/* * Copyright (C) 2008 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "fastboot.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bootimg_utils.h" #include "constants.h" #include "diagnose_usb.h" #include "fastboot_driver.h" #include "fs.h" #include "tcp.h" #include "transport.h" #include "udp.h" #include "usb.h" #include "util.h" #include "vendor_boot_img_utils.h" using android::base::borrowed_fd; using android::base::ReadFully; using android::base::Split; using android::base::Trim; using android::base::unique_fd; using namespace std::string_literals; using namespace std::placeholders; static const char* serial = nullptr; static bool g_long_listing = false; // Don't resparse files in too-big chunks. // libsparse will support INT_MAX, but this results in large allocations, so // let's keep it at 1GB to avoid memory pressure on the host. static constexpr int64_t RESPARSE_LIMIT = 1 * 1024 * 1024 * 1024; static uint64_t sparse_limit = 0; static int64_t target_sparse_limit = -1; static unsigned g_base_addr = 0x10000000; static boot_img_hdr_v2 g_boot_img_hdr = {}; static std::string g_cmdline; static std::string g_dtb_path; static bool g_disable_verity = false; static bool g_disable_verification = false; fastboot::FastBootDriver* fb = nullptr; enum fb_buffer_type { FB_BUFFER_FD, FB_BUFFER_SPARSE, }; struct fastboot_buffer { enum fb_buffer_type type; void* data; int64_t sz; unique_fd fd; int64_t image_size; }; enum class ImageType { // Must be flashed for device to boot into the kernel. BootCritical, // Normal partition to be flashed during "flashall". Normal, // Partition that is never flashed during "flashall". Extra }; struct Image { const char* nickname; const char* img_name; const char* sig_name; const char* part_name; bool optional_if_no_image; ImageType type; bool IsSecondary() const { return nickname == nullptr; } }; static Image images[] = { // clang-format off { "boot", "boot.img", "boot.sig", "boot", false, ImageType::BootCritical }, { nullptr, "boot_other.img", "boot.sig", "boot", true, ImageType::Normal }, { "cache", "cache.img", "cache.sig", "cache", true, ImageType::Extra }, { "dtbo", "dtbo.img", "dtbo.sig", "dtbo", true, ImageType::BootCritical }, { "dts", "dt.img", "dt.sig", "dts", true, ImageType::BootCritical }, { "odm", "odm.img", "odm.sig", "odm", true, ImageType::Normal }, { "odm_dlkm", "odm_dlkm.img", "odm_dlkm.sig", "odm_dlkm", true, ImageType::Normal }, { "product", "product.img", "product.sig", "product", true, ImageType::Normal }, { "pvmfw", "pvmfw.img", "pvmfw.sig", "pvmfw", true, ImageType::BootCritical }, { "recovery", "recovery.img", "recovery.sig", "recovery", true, ImageType::BootCritical }, { "super", "super.img", "super.sig", "super", true, ImageType::Extra }, { "system", "system.img", "system.sig", "system", false, ImageType::Normal }, { "system_ext", "system_ext.img", "system_ext.sig", "system_ext", true, ImageType::Normal }, { nullptr, "system_other.img", "system.sig", "system", true, ImageType::Normal }, { "userdata", "userdata.img", "userdata.sig", "userdata", true, ImageType::Extra }, { "vbmeta", "vbmeta.img", "vbmeta.sig", "vbmeta", true, ImageType::BootCritical }, { "vbmeta_system", "vbmeta_system.img", "vbmeta_system.sig", "vbmeta_system", true, ImageType::BootCritical }, { "vbmeta_vendor", "vbmeta_vendor.img", "vbmeta_vendor.sig", "vbmeta_vendor", true, ImageType::BootCritical }, { "vendor", "vendor.img", "vendor.sig", "vendor", true, ImageType::Normal }, { "vendor_boot", "vendor_boot.img", "vendor_boot.sig", "vendor_boot", true, ImageType::BootCritical }, { "vendor_dlkm", "vendor_dlkm.img", "vendor_dlkm.sig", "vendor_dlkm", true, ImageType::Normal }, { nullptr, "vendor_other.img", "vendor.sig", "vendor", true, ImageType::Normal }, // clang-format on }; static char* get_android_product_out() { char* dir = getenv("ANDROID_PRODUCT_OUT"); if (dir == nullptr || dir[0] == '\0') { return nullptr; } return dir; } static std::string find_item_given_name(const std::string& img_name) { char* dir = get_android_product_out(); if (!dir) { die("ANDROID_PRODUCT_OUT not set"); } return std::string(dir) + "/" + img_name; } static std::string find_item(const std::string& item) { for (size_t i = 0; i < arraysize(images); ++i) { if (images[i].nickname && item == images[i].nickname) { return find_item_given_name(images[i].img_name); } } fprintf(stderr, "unknown partition '%s'\n", item.c_str()); return ""; } double last_start_time; static void Status(const std::string& message) { if (!message.empty()) { static constexpr char kStatusFormat[] = "%-50s "; fprintf(stderr, kStatusFormat, message.c_str()); } last_start_time = now(); } static void Epilog(int status) { if (status) { fprintf(stderr, "FAILED (%s)\n", fb->Error().c_str()); die("Command failed"); } else { double split = now(); fprintf(stderr, "OKAY [%7.3fs]\n", (split - last_start_time)); } } static void InfoMessage(const std::string& info) { fprintf(stderr, "(bootloader) %s\n", info.c_str()); } static int64_t get_file_size(borrowed_fd fd) { struct stat sb; if (fstat(fd.get(), &sb) == -1) { die("could not get file size"); } return sb.st_size; } bool ReadFileToVector(const std::string& file, std::vector* out) { out->clear(); unique_fd fd(TEMP_FAILURE_RETRY(open(file.c_str(), O_RDONLY | O_CLOEXEC | O_BINARY))); if (fd == -1) { return false; } out->resize(get_file_size(fd)); return ReadFully(fd, out->data(), out->size()); } static int match_fastboot_with_serial(usb_ifc_info* info, const char* local_serial) { if (info->ifc_class != 0xff || info->ifc_subclass != 0x42 || info->ifc_protocol != 0x03) { return -1; } // require matching serial number or device path if requested // at the command line with the -s option. if (local_serial && (strcmp(local_serial, info->serial_number) != 0 && strcmp(local_serial, info->device_path) != 0)) return -1; return 0; } static int match_fastboot(usb_ifc_info* info) { return match_fastboot_with_serial(info, serial); } static int list_devices_callback(usb_ifc_info* info) { if (match_fastboot_with_serial(info, nullptr) == 0) { std::string serial = info->serial_number; std::string interface = info->interface; if (interface.empty()) { interface = "fastboot"; } if (!info->writable) { serial = UsbNoPermissionsShortHelpText(); } if (!serial[0]) { serial = "????????????"; } // output compatible with "adb devices" if (!g_long_listing) { printf("%s\t%s", serial.c_str(), interface.c_str()); } else { printf("%-22s %s", serial.c_str(), interface.c_str()); if (strlen(info->device_path) > 0) printf(" %s", info->device_path); } putchar('\n'); } return -1; } // Opens a new Transport connected to a device. If |serial| is non-null it will be used to identify // a specific device, otherwise the first USB device found will be used. // // If |serial| is non-null but invalid, this exits. // Otherwise it blocks until the target is available. // // The returned Transport is a singleton, so multiple calls to this function will return the same // object, and the caller should not attempt to delete the returned Transport. static Transport* open_device() { bool announce = true; Socket::Protocol protocol = Socket::Protocol::kTcp; std::string host; int port = 0; if (serial != nullptr) { const char* net_address = nullptr; if (android::base::StartsWith(serial, "tcp:")) { protocol = Socket::Protocol::kTcp; port = tcp::kDefaultPort; net_address = serial + strlen("tcp:"); } else if (android::base::StartsWith(serial, "udp:")) { protocol = Socket::Protocol::kUdp; port = udp::kDefaultPort; net_address = serial + strlen("udp:"); } if (net_address != nullptr) { std::string error; if (!android::base::ParseNetAddress(net_address, &host, &port, nullptr, &error)) { die("invalid network address '%s': %s\n", net_address, error.c_str()); } } } Transport* transport = nullptr; while (true) { if (!host.empty()) { std::string error; if (protocol == Socket::Protocol::kTcp) { transport = tcp::Connect(host, port, &error).release(); } else if (protocol == Socket::Protocol::kUdp) { transport = udp::Connect(host, port, &error).release(); } if (transport == nullptr && announce) { fprintf(stderr, "error: %s\n", error.c_str()); } } else { transport = usb_open(match_fastboot); } if (transport != nullptr) { return transport; } if (announce) { announce = false; fprintf(stderr, "< waiting for %s >\n", serial ? serial : "any device"); } std::this_thread::sleep_for(std::chrono::milliseconds(1)); } } static void list_devices() { // We don't actually open a USB device here, // just getting our callback called so we can // list all the connected devices. usb_open(list_devices_callback); } static void syntax_error(const char* fmt, ...) { fprintf(stderr, "fastboot: usage: "); va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); fprintf(stderr, "\n"); exit(1); } static int show_help() { // clang-format off fprintf(stdout, // 1 2 3 4 5 6 7 8 // 12345678901234567890123456789012345678901234567890123456789012345678901234567890 "usage: fastboot [OPTION...] COMMAND...\n" "\n" "flashing:\n" " update ZIP Flash all partitions from an update.zip package.\n" " flashall Flash all partitions from $ANDROID_PRODUCT_OUT.\n" " On A/B devices, flashed slot is set as active.\n" " Secondary images may be flashed to inactive slot.\n" " flash PARTITION [FILENAME] Flash given partition, using the image from\n" " $ANDROID_PRODUCT_OUT if no filename is given.\n" "\n" "basics:\n" " devices [-l] List devices in bootloader (-l: with device paths).\n" " getvar NAME Display given bootloader variable.\n" " reboot [bootloader] Reboot device.\n" "\n" "locking/unlocking:\n" " flashing lock|unlock Lock/unlock partitions for flashing\n" " flashing lock_critical|unlock_critical\n" " Lock/unlock 'critical' bootloader partitions.\n" " flashing get_unlock_ability\n" " Check whether unlocking is allowed (1) or not(0).\n" "\n" "advanced:\n" " erase PARTITION Erase a flash partition.\n" " format[:FS_TYPE[:SIZE]] PARTITION\n" " Format a flash partition.\n" " set_active SLOT Set the active slot.\n" " oem [COMMAND...] Execute OEM-specific command.\n" " gsi wipe|disable Wipe or disable a GSI installation (fastbootd only).\n" " wipe-super [SUPER_EMPTY] Wipe the super partition. This will reset it to\n" " contain an empty set of default dynamic partitions.\n" " create-logical-partition NAME SIZE\n" " Create a logical partition with the given name and\n" " size, in the super partition.\n" " delete-logical-partition NAME\n" " Delete a logical partition with the given name.\n" " resize-logical-partition NAME SIZE\n" " Change the size of the named logical partition.\n" " snapshot-update cancel On devices that support snapshot-based updates, cancel\n" " an in-progress update. This may make the device\n" " unbootable until it is reflashed.\n" " snapshot-update merge On devices that support snapshot-based updates, finish\n" " an in-progress update if it is in the \"merging\"\n" " phase.\n" " fetch PARTITION OUT_FILE Fetch a partition image from the device." "\n" "boot image:\n" " boot KERNEL [RAMDISK [SECOND]]\n" " Download and boot kernel from RAM.\n" " flash:raw PARTITION KERNEL [RAMDISK [SECOND]]\n" " Create boot image and flash it.\n" " --dtb DTB Specify path to DTB for boot image header version 2.\n" " --cmdline CMDLINE Override kernel command line.\n" " --base ADDRESS Set kernel base address (default: 0x10000000).\n" " --kernel-offset Set kernel offset (default: 0x00008000).\n" " --ramdisk-offset Set ramdisk offset (default: 0x01000000).\n" " --tags-offset Set tags offset (default: 0x00000100).\n" " --dtb-offset Set dtb offset (default: 0x01100000).\n" " --page-size BYTES Set flash page size (default: 2048).\n" " --header-version VERSION Set boot image header version.\n" " --os-version MAJOR[.MINOR[.PATCH]]\n" " Set boot image OS version (default: 0.0.0).\n" " --os-patch-level YYYY-MM-DD\n" " Set boot image OS security patch level.\n" // TODO: still missing: `second_addr`, `name`, `id`, `recovery_dtbo_*`. "\n" // TODO: what device(s) used this? is there any documentation? //" continue Continue with autoboot.\n" //"\n" "Android Things:\n" " stage IN_FILE Sends given file to stage for the next command.\n" " get_staged OUT_FILE Writes data staged by the last command to a file.\n" "\n" "options:\n" " -w Wipe userdata.\n" " -s SERIAL Specify a USB device.\n" " -s tcp|udp:HOST[:PORT] Specify a network device.\n" " -S SIZE[K|M|G] Break into sparse files no larger than SIZE.\n" " --force Force a flash operation that may be unsafe.\n" " --slot SLOT Use SLOT; 'all' for both slots, 'other' for\n" " non-current slot (default: current active slot).\n" " --set-active[=SLOT] Sets the active slot before rebooting.\n" " --skip-secondary Don't flash secondary slots in flashall/update.\n" " --skip-reboot Don't reboot device after flashing.\n" " --disable-verity Sets disable-verity when flashing vbmeta.\n" " --disable-verification Sets disable-verification when flashing vbmeta.\n" " --fs-options=OPTION[,OPTION]\n" " Enable filesystem features. OPTION supports casefold, projid, compress\n" // TODO: remove --unbuffered? " --unbuffered Don't buffer input or output.\n" " --verbose, -v Verbose output.\n" " --version Display version.\n" " --help, -h Show this message.\n" ); // clang-format on return 0; } static std::vector LoadBootableImage(const std::string& kernel, const std::string& ramdisk, const std::string& second_stage) { std::vector kernel_data; if (!ReadFileToVector(kernel, &kernel_data)) { die("cannot load '%s': %s", kernel.c_str(), strerror(errno)); } // Is this actually a boot image? if (kernel_data.size() < sizeof(boot_img_hdr_v3)) { die("cannot load '%s': too short", kernel.c_str()); } if (!memcmp(kernel_data.data(), BOOT_MAGIC, BOOT_MAGIC_SIZE)) { if (!g_cmdline.empty()) { bootimg_set_cmdline(reinterpret_cast(kernel_data.data()), g_cmdline); } if (!ramdisk.empty()) die("cannot boot a boot.img *and* ramdisk"); return kernel_data; } std::vector ramdisk_data; if (!ramdisk.empty()) { if (!ReadFileToVector(ramdisk, &ramdisk_data)) { die("cannot load '%s': %s", ramdisk.c_str(), strerror(errno)); } } std::vector second_stage_data; if (!second_stage.empty()) { if (!ReadFileToVector(second_stage, &second_stage_data)) { die("cannot load '%s': %s", second_stage.c_str(), strerror(errno)); } } std::vector dtb_data; if (!g_dtb_path.empty()) { if (g_boot_img_hdr.header_version != 2) { die("Argument dtb not supported for boot image header version %d\n", g_boot_img_hdr.header_version); } if (!ReadFileToVector(g_dtb_path, &dtb_data)) { die("cannot load '%s': %s", g_dtb_path.c_str(), strerror(errno)); } } fprintf(stderr,"creating boot image...\n"); std::vector out; mkbootimg(kernel_data, ramdisk_data, second_stage_data, dtb_data, g_base_addr, g_boot_img_hdr, &out); if (!g_cmdline.empty()) { bootimg_set_cmdline(reinterpret_cast(out.data()), g_cmdline); } fprintf(stderr, "creating boot image - %zu bytes\n", out.size()); return out; } static bool UnzipToMemory(ZipArchiveHandle zip, const std::string& entry_name, std::vector* out) { ZipEntry64 zip_entry; if (FindEntry(zip, entry_name, &zip_entry) != 0) { fprintf(stderr, "archive does not contain '%s'\n", entry_name.c_str()); return false; } if (zip_entry.uncompressed_length > std::numeric_limits::max()) { die("entry '%s' is too large: %" PRIu64, entry_name.c_str(), zip_entry.uncompressed_length); } out->resize(zip_entry.uncompressed_length); fprintf(stderr, "extracting %s (%zu MB) to RAM...\n", entry_name.c_str(), out->size() / 1024 / 1024); int error = ExtractToMemory(zip, &zip_entry, reinterpret_cast(out->data()), out->size()); if (error != 0) die("failed to extract '%s': %s", entry_name.c_str(), ErrorCodeString(error)); return true; } #if defined(_WIN32) // TODO: move this to somewhere it can be shared. #include // Windows' tmpfile(3) requires administrator rights because // it creates temporary files in the root directory. static FILE* win32_tmpfile() { char temp_path[PATH_MAX]; DWORD nchars = GetTempPath(sizeof(temp_path), temp_path); if (nchars == 0 || nchars >= sizeof(temp_path)) { die("GetTempPath failed, error %ld", GetLastError()); } char filename[PATH_MAX]; if (GetTempFileName(temp_path, "fastboot", 0, filename) == 0) { die("GetTempFileName failed, error %ld", GetLastError()); } return fopen(filename, "w+bTD"); } #define tmpfile win32_tmpfile static int make_temporary_fd(const char* /*what*/) { // TODO: reimplement to avoid leaking a FILE*. return fileno(tmpfile()); } #else static std::string make_temporary_template() { const char* tmpdir = getenv("TMPDIR"); if (tmpdir == nullptr) tmpdir = P_tmpdir; return std::string(tmpdir) + "/fastboot_userdata_XXXXXX"; } static int make_temporary_fd(const char* what) { std::string path_template(make_temporary_template()); int fd = mkstemp(&path_template[0]); if (fd == -1) { die("failed to create temporary file for %s with template %s: %s\n", path_template.c_str(), what, strerror(errno)); } unlink(path_template.c_str()); return fd; } #endif static unique_fd unzip_to_file(ZipArchiveHandle zip, const char* entry_name) { unique_fd fd(make_temporary_fd(entry_name)); ZipEntry64 zip_entry; if (FindEntry(zip, entry_name, &zip_entry) != 0) { fprintf(stderr, "archive does not contain '%s'\n", entry_name); errno = ENOENT; return unique_fd(); } fprintf(stderr, "extracting %s (%" PRIu64 " MB) to disk...", entry_name, zip_entry.uncompressed_length / 1024 / 1024); double start = now(); int error = ExtractEntryToFile(zip, &zip_entry, fd.get()); if (error != 0) { die("\nfailed to extract '%s': %s", entry_name, ErrorCodeString(error)); } if (lseek(fd.get(), 0, SEEK_SET) != 0) { die("\nlseek on extracted file '%s' failed: %s", entry_name, strerror(errno)); } fprintf(stderr, " took %.3fs\n", now() - start); return fd; } static bool CheckRequirement(const std::string& cur_product, const std::string& var, const std::string& product, bool invert, const std::vector& options) { Status("Checking '" + var + "'"); double start = now(); if (!product.empty()) { if (product != cur_product) { double split = now(); fprintf(stderr, "IGNORE, product is %s required only for %s [%7.3fs]\n", cur_product.c_str(), product.c_str(), (split - start)); return true; } } std::string var_value; if (fb->GetVar(var, &var_value) != fastboot::SUCCESS) { fprintf(stderr, "FAILED\n\n"); fprintf(stderr, "Could not getvar for '%s' (%s)\n\n", var.c_str(), fb->Error().c_str()); return false; } bool match = false; for (const auto& option : options) { if (option == var_value || (option.back() == '*' && !var_value.compare(0, option.length() - 1, option, 0, option.length() - 1))) { match = true; break; } } if (invert) { match = !match; } if (match) { double split = now(); fprintf(stderr, "OKAY [%7.3fs]\n", (split - start)); return true; } fprintf(stderr, "FAILED\n\n"); fprintf(stderr, "Device %s is '%s'.\n", var.c_str(), var_value.c_str()); fprintf(stderr, "Update %s '%s'", invert ? "rejects" : "requires", options[0].c_str()); for (auto it = std::next(options.begin()); it != options.end(); ++it) { fprintf(stderr, " or '%s'", it->c_str()); } fprintf(stderr, ".\n\n"); return false; } bool ParseRequirementLine(const std::string& line, std::string* name, std::string* product, bool* invert, std::vector* options) { // "require product=alpha|beta|gamma" // "require version-bootloader=1234" // "require-for-product:gamma version-bootloader=istanbul|constantinople" // "require partition-exists=vendor" *product = ""; *invert = false; auto require_reject_regex = std::regex{"(require\\s+|reject\\s+)?\\s*(\\S+)\\s*=\\s*(.*)"}; auto require_product_regex = std::regex{"require-for-product:\\s*(\\S+)\\s+(\\S+)\\s*=\\s*(.*)"}; std::smatch match_results; if (std::regex_match(line, match_results, require_reject_regex)) { *invert = Trim(match_results[1]) == "reject"; } else if (std::regex_match(line, match_results, require_product_regex)) { *product = match_results[1]; } else { return false; } *name = match_results[2]; // Work around an unfortunate name mismatch. if (*name == "board") { *name = "product"; } auto raw_options = Split(match_results[3], "|"); for (const auto& option : raw_options) { auto trimmed_option = Trim(option); options->emplace_back(trimmed_option); } return true; } // "require partition-exists=x" is a special case, added because of the trouble we had when // Pixel 2 shipped with new partitions and users used old versions of fastboot to flash them, // missing out new partitions. A device with new partitions can use "partition-exists" to // override the fields `optional_if_no_image` in the `images` array. static void HandlePartitionExists(const std::vector& options) { const std::string& partition_name = options[0]; std::string has_slot; if (fb->GetVar("has-slot:" + partition_name, &has_slot) != fastboot::SUCCESS || (has_slot != "yes" && has_slot != "no")) { die("device doesn't have required partition %s!", partition_name.c_str()); } bool known_partition = false; for (size_t i = 0; i < arraysize(images); ++i) { if (images[i].nickname && images[i].nickname == partition_name) { images[i].optional_if_no_image = false; known_partition = true; } } if (!known_partition) { die("device requires partition %s which is not known to this version of fastboot", partition_name.c_str()); } } static void CheckRequirements(const std::string& data, bool force_flash) { std::string cur_product; if (fb->GetVar("product", &cur_product) != fastboot::SUCCESS) { fprintf(stderr, "getvar:product FAILED (%s)\n", fb->Error().c_str()); } auto lines = Split(data, "\n"); for (const auto& line : lines) { if (line.empty()) { continue; } std::string name; std::string product; bool invert; std::vector options; if (!ParseRequirementLine(line, &name, &product, &invert, &options)) { fprintf(stderr, "android-info.txt syntax error: %s\n", line.c_str()); continue; } if (name == "partition-exists") { HandlePartitionExists(options); } else { bool met = CheckRequirement(cur_product, name, product, invert, options); if (!met) { if (!force_flash) { die("requirements not met!"); } else { fprintf(stderr, "requirements not met! but proceeding due to --force\n"); } } } } } static void DisplayVarOrError(const std::string& label, const std::string& var) { std::string value; if (fb->GetVar(var, &value) != fastboot::SUCCESS) { Status("getvar:" + var); fprintf(stderr, "FAILED (%s)\n", fb->Error().c_str()); return; } fprintf(stderr, "%s: %s\n", label.c_str(), value.c_str()); } static void DumpInfo() { fprintf(stderr, "--------------------------------------------\n"); DisplayVarOrError("Bootloader Version...", "version-bootloader"); DisplayVarOrError("Baseband Version.....", "version-baseband"); DisplayVarOrError("Serial Number........", "serialno"); fprintf(stderr, "--------------------------------------------\n"); } static struct sparse_file** load_sparse_files(int fd, int64_t max_size) { struct sparse_file* s = sparse_file_import_auto(fd, false, true); if (!s) die("cannot sparse read file"); if (max_size <= 0 || max_size > std::numeric_limits::max()) { die("invalid max size %" PRId64, max_size); } int files = sparse_file_resparse(s, max_size, nullptr, 0); if (files < 0) die("Failed to resparse"); sparse_file** out_s = reinterpret_cast(calloc(sizeof(struct sparse_file *), files + 1)); if (!out_s) die("Failed to allocate sparse file array"); files = sparse_file_resparse(s, max_size, out_s, files); if (files < 0) die("Failed to resparse"); return out_s; } static uint64_t get_uint_var(const char* var_name) { std::string value_str; if (fb->GetVar(var_name, &value_str) != fastboot::SUCCESS || value_str.empty()) { verbose("target didn't report %s", var_name); return 0; } // Some bootloaders (angler, for example) send spurious whitespace too. value_str = android::base::Trim(value_str); uint64_t value; if (!android::base::ParseUint(value_str, &value)) { fprintf(stderr, "couldn't parse %s '%s'\n", var_name, value_str.c_str()); return 0; } if (value > 0) verbose("target reported %s of %" PRId64 " bytes", var_name, value); return value; } static int64_t get_sparse_limit(int64_t size) { int64_t limit = sparse_limit; if (limit == 0) { // Unlimited, so see what the target device's limit is. // TODO: shouldn't we apply this limit even if you've used -S? if (target_sparse_limit == -1) { target_sparse_limit = static_cast(get_uint_var("max-download-size")); } if (target_sparse_limit > 0) { limit = target_sparse_limit; } else { return 0; } } if (size > limit) { return std::min(limit, RESPARSE_LIMIT); } return 0; } static bool load_buf_fd(unique_fd fd, struct fastboot_buffer* buf) { int64_t sz = get_file_size(fd); if (sz == -1) { return false; } if (sparse_file* s = sparse_file_import(fd.get(), false, false)) { buf->image_size = sparse_file_len(s, false, false); sparse_file_destroy(s); } else { buf->image_size = sz; } lseek(fd.get(), 0, SEEK_SET); int64_t limit = get_sparse_limit(sz); buf->fd = std::move(fd); if (limit) { sparse_file** s = load_sparse_files(buf->fd.get(), limit); if (s == nullptr) { return false; } buf->type = FB_BUFFER_SPARSE; buf->data = s; } else { buf->type = FB_BUFFER_FD; buf->data = nullptr; buf->sz = sz; } return true; } static bool load_buf(const char* fname, struct fastboot_buffer* buf) { unique_fd fd(TEMP_FAILURE_RETRY(open(fname, O_RDONLY | O_BINARY))); if (fd == -1) { return false; } struct stat s; if (fstat(fd.get(), &s)) { return false; } if (!S_ISREG(s.st_mode)) { errno = S_ISDIR(s.st_mode) ? EISDIR : EINVAL; return false; } return load_buf_fd(std::move(fd), buf); } static void rewrite_vbmeta_buffer(struct fastboot_buffer* buf, bool vbmeta_in_boot) { // Buffer needs to be at least the size of the VBMeta struct which // is 256 bytes. if (buf->sz < 256) { return; } std::string data; if (!android::base::ReadFdToString(buf->fd, &data)) { die("Failed reading from vbmeta"); } uint64_t vbmeta_offset = 0; if (vbmeta_in_boot) { // Tries to locate top-level vbmeta from boot.img footer. uint64_t footer_offset = buf->sz - AVB_FOOTER_SIZE; if (0 != data.compare(footer_offset, AVB_FOOTER_MAGIC_LEN, AVB_FOOTER_MAGIC)) { die("Failed to find AVB_FOOTER at offset: %" PRId64 ", is BOARD_AVB_ENABLE true?", footer_offset); } const AvbFooter* footer = reinterpret_cast(data.c_str() + footer_offset); vbmeta_offset = be64toh(footer->vbmeta_offset); } // Ensures there is AVB_MAGIC at vbmeta_offset. if (0 != data.compare(vbmeta_offset, AVB_MAGIC_LEN, AVB_MAGIC)) { die("Failed to find AVB_MAGIC at offset: %" PRId64, vbmeta_offset); } fprintf(stderr, "Rewriting vbmeta struct at offset: %" PRId64 "\n", vbmeta_offset); // There's a 32-bit big endian |flags| field at offset 120 where // bit 0 corresponds to disable-verity and bit 1 corresponds to // disable-verification. // // See external/avb/libavb/avb_vbmeta_image.h for the layout of // the VBMeta struct. uint64_t flags_offset = 123 + vbmeta_offset; if (g_disable_verity) { data[flags_offset] |= 0x01; } if (g_disable_verification) { data[flags_offset] |= 0x02; } unique_fd fd(make_temporary_fd("vbmeta rewriting")); if (!android::base::WriteStringToFd(data, fd)) { die("Failed writing to modified vbmeta"); } buf->fd = std::move(fd); lseek(buf->fd.get(), 0, SEEK_SET); } static bool has_vbmeta_partition() { std::string partition_type; return fb->GetVar("partition-type:vbmeta", &partition_type) == fastboot::SUCCESS || fb->GetVar("partition-type:vbmeta_a", &partition_type) == fastboot::SUCCESS || fb->GetVar("partition-type:vbmeta_b", &partition_type) == fastboot::SUCCESS; } static bool is_logical(const std::string& partition) { std::string value; return fb->GetVar("is-logical:" + partition, &value) == fastboot::SUCCESS && value == "yes"; } static std::string fb_fix_numeric_var(std::string var) { // Some bootloaders (angler, for example), send spurious leading whitespace. var = android::base::Trim(var); // Some bootloaders (hammerhead, for example) use implicit hex. // This code used to use strtol with base 16. if (!android::base::StartsWith(var, "0x")) var = "0x" + var; return var; } static uint64_t get_partition_size(const std::string& partition) { std::string partition_size_str; if (fb->GetVar("partition-size:" + partition, &partition_size_str) != fastboot::SUCCESS) { if (!is_logical(partition)) { return 0; } die("cannot get partition size for %s", partition.c_str()); } partition_size_str = fb_fix_numeric_var(partition_size_str); uint64_t partition_size; if (!android::base::ParseUint(partition_size_str, &partition_size)) { if (!is_logical(partition)) { return 0; } die("Couldn't parse partition size '%s'.", partition_size_str.c_str()); } return partition_size; } static void copy_boot_avb_footer(const std::string& partition, struct fastboot_buffer* buf) { if (buf->sz < AVB_FOOTER_SIZE) { return; } // If overflows and negative, it should be < buf->sz. int64_t partition_size = static_cast(get_partition_size(partition)); if (partition_size == buf->sz) { return; } // Some device bootloaders might not implement `fastboot getvar partition-size:boot[_a|_b]`. // In this case, partition_size will be zero. if (partition_size < buf->sz) { fprintf(stderr, "Warning: skip copying boot image avb footer" " (boot partition size: %" PRId64 ", boot image size: %" PRId64 ").\n", partition_size, buf->sz); return; } // IMPORTANT: after the following read, we need to reset buf->fd before return (if not die). // Because buf->fd will still be used afterwards. std::string data; if (!android::base::ReadFdToString(buf->fd, &data)) { die("Failed reading from boot"); } uint64_t footer_offset = buf->sz - AVB_FOOTER_SIZE; if (0 != data.compare(footer_offset, AVB_FOOTER_MAGIC_LEN, AVB_FOOTER_MAGIC)) { lseek(buf->fd.get(), 0, SEEK_SET); // IMPORTANT: resets buf->fd before return. return; } unique_fd fd(make_temporary_fd("boot rewriting")); if (!android::base::WriteStringToFd(data, fd)) { die("Failed writing to modified boot"); } lseek(fd.get(), partition_size - AVB_FOOTER_SIZE, SEEK_SET); if (!android::base::WriteStringToFd(data.substr(footer_offset), fd)) { die("Failed copying AVB footer in boot"); } buf->fd = std::move(fd); buf->sz = partition_size; lseek(buf->fd.get(), 0, SEEK_SET); } static void flash_buf(const std::string& partition, struct fastboot_buffer *buf) { sparse_file** s; if (partition == "boot" || partition == "boot_a" || partition == "boot_b") { copy_boot_avb_footer(partition, buf); } // Rewrite vbmeta if that's what we're flashing and modification has been requested. if (g_disable_verity || g_disable_verification) { if (partition == "vbmeta" || partition == "vbmeta_a" || partition == "vbmeta_b") { rewrite_vbmeta_buffer(buf, false /* vbmeta_in_boot */); } else if (!has_vbmeta_partition() && (partition == "boot" || partition == "boot_a" || partition == "boot_b")) { rewrite_vbmeta_buffer(buf, true /* vbmeta_in_boot */ ); } } switch (buf->type) { case FB_BUFFER_SPARSE: { std::vector> sparse_files; s = reinterpret_cast(buf->data); while (*s) { int64_t sz = sparse_file_len(*s, true, false); sparse_files.emplace_back(*s, sz); ++s; } for (size_t i = 0; i < sparse_files.size(); ++i) { const auto& pair = sparse_files[i]; fb->FlashPartition(partition, pair.first, pair.second, i + 1, sparse_files.size()); } break; } case FB_BUFFER_FD: fb->FlashPartition(partition, buf->fd, buf->sz); break; default: die("unknown buffer type: %d", buf->type); } } static std::string get_current_slot() { std::string current_slot; if (fb->GetVar("current-slot", ¤t_slot) != fastboot::SUCCESS) return ""; if (current_slot[0] == '_') current_slot.erase(0, 1); return current_slot; } static int get_slot_count() { std::string var; int count = 0; if (fb->GetVar("slot-count", &var) != fastboot::SUCCESS || !android::base::ParseInt(var, &count)) { return 0; } return count; } static bool supports_AB() { return get_slot_count() >= 2; } // Given a current slot, this returns what the 'other' slot is. static std::string get_other_slot(const std::string& current_slot, int count) { if (count == 0) return ""; char next = (current_slot[0] - 'a' + 1)%count + 'a'; return std::string(1, next); } static std::string get_other_slot(const std::string& current_slot) { return get_other_slot(current_slot, get_slot_count()); } static std::string get_other_slot(int count) { return get_other_slot(get_current_slot(), count); } static std::string get_other_slot() { return get_other_slot(get_current_slot(), get_slot_count()); } static std::string verify_slot(const std::string& slot_name, bool allow_all) { std::string slot = slot_name; if (slot == "all") { if (allow_all) { return "all"; } else { int count = get_slot_count(); if (count > 0) { return "a"; } else { die("No known slots"); } } } int count = get_slot_count(); if (count == 0) die("Device does not support slots"); if (slot == "other") { std::string other = get_other_slot( count); if (other == "") { die("No known slots"); } return other; } if (slot.size() == 1 && (slot[0]-'a' >= 0 && slot[0]-'a' < count)) return slot; fprintf(stderr, "Slot %s does not exist. supported slots are:\n", slot.c_str()); for (int i=0; i& func, bool force_slot) { std::string has_slot; std::string current_slot; // |part| can be vendor_boot:default. Append slot to the first token. auto part_tokens = android::base::Split(part, ":"); if (fb->GetVar("has-slot:" + part_tokens[0], &has_slot) != fastboot::SUCCESS) { /* If has-slot is not supported, the answer is no. */ has_slot = "no"; } if (has_slot == "yes") { if (slot == "") { current_slot = get_current_slot(); if (current_slot == "") { die("Failed to identify current slot"); } part_tokens[0] += "_" + current_slot; } else { part_tokens[0] += "_" + slot; } func(android::base::Join(part_tokens, ":")); } else { if (force_slot && slot != "") { fprintf(stderr, "Warning: %s does not support slots, and slot %s was requested.\n", part_tokens[0].c_str(), slot.c_str()); } func(part); } } /* This function will find the real partition name given a base name, and a slot. If slot is NULL or * empty, it will use the current slot. If slot is "all", it will return a list of all possible * partition names. If force_slot is true, it will fail if a slot is specified, and the given * partition does not support slots. */ static void do_for_partitions(const std::string& part, const std::string& slot, const std::function& func, bool force_slot) { std::string has_slot; // |part| can be vendor_boot:default. Query has-slot on the first token only. auto part_tokens = android::base::Split(part, ":"); if (slot == "all") { if (fb->GetVar("has-slot:" + part_tokens[0], &has_slot) != fastboot::SUCCESS) { die("Could not check if partition %s has slot %s", part_tokens[0].c_str(), slot.c_str()); } if (has_slot == "yes") { for (int i=0; i < get_slot_count(); i++) { do_for_partition(part, std::string(1, (char)(i + 'a')), func, force_slot); } } else { do_for_partition(part, "", func, force_slot); } } else { do_for_partition(part, slot, func, force_slot); } } static bool is_retrofit_device() { std::string value; if (fb->GetVar("super-partition-name", &value) != fastboot::SUCCESS) { return false; } return android::base::StartsWith(value, "system_"); } // Fetch a partition from the device to a given fd. This is a wrapper over FetchToFd to fetch // the full image. static uint64_t fetch_partition(const std::string& partition, borrowed_fd fd) { uint64_t fetch_size = get_uint_var(FB_VAR_MAX_FETCH_SIZE); if (fetch_size == 0) { die("Unable to get %s. Device does not support fetch command.", FB_VAR_MAX_FETCH_SIZE); } uint64_t partition_size = get_partition_size(partition); if (partition_size <= 0) { die("Invalid partition size for partition %s: %" PRId64, partition.c_str(), partition_size); } uint64_t offset = 0; while (offset < partition_size) { uint64_t chunk_size = std::min(fetch_size, partition_size - offset); if (fb->FetchToFd(partition, fd, offset, chunk_size) != fastboot::RetCode::SUCCESS) { die("Unable to fetch %s (offset=%" PRIx64 ", size=%" PRIx64 ")", partition.c_str(), offset, chunk_size); } offset += chunk_size; } return partition_size; } static void do_fetch(const std::string& partition, const std::string& slot_override, const std::string& outfile) { unique_fd fd(TEMP_FAILURE_RETRY( open(outfile.c_str(), O_WRONLY | O_CREAT | O_TRUNC | O_CLOEXEC | O_BINARY, 0644))); auto fetch = std::bind(fetch_partition, _1, borrowed_fd(fd)); do_for_partitions(partition, slot_override, fetch, false /* force slot */); } // Return immediately if not flashing a vendor boot image. If flashing a vendor boot image, // repack vendor_boot image with an updated ramdisk. After execution, buf is set // to the new image to flash, and return value is the real partition name to flash. static std::string repack_ramdisk(const char* pname, struct fastboot_buffer* buf) { std::string_view pname_sv{pname}; if (!android::base::StartsWith(pname_sv, "vendor_boot:") && !android::base::StartsWith(pname_sv, "vendor_boot_a:") && !android::base::StartsWith(pname_sv, "vendor_boot_b:")) { return std::string(pname_sv); } if (buf->type != FB_BUFFER_FD) { die("Flashing sparse vendor ramdisk image is not supported."); } if (buf->sz <= 0) { die("repack_ramdisk() sees negative size: %" PRId64, buf->sz); } std::string partition(pname_sv.substr(0, pname_sv.find(':'))); std::string ramdisk(pname_sv.substr(pname_sv.find(':') + 1)); unique_fd vendor_boot(make_temporary_fd("vendor boot repack")); uint64_t vendor_boot_size = fetch_partition(partition, vendor_boot); auto repack_res = replace_vendor_ramdisk(vendor_boot, vendor_boot_size, ramdisk, buf->fd, static_cast(buf->sz)); if (!repack_res.ok()) { die("%s", repack_res.error().message().c_str()); } buf->fd = std::move(vendor_boot); buf->sz = vendor_boot_size; buf->image_size = vendor_boot_size; return partition; } static void do_flash(const char* pname, const char* fname) { verbose("Do flash %s %s", pname, fname); struct fastboot_buffer buf; if (!load_buf(fname, &buf)) { die("cannot load '%s': %s", fname, strerror(errno)); } if (is_logical(pname)) { fb->ResizePartition(pname, std::to_string(buf.image_size)); } std::string flash_pname = repack_ramdisk(pname, &buf); flash_buf(flash_pname, &buf); } // Sets slot_override as the active slot. If slot_override is blank, // set current slot as active instead. This clears slot-unbootable. static void set_active(const std::string& slot_override) { if (!supports_AB()) return; if (slot_override != "") { fb->SetActive(slot_override); } else { std::string current_slot = get_current_slot(); if (current_slot != "") { fb->SetActive(current_slot); } } } static bool is_userspace_fastboot() { std::string value; return fb->GetVar("is-userspace", &value) == fastboot::SUCCESS && value == "yes"; } static void reboot_to_userspace_fastboot() { fb->RebootTo("fastboot"); auto* old_transport = fb->set_transport(nullptr); delete old_transport; // Give the current connection time to close. std::this_thread::sleep_for(std::chrono::milliseconds(1000)); fb->set_transport(open_device()); if (!is_userspace_fastboot()) { die("Failed to boot into userspace fastboot; one or more components might be unbootable."); } // Reset target_sparse_limit after reboot to userspace fastboot. Max // download sizes may differ in bootloader and fastbootd. target_sparse_limit = -1; } static void CancelSnapshotIfNeeded() { std::string merge_status = "none"; if (fb->GetVar(FB_VAR_SNAPSHOT_UPDATE_STATUS, &merge_status) == fastboot::SUCCESS && !merge_status.empty() && merge_status != "none") { fb->SnapshotUpdateCommand("cancel"); } } class ImageSource { public: virtual ~ImageSource() {}; virtual bool ReadFile(const std::string& name, std::vector* out) const = 0; virtual unique_fd OpenFile(const std::string& name) const = 0; }; class FlashAllTool { public: FlashAllTool(const ImageSource& source, const std::string& slot_override, bool skip_secondary, bool wipe, bool force_flash); void Flash(); private: void CheckRequirements(); void DetermineSecondarySlot(); void CollectImages(); void FlashImages(const std::vector>& images); void FlashImage(const Image& image, const std::string& slot, fastboot_buffer* buf); void UpdateSuperPartition(); const ImageSource& source_; std::string slot_override_; bool skip_secondary_; bool wipe_; bool force_flash_; std::string secondary_slot_; std::vector> boot_images_; std::vector> os_images_; }; FlashAllTool::FlashAllTool(const ImageSource& source, const std::string& slot_override, bool skip_secondary, bool wipe, bool force_flash) : source_(source), slot_override_(slot_override), skip_secondary_(skip_secondary), wipe_(wipe), force_flash_(force_flash) { } void FlashAllTool::Flash() { DumpInfo(); CheckRequirements(); // Change the slot first, so we boot into the correct recovery image when // using fastbootd. if (slot_override_ == "all") { set_active("a"); } else { set_active(slot_override_); } DetermineSecondarySlot(); CollectImages(); CancelSnapshotIfNeeded(); // First flash boot partitions. We allow this to happen either in userspace // or in bootloader fastboot. FlashImages(boot_images_); // Sync the super partition. This will reboot to userspace fastboot if needed. UpdateSuperPartition(); // Resize any logical partition to 0, so each partition is reset to 0 // extents, and will achieve more optimal allocation. for (const auto& [image, slot] : os_images_) { auto resize_partition = [](const std::string& partition) -> void { if (is_logical(partition)) { fb->ResizePartition(partition, "0"); } }; do_for_partitions(image->part_name, slot, resize_partition, false); } // Flash OS images, resizing logical partitions as needed. FlashImages(os_images_); } void FlashAllTool::CheckRequirements() { std::vector contents; if (!source_.ReadFile("android-info.txt", &contents)) { die("could not read android-info.txt"); } ::CheckRequirements({contents.data(), contents.size()}, force_flash_); } void FlashAllTool::DetermineSecondarySlot() { if (skip_secondary_) { return; } if (slot_override_ != "" && slot_override_ != "all") { secondary_slot_ = get_other_slot(slot_override_); } else { secondary_slot_ = get_other_slot(); } if (secondary_slot_ == "") { if (supports_AB()) { fprintf(stderr, "Warning: Could not determine slot for secondary images. Ignoring.\n"); } skip_secondary_ = true; } } void FlashAllTool::CollectImages() { for (size_t i = 0; i < arraysize(images); ++i) { std::string slot = slot_override_; if (images[i].IsSecondary()) { if (skip_secondary_) { continue; } slot = secondary_slot_; } if (images[i].type == ImageType::BootCritical) { boot_images_.emplace_back(&images[i], slot); } else if (images[i].type == ImageType::Normal) { os_images_.emplace_back(&images[i], slot); } } } void FlashAllTool::FlashImages(const std::vector>& images) { for (const auto& [image, slot] : images) { fastboot_buffer buf; unique_fd fd = source_.OpenFile(image->img_name); if (fd < 0 || !load_buf_fd(std::move(fd), &buf)) { if (image->optional_if_no_image) { continue; } die("could not load '%s': %s", image->img_name, strerror(errno)); } FlashImage(*image, slot, &buf); } } void FlashAllTool::FlashImage(const Image& image, const std::string& slot, fastboot_buffer* buf) { auto flash = [&, this](const std::string& partition_name) { std::vector signature_data; if (source_.ReadFile(image.sig_name, &signature_data)) { fb->Download("signature", signature_data); fb->RawCommand("signature", "installing signature"); } if (is_logical(partition_name)) { fb->ResizePartition(partition_name, std::to_string(buf->image_size)); } flash_buf(partition_name.c_str(), buf); }; do_for_partitions(image.part_name, slot, flash, false); } void FlashAllTool::UpdateSuperPartition() { unique_fd fd = source_.OpenFile("super_empty.img"); if (fd < 0) { return; } if (!is_userspace_fastboot()) { reboot_to_userspace_fastboot(); } std::string super_name; if (fb->GetVar("super-partition-name", &super_name) != fastboot::RetCode::SUCCESS) { super_name = "super"; } fb->Download(super_name, fd, get_file_size(fd)); std::string command = "update-super:" + super_name; if (wipe_) { command += ":wipe"; } fb->RawCommand(command, "Updating super partition"); // Retrofit devices have two super partitions, named super_a and super_b. // On these devices, secondary slots must be flashed as physical // partitions (otherwise they would not mount on first boot). To enforce // this, we delete any logical partitions for the "other" slot. if (is_retrofit_device()) { for (const auto& [image, slot] : os_images_) { std::string partition_name = image->part_name + "_"s + slot; if (image->IsSecondary() && is_logical(partition_name)) { fb->DeletePartition(partition_name); } } } } class ZipImageSource final : public ImageSource { public: explicit ZipImageSource(ZipArchiveHandle zip) : zip_(zip) {} bool ReadFile(const std::string& name, std::vector* out) const override; unique_fd OpenFile(const std::string& name) const override; private: ZipArchiveHandle zip_; }; bool ZipImageSource::ReadFile(const std::string& name, std::vector* out) const { return UnzipToMemory(zip_, name, out); } unique_fd ZipImageSource::OpenFile(const std::string& name) const { return unzip_to_file(zip_, name.c_str()); } static void do_update(const char* filename, const std::string& slot_override, bool skip_secondary, bool force_flash) { ZipArchiveHandle zip; int error = OpenArchive(filename, &zip); if (error != 0) { die("failed to open zip file '%s': %s", filename, ErrorCodeString(error)); } FlashAllTool tool(ZipImageSource(zip), slot_override, skip_secondary, false, force_flash); tool.Flash(); CloseArchive(zip); } class LocalImageSource final : public ImageSource { public: bool ReadFile(const std::string& name, std::vector* out) const override; unique_fd OpenFile(const std::string& name) const override; }; bool LocalImageSource::ReadFile(const std::string& name, std::vector* out) const { auto path = find_item_given_name(name); if (path.empty()) { return false; } return ReadFileToVector(path, out); } unique_fd LocalImageSource::OpenFile(const std::string& name) const { auto path = find_item_given_name(name); return unique_fd(TEMP_FAILURE_RETRY(open(path.c_str(), O_RDONLY | O_BINARY))); } static void do_flashall(const std::string& slot_override, bool skip_secondary, bool wipe, bool force_flash) { FlashAllTool tool(LocalImageSource(), slot_override, skip_secondary, wipe, force_flash); tool.Flash(); } static std::string next_arg(std::vector* args) { if (args->empty()) syntax_error("expected argument"); std::string result = args->front(); args->erase(args->begin()); return result; } static void do_oem_command(const std::string& cmd, std::vector* args) { if (args->empty()) syntax_error("empty oem command"); std::string command(cmd); while (!args->empty()) { command += " " + next_arg(args); } fb->RawCommand(command, ""); } static unsigned fb_get_flash_block_size(std::string name) { std::string sizeString; if (fb->GetVar(name, &sizeString) != fastboot::SUCCESS || sizeString.empty()) { // This device does not report flash block sizes, so return 0. return 0; } sizeString = fb_fix_numeric_var(sizeString); unsigned size; if (!android::base::ParseUint(sizeString, &size)) { fprintf(stderr, "Couldn't parse %s '%s'.\n", name.c_str(), sizeString.c_str()); return 0; } if ((size & (size - 1)) != 0) { fprintf(stderr, "Invalid %s %u: must be a power of 2.\n", name.c_str(), size); return 0; } return size; } static void fb_perform_format( const std::string& partition, int skip_if_not_supported, const std::string& type_override, const std::string& size_override, const std::string& initial_dir, const unsigned fs_options) { std::string partition_type, partition_size; struct fastboot_buffer buf; const char* errMsg = nullptr; const struct fs_generator* gen = nullptr; TemporaryFile output; unique_fd fd; unsigned int limit = INT_MAX; if (target_sparse_limit > 0 && target_sparse_limit < limit) { limit = target_sparse_limit; } if (sparse_limit > 0 && sparse_limit < limit) { limit = sparse_limit; } if (fb->GetVar("partition-type:" + partition, &partition_type) != fastboot::SUCCESS) { errMsg = "Can't determine partition type.\n"; goto failed; } if (!type_override.empty()) { if (partition_type != type_override) { fprintf(stderr, "Warning: %s type is %s, but %s was requested for formatting.\n", partition.c_str(), partition_type.c_str(), type_override.c_str()); } partition_type = type_override; } if (fb->GetVar("partition-size:" + partition, &partition_size) != fastboot::SUCCESS) { errMsg = "Unable to get partition size\n"; goto failed; } if (!size_override.empty()) { if (partition_size != size_override) { fprintf(stderr, "Warning: %s size is %s, but %s was requested for formatting.\n", partition.c_str(), partition_size.c_str(), size_override.c_str()); } partition_size = size_override; } partition_size = fb_fix_numeric_var(partition_size); gen = fs_get_generator(partition_type); if (!gen) { if (skip_if_not_supported) { fprintf(stderr, "Erase successful, but not automatically formatting.\n"); fprintf(stderr, "File system type %s not supported.\n", partition_type.c_str()); return; } die("Formatting is not supported for file system with type '%s'.", partition_type.c_str()); } int64_t size; if (!android::base::ParseInt(partition_size, &size)) { die("Couldn't parse partition size '%s'.", partition_size.c_str()); } unsigned eraseBlkSize, logicalBlkSize; eraseBlkSize = fb_get_flash_block_size("erase-block-size"); logicalBlkSize = fb_get_flash_block_size("logical-block-size"); if (fs_generator_generate(gen, output.path, size, initial_dir, eraseBlkSize, logicalBlkSize, fs_options)) { die("Cannot generate image for %s", partition.c_str()); } fd.reset(open(output.path, O_RDONLY)); if (fd == -1) { die("Cannot open generated image: %s", strerror(errno)); } if (!load_buf_fd(std::move(fd), &buf)) { die("Cannot read image: %s", strerror(errno)); } flash_buf(partition, &buf); return; failed: if (skip_if_not_supported) { fprintf(stderr, "Erase successful, but not automatically formatting.\n"); if (errMsg) fprintf(stderr, "%s", errMsg); } fprintf(stderr, "FAILED (%s)\n", fb->Error().c_str()); if (!skip_if_not_supported) { die("Command failed"); } } static bool should_flash_in_userspace(const std::string& partition_name) { if (!get_android_product_out()) { return false; } auto path = find_item_given_name("super_empty.img"); if (path.empty() || access(path.c_str(), R_OK)) { return false; } auto metadata = android::fs_mgr::ReadFromImageFile(path); if (!metadata) { return false; } for (const auto& partition : metadata->partitions) { auto candidate = android::fs_mgr::GetPartitionName(partition); if (partition.attributes & LP_PARTITION_ATTR_SLOT_SUFFIXED) { // On retrofit devices, we don't know if, or whether, the A or B // slot has been flashed for dynamic partitions. Instead we add // both names to the list as a conservative guess. if (candidate + "_a" == partition_name || candidate + "_b" == partition_name) { return true; } } else if (candidate == partition_name) { return true; } } return false; } static bool wipe_super(const android::fs_mgr::LpMetadata& metadata, const std::string& slot, std::string* message) { auto super_device = GetMetadataSuperBlockDevice(metadata); auto block_size = metadata.geometry.logical_block_size; auto super_bdev_name = android::fs_mgr::GetBlockDevicePartitionName(*super_device); if (super_bdev_name != "super") { // retrofit devices do not allow flashing to the retrofit partitions, // so enable it if we can. fb->RawCommand("oem allow-flash-super"); } // Note: do not use die() in here, since we want TemporaryDir's destructor // to be called. TemporaryDir temp_dir; bool ok; if (metadata.block_devices.size() > 1) { ok = WriteSplitImageFiles(temp_dir.path, metadata, block_size, {}, true); } else { auto image_path = temp_dir.path + "/"s + super_bdev_name + ".img"; ok = WriteToImageFile(image_path, metadata, block_size, {}, true); } if (!ok) { *message = "Could not generate a flashable super image file"; return false; } for (const auto& block_device : metadata.block_devices) { auto partition = android::fs_mgr::GetBlockDevicePartitionName(block_device); bool force_slot = !!(block_device.flags & LP_BLOCK_DEVICE_SLOT_SUFFIXED); std::string image_name; if (metadata.block_devices.size() > 1) { image_name = "super_" + partition + ".img"; } else { image_name = partition + ".img"; } auto image_path = temp_dir.path + "/"s + image_name; auto flash = [&](const std::string& partition_name) { do_flash(partition_name.c_str(), image_path.c_str()); }; do_for_partitions(partition, slot, flash, force_slot); unlink(image_path.c_str()); } return true; } static void do_wipe_super(const std::string& image, const std::string& slot_override) { if (access(image.c_str(), R_OK) != 0) { die("Could not read image: %s", image.c_str()); } auto metadata = android::fs_mgr::ReadFromImageFile(image); if (!metadata) { die("Could not parse image: %s", image.c_str()); } auto slot = slot_override; if (slot.empty()) { slot = get_current_slot(); } std::string message; if (!wipe_super(*metadata.get(), slot, &message)) { die(message); } } int FastBootTool::Main(int argc, char* argv[]) { bool wants_wipe = false; bool wants_reboot = false; bool wants_reboot_bootloader = false; bool wants_reboot_recovery = false; bool wants_reboot_fastboot = false; bool skip_reboot = false; bool wants_set_active = false; bool skip_secondary = false; bool force_flash = false; unsigned fs_options = 0; int longindex; std::string slot_override; std::string next_active; g_boot_img_hdr.kernel_addr = 0x00008000; g_boot_img_hdr.ramdisk_addr = 0x01000000; g_boot_img_hdr.second_addr = 0x00f00000; g_boot_img_hdr.tags_addr = 0x00000100; g_boot_img_hdr.page_size = 2048; g_boot_img_hdr.dtb_addr = 0x01100000; const struct option longopts[] = { {"base", required_argument, 0, 0}, {"cmdline", required_argument, 0, 0}, {"disable-verification", no_argument, 0, 0}, {"disable-verity", no_argument, 0, 0}, {"force", no_argument, 0, 0}, {"fs-options", required_argument, 0, 0}, {"header-version", required_argument, 0, 0}, {"help", no_argument, 0, 'h'}, {"kernel-offset", required_argument, 0, 0}, {"os-patch-level", required_argument, 0, 0}, {"os-version", required_argument, 0, 0}, {"page-size", required_argument, 0, 0}, {"ramdisk-offset", required_argument, 0, 0}, {"set-active", optional_argument, 0, 'a'}, {"skip-reboot", no_argument, 0, 0}, {"skip-secondary", no_argument, 0, 0}, {"slot", required_argument, 0, 0}, {"tags-offset", required_argument, 0, 0}, {"dtb", required_argument, 0, 0}, {"dtb-offset", required_argument, 0, 0}, {"unbuffered", no_argument, 0, 0}, {"verbose", no_argument, 0, 'v'}, {"version", no_argument, 0, 0}, {0, 0, 0, 0} }; serial = getenv("ANDROID_SERIAL"); int c; while ((c = getopt_long(argc, argv, "a::hls:S:vw", longopts, &longindex)) != -1) { if (c == 0) { std::string name{longopts[longindex].name}; if (name == "base") { g_base_addr = strtoul(optarg, 0, 16); } else if (name == "cmdline") { g_cmdline = optarg; } else if (name == "disable-verification") { g_disable_verification = true; } else if (name == "disable-verity") { g_disable_verity = true; } else if (name == "force") { force_flash = true; } else if (name == "fs-options") { fs_options = ParseFsOption(optarg); } else if (name == "header-version") { g_boot_img_hdr.header_version = strtoul(optarg, nullptr, 0); } else if (name == "dtb") { g_dtb_path = optarg; } else if (name == "kernel-offset") { g_boot_img_hdr.kernel_addr = strtoul(optarg, 0, 16); } else if (name == "os-patch-level") { ParseOsPatchLevel(&g_boot_img_hdr, optarg); } else if (name == "os-version") { ParseOsVersion(&g_boot_img_hdr, optarg); } else if (name == "page-size") { g_boot_img_hdr.page_size = strtoul(optarg, nullptr, 0); if (g_boot_img_hdr.page_size == 0) die("invalid page size"); } else if (name == "ramdisk-offset") { g_boot_img_hdr.ramdisk_addr = strtoul(optarg, 0, 16); } else if (name == "skip-reboot") { skip_reboot = true; } else if (name == "skip-secondary") { skip_secondary = true; } else if (name == "slot") { slot_override = optarg; } else if (name == "dtb-offset") { g_boot_img_hdr.dtb_addr = strtoul(optarg, 0, 16); } else if (name == "tags-offset") { g_boot_img_hdr.tags_addr = strtoul(optarg, 0, 16); } else if (name == "unbuffered") { setvbuf(stdout, nullptr, _IONBF, 0); setvbuf(stderr, nullptr, _IONBF, 0); } else if (name == "version") { fprintf(stdout, "fastboot version %s-%s\n", PLATFORM_TOOLS_VERSION, android::build::GetBuildNumber().c_str()); fprintf(stdout, "Installed as %s\n", android::base::GetExecutablePath().c_str()); return 0; } else { die("unknown option %s", longopts[longindex].name); } } else { switch (c) { case 'a': wants_set_active = true; if (optarg) next_active = optarg; break; case 'h': return show_help(); case 'l': g_long_listing = true; break; case 's': serial = optarg; break; case 'S': if (!android::base::ParseByteCount(optarg, &sparse_limit)) { die("invalid sparse limit %s", optarg); } break; case 'v': set_verbose(); break; case 'w': wants_wipe = true; break; case '?': return 1; default: abort(); } } } argc -= optind; argv += optind; if (argc == 0 && !wants_wipe && !wants_set_active) syntax_error("no command"); if (argc > 0 && !strcmp(*argv, "devices")) { list_devices(); return 0; } if (argc > 0 && !strcmp(*argv, "help")) { return show_help(); } Transport* transport = open_device(); if (transport == nullptr) { return 1; } fastboot::DriverCallbacks driver_callbacks = { .prolog = Status, .epilog = Epilog, .info = InfoMessage, }; fastboot::FastBootDriver fastboot_driver(transport, driver_callbacks, false); fb = &fastboot_driver; const double start = now(); if (slot_override != "") slot_override = verify_slot(slot_override); if (next_active != "") next_active = verify_slot(next_active, false); if (wants_set_active) { if (next_active == "") { if (slot_override == "") { std::string current_slot; if (fb->GetVar("current-slot", ¤t_slot) == fastboot::SUCCESS) { if (current_slot[0] == '_') current_slot.erase(0, 1); next_active = verify_slot(current_slot, false); } else { wants_set_active = false; } } else { next_active = verify_slot(slot_override, false); } } } std::vector args(argv, argv + argc); while (!args.empty()) { std::string command = next_arg(&args); if (command == FB_CMD_GETVAR) { std::string variable = next_arg(&args); DisplayVarOrError(variable, variable); } else if (command == FB_CMD_ERASE) { std::string partition = next_arg(&args); auto erase = [&](const std::string& partition) { std::string partition_type; if (fb->GetVar("partition-type:" + partition, &partition_type) == fastboot::SUCCESS && fs_get_generator(partition_type) != nullptr) { fprintf(stderr, "******** Did you mean to fastboot format this %s partition?\n", partition_type.c_str()); } fb->Erase(partition); }; do_for_partitions(partition, slot_override, erase, true); } else if (android::base::StartsWith(command, "format")) { // Parsing for: "format[:[type][:[size]]]" // Some valid things: // - select only the size, and leave default fs type: // format::0x4000000 userdata // - default fs type and size: // format userdata // format:: userdata std::vector pieces = android::base::Split(command, ":"); std::string type_override; if (pieces.size() > 1) type_override = pieces[1].c_str(); std::string size_override; if (pieces.size() > 2) size_override = pieces[2].c_str(); std::string partition = next_arg(&args); auto format = [&](const std::string& partition) { fb_perform_format(partition, 0, type_override, size_override, "", fs_options); }; do_for_partitions(partition, slot_override, format, true); } else if (command == "signature") { std::string filename = next_arg(&args); std::vector data; if (!ReadFileToVector(filename, &data)) { die("could not load '%s': %s", filename.c_str(), strerror(errno)); } if (data.size() != 256) die("signature must be 256 bytes (got %zu)", data.size()); fb->Download("signature", data); fb->RawCommand("signature", "installing signature"); } else if (command == FB_CMD_REBOOT) { wants_reboot = true; if (args.size() == 1) { std::string what = next_arg(&args); if (what == "bootloader") { wants_reboot = false; wants_reboot_bootloader = true; } else if (what == "recovery") { wants_reboot = false; wants_reboot_recovery = true; } else if (what == "fastboot") { wants_reboot = false; wants_reboot_fastboot = true; } else { syntax_error("unknown reboot target %s", what.c_str()); } } if (!args.empty()) syntax_error("junk after reboot command"); } else if (command == FB_CMD_REBOOT_BOOTLOADER) { wants_reboot_bootloader = true; } else if (command == FB_CMD_REBOOT_RECOVERY) { wants_reboot_recovery = true; } else if (command == FB_CMD_REBOOT_FASTBOOT) { wants_reboot_fastboot = true; } else if (command == FB_CMD_CONTINUE) { fb->Continue(); } else if (command == FB_CMD_BOOT) { std::string kernel = next_arg(&args); std::string ramdisk; if (!args.empty()) ramdisk = next_arg(&args); std::string second_stage; if (!args.empty()) second_stage = next_arg(&args); auto data = LoadBootableImage(kernel, ramdisk, second_stage); fb->Download("boot.img", data); fb->Boot(); } else if (command == FB_CMD_FLASH) { std::string pname = next_arg(&args); std::string fname; if (!args.empty()) { fname = next_arg(&args); } else { fname = find_item(pname); } if (fname.empty()) die("cannot determine image filename for '%s'", pname.c_str()); auto flash = [&](const std::string &partition) { if (should_flash_in_userspace(partition) && !is_userspace_fastboot() && !force_flash) { die("The partition you are trying to flash is dynamic, and " "should be flashed via fastbootd. Please run:\n" "\n" " fastboot reboot fastboot\n" "\n" "And try again. If you are intentionally trying to " "overwrite a fixed partition, use --force."); } do_flash(partition.c_str(), fname.c_str()); }; do_for_partitions(pname, slot_override, flash, true); } else if (command == "flash:raw") { std::string partition = next_arg(&args); std::string kernel = next_arg(&args); std::string ramdisk; if (!args.empty()) ramdisk = next_arg(&args); std::string second_stage; if (!args.empty()) second_stage = next_arg(&args); auto data = LoadBootableImage(kernel, ramdisk, second_stage); auto flashraw = [&data](const std::string& partition) { fb->FlashPartition(partition, data); }; do_for_partitions(partition, slot_override, flashraw, true); } else if (command == "flashall") { if (slot_override == "all") { fprintf(stderr, "Warning: slot set to 'all'. Secondary slots will not be flashed.\n"); do_flashall(slot_override, true, wants_wipe, force_flash); } else { do_flashall(slot_override, skip_secondary, wants_wipe, force_flash); } wants_reboot = true; } else if (command == "update") { bool slot_all = (slot_override == "all"); if (slot_all) { fprintf(stderr, "Warning: slot set to 'all'. Secondary slots will not be flashed.\n"); } std::string filename = "update.zip"; if (!args.empty()) { filename = next_arg(&args); } do_update(filename.c_str(), slot_override, skip_secondary || slot_all, force_flash); wants_reboot = true; } else if (command == FB_CMD_SET_ACTIVE) { std::string slot = verify_slot(next_arg(&args), false); fb->SetActive(slot); } else if (command == "stage") { std::string filename = next_arg(&args); struct fastboot_buffer buf; if (!load_buf(filename.c_str(), &buf) || buf.type != FB_BUFFER_FD) { die("cannot load '%s'", filename.c_str()); } fb->Download(filename, buf.fd.get(), buf.sz); } else if (command == "get_staged") { std::string filename = next_arg(&args); fb->Upload(filename); } else if (command == FB_CMD_OEM) { do_oem_command(FB_CMD_OEM, &args); } else if (command == "flashing") { if (args.empty()) { syntax_error("missing 'flashing' command"); } else if (args.size() == 1 && (args[0] == "unlock" || args[0] == "lock" || args[0] == "unlock_critical" || args[0] == "lock_critical" || args[0] == "get_unlock_ability")) { do_oem_command("flashing", &args); } else { syntax_error("unknown 'flashing' command %s", args[0].c_str()); } } else if (command == FB_CMD_CREATE_PARTITION) { std::string partition = next_arg(&args); std::string size = next_arg(&args); fb->CreatePartition(partition, size); } else if (command == FB_CMD_DELETE_PARTITION) { std::string partition = next_arg(&args); fb->DeletePartition(partition); } else if (command == FB_CMD_RESIZE_PARTITION) { std::string partition = next_arg(&args); std::string size = next_arg(&args); fb->ResizePartition(partition, size); } else if (command == "gsi") { std::string arg = next_arg(&args); if (arg == "wipe") { fb->RawCommand("gsi:wipe", "wiping GSI"); } else if (arg == "disable") { fb->RawCommand("gsi:disable", "disabling GSI"); } else { syntax_error("expected 'wipe' or 'disable'"); } } else if (command == "wipe-super") { std::string image; if (args.empty()) { image = find_item_given_name("super_empty.img"); } else { image = next_arg(&args); } do_wipe_super(image, slot_override); } else if (command == "snapshot-update") { std::string arg; if (!args.empty()) { arg = next_arg(&args); } if (!arg.empty() && (arg != "cancel" && arg != "merge")) { syntax_error("expected: snapshot-update [cancel|merge]"); } fb->SnapshotUpdateCommand(arg); } else if (command == FB_CMD_FETCH) { std::string partition = next_arg(&args); std::string outfile = next_arg(&args); do_fetch(partition, slot_override, outfile); } else { syntax_error("unknown command %s", command.c_str()); } } if (wants_wipe) { if (force_flash) { CancelSnapshotIfNeeded(); } std::vector partitions = { "userdata", "cache", "metadata" }; for (const auto& partition : partitions) { std::string partition_type; if (fb->GetVar("partition-type:" + partition, &partition_type) != fastboot::SUCCESS) { continue; } if (partition_type.empty()) continue; fb->Erase(partition); fb_perform_format(partition, 1, partition_type, "", "", fs_options); } } if (wants_set_active) { fb->SetActive(next_active); } if (wants_reboot && !skip_reboot) { fb->Reboot(); fb->WaitForDisconnect(); } else if (wants_reboot_bootloader) { fb->RebootTo("bootloader"); fb->WaitForDisconnect(); } else if (wants_reboot_recovery) { fb->RebootTo("recovery"); fb->WaitForDisconnect(); } else if (wants_reboot_fastboot) { reboot_to_userspace_fastboot(); } fprintf(stderr, "Finished. Total time: %.3fs\n", (now() - start)); auto* old_transport = fb->set_transport(nullptr); delete old_transport; return 0; } void FastBootTool::ParseOsPatchLevel(boot_img_hdr_v1* hdr, const char* arg) { unsigned year, month, day; if (sscanf(arg, "%u-%u-%u", &year, &month, &day) != 3) { syntax_error("OS patch level should be YYYY-MM-DD: %s", arg); } if (year < 2000 || year >= 2128) syntax_error("year out of range: %d", year); if (month < 1 || month > 12) syntax_error("month out of range: %d", month); hdr->SetOsPatchLevel(year, month); } void FastBootTool::ParseOsVersion(boot_img_hdr_v1* hdr, const char* arg) { unsigned major = 0, minor = 0, patch = 0; std::vector versions = android::base::Split(arg, "."); if (versions.size() < 1 || versions.size() > 3 || (versions.size() >= 1 && !android::base::ParseUint(versions[0], &major)) || (versions.size() >= 2 && !android::base::ParseUint(versions[1], &minor)) || (versions.size() == 3 && !android::base::ParseUint(versions[2], &patch)) || (major > 0x7f || minor > 0x7f || patch > 0x7f)) { syntax_error("bad OS version: %s", arg); } hdr->SetOsVersion(major, minor, patch); } unsigned FastBootTool::ParseFsOption(const char* arg) { unsigned fsOptions = 0; std::vector options = android::base::Split(arg, ","); if (options.size() < 1) syntax_error("bad options: %s", arg); for (size_t i = 0; i < options.size(); ++i) { if (options[i] == "casefold") fsOptions |= (1 << FS_OPT_CASEFOLD); else if (options[i] == "projid") fsOptions |= (1 << FS_OPT_PROJID); else if (options[i] == "compress") fsOptions |= (1 << FS_OPT_COMPRESS); else syntax_error("unsupported options: %s", options[i].c_str()); } return fsOptions; }