stat(filename.c_str(), &st) != 0 || !S_ISREG(st.st_mode)) { return false; } FILE* fp = fopen(filename.c_str(), "reb"); if (fp == nullptr) { return false; } char buf[4]; if (fread(buf, 4, 1, fp) != 1) { fclose(fp); return false; } fclose(fp); return memcmp(buf, elf_magic, 4) == 0; } static bool IsValidApkPath(const std::string& apk_path) { static const char zip_preamble[] = {0x50, 0x4b, 0x03, 0x04}; struct stat st; if (stat(apk_path.c_str(), &st) != 0 || !S_ISREG(st.st_mode)) { return false; } FILE* fp = fopen(apk_path.c_str(), "reb"); if (fp == nullptr) { return false; } char buf[4]; if (fread(buf, 4, 1, fp) != 1) { fclose(fp); return false; } fclose(fp); return memcmp(buf, zip_preamble, 4) == 0; } class ScopedZiparchiveHandle { public: ScopedZiparchiveHandle(ZipArchiveHandle handle) : handle_(handle) { } ~ScopedZiparchiveHandle() { CloseArchive(handle_); } private: ZipArchiveHandle handle_; }; llvm::object::OwningBinary OpenEmbeddedElfFile(const std::string& filename) { llvm::object::OwningBinary nothing; size_t pos = filename.find("!/"); if (pos == std::string::npos) { return nothing; } std::string apk_file = filename.substr(0, pos); std::string elf_file = filename.substr(pos + 2); if (!IsValidApkPath(apk_file)) { BACK_LOGW("%s is not a valid apk file", apk_file.c_str()); return nothing; } ZipArchiveHandle handle; int32_t ret_code = OpenArchive(apk_file.c_str(), &handle); if (ret_code != 0) { CloseArchive(handle); BACK_LOGW("failed to open archive %s: %s", apk_file.c_str(), ErrorCodeString(ret_code)); return nothing; } ScopedZiparchiveHandle scoped_handle(handle); ZipEntry zentry; ret_code = FindEntry(handle, ZipString(elf_file.c_str()), &zentry); if (ret_code != 0) { BACK_LOGW("failed to find %s in %s: %s", elf_file.c_str(), apk_file.c_str(), ErrorCodeString(ret_code)); return nothing; } if (zentry.method != kCompressStored || zentry.compressed_length != zentry.uncompressed_length) { BACK_LOGW("%s is compressed in %s, which doesn't support running directly", elf_file.c_str(), apk_file.c_str()); return nothing; } auto buffer_or_err = llvm::MemoryBuffer::getOpenFileSlice(GetFileDescriptor(handle), apk_file, zentry.uncompressed_length, zentry.offset); if (!buffer_or_err) { BACK_LOGW("failed to read %s in %s: %s", elf_file.c_str(), apk_file.c_str(), buffer_or_err.getError().message().c_str()); return nothing; } auto binary_or_err = llvm::object::createBinary(buffer_or_err.get()->getMemBufferRef()); if (!binary_or_err) { BACK_LOGW("failed to create binary for %s in %s: %s", elf_file.c_str(), apk_file.c_str(), binary_or_err.getError().message().c_str()); return nothing; } return llvm::object::OwningBinary(std::move(binary_or_err.get()), std::move(buffer_or_err.get())); } static DebugFrameInfo* ReadDebugFrameFromFile(const std::string& filename) { llvm::object::OwningBinary owning_binary; if (filename.find("!/") != std::string::npos) { owning_binary = OpenEmbeddedElfFile(filename); } else { if (!IsValidElfPath(filename)) { return nullptr; } auto binary_or_err = llvm::object::createBinary(llvm::StringRef(filename)); if (!binary_or_err) { return nullptr; } owning_binary = std::move(binary_or_err.get()); } llvm::object::Binary* binary = owning_binary.getBinary(); auto obj = llvm::dyn_cast(binary); if (obj == nullptr) { return nullptr; } if (auto elf = llvm::dyn_cast(obj)) { return ReadDebugFrameFromELFFile(elf->getELFFile()); } if (auto elf = llvm::dyn_cast(obj)) { return ReadDebugFrameFromELFFile(elf->getELFFile()); } return nullptr; } Backtrace* Backtrace::CreateOffline(pid_t pid, pid_t tid, BacktraceMap* map, const backtrace_stackinfo_t& stack, bool cache_file) { return new BacktraceOffline(pid, tid, map, stack, cache_file); }