/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include "adb_io.h" #include "sysdeps.h" static void increment_atomic_int(void* c) { sleep(1); reinterpret_cast*>(c)->fetch_add(1); } TEST(sysdeps_thread, smoke) { std::atomic counter(0); for (int i = 0; i < 100; ++i) { ASSERT_TRUE(adb_thread_create(increment_atomic_int, &counter)); } sleep(2); ASSERT_EQ(100, counter.load()); } TEST(sysdeps_thread, join) { std::atomic counter(0); std::vector threads(500); for (size_t i = 0; i < threads.size(); ++i) { ASSERT_TRUE(adb_thread_create(increment_atomic_int, &counter, &threads[i])); } int current = counter.load(); ASSERT_GE(current, 0); // Make sure that adb_thread_create actually creates threads, and doesn't do something silly // like synchronously run the function passed in. The sleep in increment_atomic_int should be // enough to keep this from being flakey. ASSERT_LT(current, 500); for (const auto& thread : threads) { ASSERT_TRUE(adb_thread_join(thread)); } ASSERT_EQ(500, counter.load()); } TEST(sysdeps_thread, exit) { adb_thread_t thread; ASSERT_TRUE(adb_thread_create( [](void*) { adb_thread_exit(); for (;;) continue; }, nullptr, &thread)); ASSERT_TRUE(adb_thread_join(thread)); } TEST(sysdeps_socketpair, smoke) { int fds[2]; ASSERT_EQ(0, adb_socketpair(fds)) << strerror(errno); ASSERT_TRUE(WriteFdExactly(fds[0], "foo", 4)); ASSERT_TRUE(WriteFdExactly(fds[1], "bar", 4)); char buf[4]; ASSERT_TRUE(ReadFdExactly(fds[1], buf, 4)); ASSERT_STREQ(buf, "foo"); ASSERT_TRUE(ReadFdExactly(fds[0], buf, 4)); ASSERT_STREQ(buf, "bar"); ASSERT_EQ(0, adb_close(fds[0])); ASSERT_EQ(0, adb_close(fds[1])); } TEST(sysdeps_fd, exhaustion) { std::vector fds; int socketpair[2]; while (adb_socketpair(socketpair) == 0) { fds.push_back(socketpair[0]); fds.push_back(socketpair[1]); } ASSERT_EQ(EMFILE, errno) << strerror(errno); for (int fd : fds) { ASSERT_EQ(0, adb_close(fd)); } ASSERT_EQ(0, adb_socketpair(socketpair)); ASSERT_EQ(socketpair[0], fds[0]); ASSERT_EQ(socketpair[1], fds[1]); ASSERT_EQ(0, adb_close(socketpair[0])); ASSERT_EQ(0, adb_close(socketpair[1])); } class sysdeps_poll : public ::testing::Test { protected: int fds[2]; void SetUp() override { ASSERT_EQ(0, adb_socketpair(fds)) << strerror(errno); } void TearDown() override { if (fds[0] >= 0) { ASSERT_EQ(0, adb_close(fds[0])); } if (fds[1] >= 0) { ASSERT_EQ(0, adb_close(fds[1])); } } }; TEST_F(sysdeps_poll, smoke) { adb_pollfd pfd[2] = {}; pfd[0].fd = fds[0]; pfd[0].events = POLLRDNORM; pfd[1].fd = fds[1]; pfd[1].events = POLLWRNORM; pfd[0].revents = -1; pfd[1].revents = -1; EXPECT_EQ(1, adb_poll(pfd, 2, 0)); EXPECT_EQ(0, pfd[0].revents); EXPECT_EQ(POLLWRNORM, pfd[1].revents); ASSERT_TRUE(WriteFdExactly(fds[1], "foo", 4)); // Wait for the socketpair to be flushed. pfd[0].revents = -1; EXPECT_EQ(1, adb_poll(pfd, 1, 100)); EXPECT_EQ(POLLRDNORM, pfd[0].revents); pfd[0].revents = -1; pfd[1].revents = -1; EXPECT_EQ(2, adb_poll(pfd, 2, 0)); EXPECT_EQ(POLLRDNORM, pfd[0].revents); EXPECT_EQ(POLLWRNORM, pfd[1].revents); } TEST_F(sysdeps_poll, timeout) { adb_pollfd pfd = {}; pfd.fd = fds[0]; pfd.events = POLLRDNORM; EXPECT_EQ(0, adb_poll(&pfd, 1, 100)); EXPECT_EQ(0, pfd.revents); ASSERT_TRUE(WriteFdExactly(fds[1], "foo", 4)); EXPECT_EQ(1, adb_poll(&pfd, 1, 100)); EXPECT_EQ(POLLRDNORM, pfd.revents); } TEST_F(sysdeps_poll, invalid_fd) { adb_pollfd pfd[3] = {}; pfd[0].fd = fds[0]; pfd[0].events = POLLRDNORM; pfd[1].fd = INT_MAX; pfd[1].events = POLLRDNORM; pfd[2].fd = fds[1]; pfd[2].events = POLLWRNORM; ASSERT_TRUE(WriteFdExactly(fds[1], "foo", 4)); // Wait for the socketpair to be flushed. EXPECT_EQ(1, adb_poll(pfd, 1, 100)); EXPECT_EQ(POLLRDNORM, pfd[0].revents); EXPECT_EQ(3, adb_poll(pfd, 3, 0)); EXPECT_EQ(POLLRDNORM, pfd[0].revents); EXPECT_EQ(POLLNVAL, pfd[1].revents); EXPECT_EQ(POLLWRNORM, pfd[2].revents); } TEST_F(sysdeps_poll, duplicate_fd) { adb_pollfd pfd[2] = {}; pfd[0].fd = fds[0]; pfd[0].events = POLLRDNORM; pfd[1] = pfd[0]; EXPECT_EQ(0, adb_poll(pfd, 2, 0)); EXPECT_EQ(0, pfd[0].revents); EXPECT_EQ(0, pfd[1].revents); ASSERT_TRUE(WriteFdExactly(fds[1], "foo", 4)); EXPECT_EQ(2, adb_poll(pfd, 2, 100)); EXPECT_EQ(POLLRDNORM, pfd[0].revents); EXPECT_EQ(POLLRDNORM, pfd[1].revents); } TEST_F(sysdeps_poll, disconnect) { adb_pollfd pfd = {}; pfd.fd = fds[0]; pfd.events = POLLIN; EXPECT_EQ(0, adb_poll(&pfd, 1, 0)); EXPECT_EQ(0, pfd.revents); EXPECT_EQ(0, adb_close(fds[1])); fds[1] = -1; EXPECT_EQ(1, adb_poll(&pfd, 1, 100)); // Linux returns POLLIN | POLLHUP, Windows returns just POLLHUP. EXPECT_EQ(POLLHUP, pfd.revents & POLLHUP); } TEST_F(sysdeps_poll, fd_count) { // https://code.google.com/p/android/issues/detail?id=12141 static constexpr int num_sockets = 256; std::vector sockets; std::vector pfds; sockets.resize(num_sockets * 2); for (int32_t i = 0; i < num_sockets; ++i) { ASSERT_EQ(0, adb_socketpair(&sockets[i * 2])) << strerror(errno); ASSERT_TRUE(WriteFdExactly(sockets[i * 2], &i, sizeof(i))); adb_pollfd pfd; pfd.events = POLLIN; pfd.fd = sockets[i * 2 + 1]; pfds.push_back(pfd); } ASSERT_EQ(num_sockets, adb_poll(pfds.data(), pfds.size(), 0)); for (int i = 0; i < num_sockets; ++i) { ASSERT_NE(0, pfds[i].revents & POLLIN); int32_t buf[2] = { -1, -1 }; ASSERT_EQ(adb_read(pfds[i].fd, buf, sizeof(buf)), static_cast(sizeof(int32_t))); ASSERT_EQ(i, buf[0]); } for (int fd : sockets) { adb_close(fd); } } TEST(sysdeps_mutex, mutex_smoke) { static std::atomic finished(false); static std::mutex &m = *new std::mutex(); m.lock(); ASSERT_FALSE(m.try_lock()); adb_thread_create([](void*) { ASSERT_FALSE(m.try_lock()); m.lock(); finished.store(true); adb_sleep_ms(200); m.unlock(); }, nullptr); ASSERT_FALSE(finished.load()); adb_sleep_ms(100); ASSERT_FALSE(finished.load()); m.unlock(); adb_sleep_ms(100); m.lock(); ASSERT_TRUE(finished.load()); m.unlock(); } // Our implementation on Windows aborts on double lock. #if defined(_WIN32) TEST(sysdeps_mutex, mutex_reentrant_lock) { std::mutex &m = *new std::mutex(); m.lock(); ASSERT_FALSE(m.try_lock()); EXPECT_DEATH(m.lock(), "non-recursive mutex locked reentrantly"); } #endif TEST(sysdeps_mutex, recursive_mutex_smoke) { static std::recursive_mutex &m = *new std::recursive_mutex(); m.lock(); ASSERT_TRUE(m.try_lock()); m.unlock(); adb_thread_create([](void*) { ASSERT_FALSE(m.try_lock()); m.lock(); adb_sleep_ms(500); m.unlock(); }, nullptr); adb_sleep_ms(100); m.unlock(); adb_sleep_ms(100); ASSERT_FALSE(m.try_lock()); m.lock(); m.unlock(); } TEST(sysdeps_condition_variable, smoke) { static std::mutex &m = *new std::mutex; static std::condition_variable &cond = *new std::condition_variable; static volatile bool flag = false; std::unique_lock lock(m); adb_thread_create([](void*) { m.lock(); flag = true; cond.notify_one(); m.unlock(); }, nullptr); while (!flag) { cond.wait(lock); } }