/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // This file contains the functions that initialize SELinux during boot as well as helper functions // for SELinux operation for init. // When the system boots, there is no SEPolicy present and init is running in the kernel domain. // Init loads the SEPolicy from the file system, restores the context of /system/bin/init based on // this SEPolicy, and finally exec()'s itself to run in the proper domain. // The SEPolicy on Android comes in two variants: monolithic and split. // The monolithic policy variant is for legacy non-treble devices that contain a single SEPolicy // file located at /sepolicy and is directly loaded into the kernel SELinux subsystem. // The split policy is for supporting treble devices and updateable apexes. It splits the SEPolicy // across files on /system/etc/selinux (the 'plat' portion of the policy), /vendor/etc/selinux // (the 'vendor' portion of the policy), /system_ext/etc/selinux, /product/etc/selinux, // /odm/etc/selinux, and /dev/selinux (the apex portion of policy). This is necessary to allow // images to be updated independently of the vendor image, while maintaining contributions from // multiple partitions in the SEPolicy. This is especially important for VTS testing, where the // SEPolicy on the Google System Image may not be identical to the system image shipped on a // vendor's device. // The split SEPolicy is loaded as described below: // 1) There is a precompiled SEPolicy located at either /vendor/etc/selinux/precompiled_sepolicy or // /odm/etc/selinux/precompiled_sepolicy if odm parition is present. Stored along with this file // are the sha256 hashes of the parts of the SEPolicy on /system, /system_ext, /product, and apex // that were used to compile this precompiled policy. The system partition contains a similar // sha256 of the parts of the SEPolicy that it currently contains. Symmetrically, system_ext, // product, and apex contain sha256 hashes of their SEPolicy. Init loads this // precompiled_sepolicy directly if and only if the hashes along with the precompiled SEPolicy on // /vendor or /odm match the hashes for system, system_ext, product, and apex SEPolicy, // respectively. // 2) If these hashes do not match, then either /system or /system_ext /product, or apex (or some of // them) have been updated out of sync with /vendor (or /odm if it is present) and the init needs // to compile the SEPolicy. /system contains the SEPolicy compiler, secilc, and it is used by // the OpenSplitPolicy() function below to compile the SEPolicy to a temp directory and load it. // That function contains even more documentation with the specific implementation details of how // the SEPolicy is compiled if needed. #include "selinux.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "block_dev_initializer.h" #include "debug_ramdisk.h" #include "reboot_utils.h" #include "snapuserd_transition.h" #include "util.h" using namespace std::string_literals; using android::base::ParseInt; using android::base::Timer; using android::base::unique_fd; using android::fs_mgr::AvbHandle; using android::snapshot::SnapshotManager; namespace android { namespace init { namespace { enum EnforcingStatus { SELINUX_PERMISSIVE, SELINUX_ENFORCING }; EnforcingStatus StatusFromProperty() { EnforcingStatus status = SELINUX_ENFORCING; ImportKernelCmdline([&](const std::string& key, const std::string& value) { if (key == "androidboot.selinux" && value == "permissive") { status = SELINUX_PERMISSIVE; } }); if (status == SELINUX_ENFORCING) { ImportBootconfig([&](const std::string& key, const std::string& value) { if (key == "androidboot.selinux" && value == "permissive") { status = SELINUX_PERMISSIVE; } }); } return status; } bool IsEnforcing() { if (ALLOW_PERMISSIVE_SELINUX) { return StatusFromProperty() == SELINUX_ENFORCING; } return true; } // Forks, executes the provided program in the child, and waits for the completion in the parent. // Child's stderr is captured and logged using LOG(ERROR). bool ForkExecveAndWaitForCompletion(const char* filename, char* const argv[]) { // Create a pipe used for redirecting child process's output. // * pipe_fds[0] is the FD the parent will use for reading. // * pipe_fds[1] is the FD the child will use for writing. int pipe_fds[2]; if (pipe(pipe_fds) == -1) { PLOG(ERROR) << "Failed to create pipe"; return false; } pid_t child_pid = fork(); if (child_pid == -1) { PLOG(ERROR) << "Failed to fork for " << filename; return false; } if (child_pid == 0) { // fork succeeded -- this is executing in the child process // Close the pipe FD not used by this process close(pipe_fds[0]); // Redirect stderr to the pipe FD provided by the parent if (TEMP_FAILURE_RETRY(dup2(pipe_fds[1], STDERR_FILENO)) == -1) { PLOG(ERROR) << "Failed to redirect stderr of " << filename; _exit(127); return false; } close(pipe_fds[1]); if (execv(filename, argv) == -1) { PLOG(ERROR) << "Failed to execve " << filename; return false; } // Unreachable because execve will have succeeded and replaced this code // with child process's code. _exit(127); return false; } else { // fork succeeded -- this is executing in the original/parent process // Close the pipe FD not used by this process close(pipe_fds[1]); // Log the redirected output of the child process. // It's unfortunate that there's no standard way to obtain an istream for a file descriptor. // As a result, we're buffering all output and logging it in one go at the end of the // invocation, instead of logging it as it comes in. const int child_out_fd = pipe_fds[0]; std::string child_output; if (!android::base::ReadFdToString(child_out_fd, &child_output)) { PLOG(ERROR) << "Failed to capture full output of " << filename; } close(child_out_fd); if (!child_output.empty()) { // Log captured output, line by line, because LOG expects to be invoked for each line std::istringstream in(child_output); std::string line; while (std::getline(in, line)) { LOG(ERROR) << filename << ": " << line; } } // Wait for child to terminate int status; if (TEMP_FAILURE_RETRY(waitpid(child_pid, &status, 0)) != child_pid) { PLOG(ERROR) << "Failed to wait for " << filename; return false; } if (WIFEXITED(status)) { int status_code = WEXITSTATUS(status); if (status_code == 0) { return true; } else { LOG(ERROR) << filename << " exited with status " << status_code; } } else if (WIFSIGNALED(status)) { LOG(ERROR) << filename << " killed by signal " << WTERMSIG(status); } else if (WIFSTOPPED(status)) { LOG(ERROR) << filename << " stopped by signal " << WSTOPSIG(status); } else { LOG(ERROR) << "waitpid for " << filename << " returned unexpected status: " << status; } return false; } } bool ReadFirstLine(const char* file, std::string* line) { line->clear(); std::string contents; if (!android::base::ReadFileToString(file, &contents, true /* follow symlinks */)) { return false; } std::istringstream in(contents); std::getline(in, *line); return true; } Result FindPrecompiledSplitPolicy() { std::string precompiled_sepolicy; // If there is an odm partition, precompiled_sepolicy will be in // odm/etc/selinux. Otherwise it will be in vendor/etc/selinux. static constexpr const char vendor_precompiled_sepolicy[] = "/vendor/etc/selinux/precompiled_sepolicy"; static constexpr const char odm_precompiled_sepolicy[] = "/odm/etc/selinux/precompiled_sepolicy"; if (access(odm_precompiled_sepolicy, R_OK) == 0) { precompiled_sepolicy = odm_precompiled_sepolicy; } else if (access(vendor_precompiled_sepolicy, R_OK) == 0) { precompiled_sepolicy = vendor_precompiled_sepolicy; } else { return ErrnoError() << "No precompiled sepolicy at " << vendor_precompiled_sepolicy; } // Use precompiled sepolicy only when all corresponding hashes are equal. std::vector> sepolicy_hashes{ {"/system/etc/selinux/plat_sepolicy_and_mapping.sha256", precompiled_sepolicy + ".plat_sepolicy_and_mapping.sha256"}, {"/system_ext/etc/selinux/system_ext_sepolicy_and_mapping.sha256", precompiled_sepolicy + ".system_ext_sepolicy_and_mapping.sha256"}, {"/product/etc/selinux/product_sepolicy_and_mapping.sha256", precompiled_sepolicy + ".product_sepolicy_and_mapping.sha256"}, {"/dev/selinux/apex_sepolicy.sha256", precompiled_sepolicy + ".apex_sepolicy.sha256"}, }; for (const auto& [actual_id_path, precompiled_id_path] : sepolicy_hashes) { // Both of them should exist or both of them shouldn't exist. if (access(actual_id_path.c_str(), R_OK) != 0) { if (access(precompiled_id_path.c_str(), R_OK) == 0) { return Error() << precompiled_id_path << " exists but " << actual_id_path << " doesn't"; } continue; } std::string actual_id; if (!ReadFirstLine(actual_id_path.c_str(), &actual_id)) { return ErrnoError() << "Failed to read " << actual_id_path; } std::string precompiled_id; if (!ReadFirstLine(precompiled_id_path.c_str(), &precompiled_id)) { return ErrnoError() << "Failed to read " << precompiled_id_path; } if (actual_id.empty() || actual_id != precompiled_id) { return Error() << actual_id_path << " and " << precompiled_id_path << " differ"; } } return precompiled_sepolicy; } bool GetVendorMappingVersion(std::string* plat_vers) { if (!ReadFirstLine("/vendor/etc/selinux/plat_sepolicy_vers.txt", plat_vers)) { PLOG(ERROR) << "Failed to read /vendor/etc/selinux/plat_sepolicy_vers.txt"; return false; } if (plat_vers->empty()) { LOG(ERROR) << "No version present in plat_sepolicy_vers.txt"; return false; } return true; } constexpr const char plat_policy_cil_file[] = "/system/etc/selinux/plat_sepolicy.cil"; bool IsSplitPolicyDevice() { return access(plat_policy_cil_file, R_OK) != -1; } std::optional GetUserdebugPlatformPolicyFile() { // See if we need to load userdebug_plat_sepolicy.cil instead of plat_sepolicy.cil. const char* force_debuggable_env = getenv("INIT_FORCE_DEBUGGABLE"); if (force_debuggable_env && "true"s == force_debuggable_env && AvbHandle::IsDeviceUnlocked()) { const std::vector debug_policy_candidates = { #if INSTALL_DEBUG_POLICY_TO_SYSTEM_EXT == 1 "/system_ext/etc/selinux/userdebug_plat_sepolicy.cil", #endif kDebugRamdiskSEPolicy, }; for (const char* debug_policy : debug_policy_candidates) { if (access(debug_policy, F_OK) == 0) { return debug_policy; } } } return std::nullopt; } struct PolicyFile { unique_fd fd; std::string path; }; bool OpenSplitPolicy(PolicyFile* policy_file) { // IMPLEMENTATION NOTE: Split policy consists of three or more CIL files: // * platform -- policy needed due to logic contained in the system image, // * vendor -- policy needed due to logic contained in the vendor image, // * mapping -- mapping policy which helps preserve forward-compatibility of non-platform policy // with newer versions of platform policy. // * (optional) policy needed due to logic on product, system_ext, odm, or apex. // secilc is invoked to compile the above three policy files into a single monolithic policy // file. This file is then loaded into the kernel. const auto userdebug_plat_sepolicy = GetUserdebugPlatformPolicyFile(); const bool use_userdebug_policy = userdebug_plat_sepolicy.has_value(); if (use_userdebug_policy) { LOG(INFO) << "Using userdebug system sepolicy " << *userdebug_plat_sepolicy; } // Load precompiled policy from vendor image, if a matching policy is found there. The policy // must match the platform policy on the system image. // use_userdebug_policy requires compiling sepolicy with userdebug_plat_sepolicy.cil. // Thus it cannot use the precompiled policy from vendor image. if (!use_userdebug_policy) { if (auto res = FindPrecompiledSplitPolicy(); res.ok()) { unique_fd fd(open(res->c_str(), O_RDONLY | O_CLOEXEC | O_BINARY)); if (fd != -1) { policy_file->fd = std::move(fd); policy_file->path = std::move(*res); return true; } } else { LOG(INFO) << res.error(); } } // No suitable precompiled policy could be loaded LOG(INFO) << "Compiling SELinux policy"; // We store the output of the compilation on /dev because this is the most convenient tmpfs // storage mount available this early in the boot sequence. char compiled_sepolicy[] = "/dev/sepolicy.XXXXXX"; unique_fd compiled_sepolicy_fd(mkostemp(compiled_sepolicy, O_CLOEXEC)); if (compiled_sepolicy_fd < 0) { PLOG(ERROR) << "Failed to create temporary file " << compiled_sepolicy; return false; } // Determine which mapping file to include std::string vend_plat_vers; if (!GetVendorMappingVersion(&vend_plat_vers)) { return false; } std::string plat_mapping_file("/system/etc/selinux/mapping/" + vend_plat_vers + ".cil"); std::string plat_compat_cil_file("/system/etc/selinux/mapping/" + vend_plat_vers + ".compat.cil"); if (access(plat_compat_cil_file.c_str(), F_OK) == -1) { plat_compat_cil_file.clear(); } std::string system_ext_policy_cil_file("/system_ext/etc/selinux/system_ext_sepolicy.cil"); if (access(system_ext_policy_cil_file.c_str(), F_OK) == -1) { system_ext_policy_cil_file.clear(); } std::string system_ext_mapping_file("/system_ext/etc/selinux/mapping/" + vend_plat_vers + ".cil"); if (access(system_ext_mapping_file.c_str(), F_OK) == -1) { system_ext_mapping_file.clear(); } std::string system_ext_compat_cil_file("/system_ext/etc/selinux/mapping/" + vend_plat_vers + ".compat.cil"); if (access(system_ext_compat_cil_file.c_str(), F_OK) == -1) { system_ext_compat_cil_file.clear(); } std::string product_policy_cil_file("/product/etc/selinux/product_sepolicy.cil"); if (access(product_policy_cil_file.c_str(), F_OK) == -1) { product_policy_cil_file.clear(); } std::string product_mapping_file("/product/etc/selinux/mapping/" + vend_plat_vers + ".cil"); if (access(product_mapping_file.c_str(), F_OK) == -1) { product_mapping_file.clear(); } std::string vendor_policy_cil_file("/vendor/etc/selinux/vendor_sepolicy.cil"); if (access(vendor_policy_cil_file.c_str(), F_OK) == -1) { LOG(ERROR) << "Missing " << vendor_policy_cil_file; return false; } std::string plat_pub_versioned_cil_file("/vendor/etc/selinux/plat_pub_versioned.cil"); if (access(plat_pub_versioned_cil_file.c_str(), F_OK) == -1) { LOG(ERROR) << "Missing " << plat_pub_versioned_cil_file; return false; } // odm_sepolicy.cil is default but optional. std::string odm_policy_cil_file("/odm/etc/selinux/odm_sepolicy.cil"); if (access(odm_policy_cil_file.c_str(), F_OK) == -1) { odm_policy_cil_file.clear(); } // apex_sepolicy.cil is default but optional. std::string apex_policy_cil_file("/dev/selinux/apex_sepolicy.cil"); if (access(apex_policy_cil_file.c_str(), F_OK) == -1) { apex_policy_cil_file.clear(); } const std::string version_as_string = std::to_string(SEPOLICY_VERSION); // clang-format off std::vector compile_args { "/system/bin/secilc", use_userdebug_policy ? *userdebug_plat_sepolicy : plat_policy_cil_file, "-m", "-M", "true", "-G", "-N", "-c", version_as_string.c_str(), plat_mapping_file.c_str(), "-o", compiled_sepolicy, // We don't care about file_contexts output by the compiler "-f", "/sys/fs/selinux/null", // /dev/null is not yet available }; // clang-format on if (!plat_compat_cil_file.empty()) { compile_args.push_back(plat_compat_cil_file.c_str()); } if (!system_ext_policy_cil_file.empty()) { compile_args.push_back(system_ext_policy_cil_file.c_str()); } if (!system_ext_mapping_file.empty()) { compile_args.push_back(system_ext_mapping_file.c_str()); } if (!system_ext_compat_cil_file.empty()) { compile_args.push_back(system_ext_compat_cil_file.c_str()); } if (!product_policy_cil_file.empty()) { compile_args.push_back(product_policy_cil_file.c_str()); } if (!product_mapping_file.empty()) { compile_args.push_back(product_mapping_file.c_str()); } if (!plat_pub_versioned_cil_file.empty()) { compile_args.push_back(plat_pub_versioned_cil_file.c_str()); } if (!vendor_policy_cil_file.empty()) { compile_args.push_back(vendor_policy_cil_file.c_str()); } if (!odm_policy_cil_file.empty()) { compile_args.push_back(odm_policy_cil_file.c_str()); } if (!apex_policy_cil_file.empty()) { compile_args.push_back(apex_policy_cil_file.c_str()); } compile_args.push_back(nullptr); if (!ForkExecveAndWaitForCompletion(compile_args[0], (char**)compile_args.data())) { unlink(compiled_sepolicy); return false; } unlink(compiled_sepolicy); policy_file->fd = std::move(compiled_sepolicy_fd); policy_file->path = compiled_sepolicy; return true; } bool OpenMonolithicPolicy(PolicyFile* policy_file) { static constexpr char kSepolicyFile[] = "/sepolicy"; LOG(VERBOSE) << "Opening SELinux policy from monolithic file"; policy_file->fd.reset(open(kSepolicyFile, O_RDONLY | O_CLOEXEC | O_NOFOLLOW)); if (policy_file->fd < 0) { PLOG(ERROR) << "Failed to open monolithic SELinux policy"; return false; } policy_file->path = kSepolicyFile; return true; } constexpr const char* kSigningCertRelease = "/system/etc/selinux/com.android.sepolicy.cert-release.der"; constexpr const char* kFsVerityProcPath = "/proc/sys/fs/verity"; const std::string kSepolicyApexMetadataDir = "/metadata/sepolicy/"; const std::string kSepolicyApexSystemDir = "/system/etc/selinux/apex/"; const std::string kSepolicyZip = "SEPolicy.zip"; const std::string kSepolicySignature = "SEPolicy.zip.sig"; const std::string kTmpfsDir = "/dev/selinux/"; // Files that are deleted after policy is compiled/loaded. const std::vector kApexSepolicyTmp{"apex_sepolicy.cil", "apex_sepolicy.sha256"}; // Files that need to persist because they are used by userspace processes. const std::vector kApexSepolicy{"apex_file_contexts", "apex_property_contexts", "apex_service_contexts", "apex_seapp_contexts", "apex_test"}; Result PutFileInTmpfs(ZipArchiveHandle archive, const std::string& fileName) { ZipEntry entry; std::string dstPath = kTmpfsDir + fileName; int ret = FindEntry(archive, fileName, &entry); if (ret != 0) { // All files are optional. If a file doesn't exist, return without error. return {}; } unique_fd fd(TEMP_FAILURE_RETRY( open(dstPath.c_str(), O_WRONLY | O_CREAT | O_TRUNC | O_CLOEXEC, S_IRUSR | S_IWUSR))); if (fd == -1) { return Error() << "Failed to open " << dstPath; } ret = ExtractEntryToFile(archive, &entry, fd); if (ret != 0) { return Error() << "Failed to extract entry \"" << fileName << "\" (" << entry.uncompressed_length << " bytes) to \"" << dstPath << "\": " << ErrorCodeString(ret); } return {}; } Result GetPolicyFromApex(const std::string& dir) { LOG(INFO) << "Loading APEX Sepolicy from " << dir + kSepolicyZip; unique_fd fd(open((dir + kSepolicyZip).c_str(), O_RDONLY | O_BINARY | O_CLOEXEC)); if (fd < 0) { return ErrnoError() << "Failed to open package " << dir + kSepolicyZip; } ZipArchiveHandle handle; int ret = OpenArchiveFd(fd.get(), (dir + kSepolicyZip).c_str(), &handle, /*assume_ownership=*/false); if (ret < 0) { return Error() << "Failed to open package " << dir + kSepolicyZip << ": " << ErrorCodeString(ret); } auto handle_guard = android::base::make_scope_guard([&handle] { CloseArchive(handle); }); for (const auto& file : kApexSepolicy) { auto extract = PutFileInTmpfs(handle, file); if (!extract.ok()) { return extract.error(); } } for (const auto& file : kApexSepolicyTmp) { auto extract = PutFileInTmpfs(handle, file); if (!extract.ok()) { return extract.error(); } } return {}; } Result LoadSepolicyApexCerts() { key_serial_t keyring_id = android::GetKeyringId(".fs-verity"); if (keyring_id < 0) { return Error() << "Failed to find .fs-verity keyring id"; } // TODO(b/199914227) the release key should always exist. Once it's checked in, start // throwing an error here if it doesn't exist. if (access(kSigningCertRelease, F_OK) == 0) { LoadKeyFromFile(keyring_id, "fsv_sepolicy_apex_release", kSigningCertRelease); } return {}; } Result SepolicyFsVerityCheck() { return Error() << "TODO implementent support for fsverity SEPolicy."; } Result SepolicyCheckSignature(const std::string& dir) { std::string signature; if (!android::base::ReadFileToString(dir + kSepolicySignature, &signature)) { return ErrnoError() << "Failed to read " << kSepolicySignature; } std::fstream sepolicyZip(dir + kSepolicyZip, std::ios::in | std::ios::binary); if (!sepolicyZip) { return Error() << "Failed to open " << kSepolicyZip; } sepolicyZip.seekg(0); std::string sepolicyStr((std::istreambuf_iterator(sepolicyZip)), std::istreambuf_iterator()); auto releaseKey = extractPublicKeyFromX509(kSigningCertRelease); if (!releaseKey.ok()) { return releaseKey.error(); } return verifySignature(sepolicyStr, signature, *releaseKey); } Result SepolicyVerify(const std::string& dir, bool supportsFsVerity) { if (supportsFsVerity) { auto fsVerityCheck = SepolicyFsVerityCheck(); if (fsVerityCheck.ok()) { return fsVerityCheck; } // TODO(b/199914227) If the device supports fsverity, but we fail here, we should fail to // boot and not carry on. For now, fallback to a signature checkuntil the fsverity // logic is implemented. LOG(INFO) << "Falling back to standard signature check. " << fsVerityCheck.error(); } auto sepolicySignature = SepolicyCheckSignature(dir); if (!sepolicySignature.ok()) { return Error() << "Apex SEPolicy failed signature check"; } return {}; } void CleanupApexSepolicy() { for (const auto& file : kApexSepolicyTmp) { std::string path = kTmpfsDir + file; unlink(path.c_str()); } } // Updatable sepolicy is shipped within an zip within an APEX. Because // it needs to be available before Apexes are mounted, apexd copies // the zip from the APEX and stores it in /metadata/sepolicy. If there is // no updatable sepolicy in /metadata/sepolicy, then the updatable policy is // loaded from /system/etc/selinux/apex. Init performs the following // steps on boot: // // 1. Validates the zip by checking its signature against a public key that is // stored in /system/etc/selinux. // 2. Extracts files from zip and stores them in /dev/selinux. // 3. Checks if the apex_sepolicy.sha256 matches the sha256 of precompiled_sepolicy. // if so, the precompiled sepolicy is used. Otherwise, an on-device compile of the policy // is used. This is the same flow as on-device compilation of policy for Treble. // 4. Cleans up files in /dev/selinux which are no longer needed. // 5. Restorecons the remaining files in /dev/selinux. // 6. Sets selinux into enforcing mode and continues normal booting. // void PrepareApexSepolicy() { bool supportsFsVerity = access(kFsVerityProcPath, F_OK) == 0; if (supportsFsVerity) { auto loadSepolicyApexCerts = LoadSepolicyApexCerts(); if (!loadSepolicyApexCerts.ok()) { // TODO(b/199914227) If the device supports fsverity, but we fail here, we should fail // to boot and not carry on. For now, fallback to a signature checkuntil the fsverity // logic is implemented. LOG(INFO) << loadSepolicyApexCerts.error(); } } // If apex sepolicy zip exists in /metadata/sepolicy, use that, otherwise use version on // /system. auto dir = (access((kSepolicyApexMetadataDir + kSepolicyZip).c_str(), F_OK) == 0) ? kSepolicyApexMetadataDir : kSepolicyApexSystemDir; auto sepolicyVerify = SepolicyVerify(dir, supportsFsVerity); if (!sepolicyVerify.ok()) { LOG(INFO) << "Error: " << sepolicyVerify.error(); // If signature verification fails, fall back to version on /system. // This file doesn't need to be verified because it lives on the system partition which // is signed and protected by verified boot. dir = kSepolicyApexSystemDir; } auto apex = GetPolicyFromApex(dir); if (!apex.ok()) { // TODO(b/199914227) Make failure fatal. For now continue booting with non-apex sepolicy. LOG(ERROR) << apex.error(); } } void ReadPolicy(std::string* policy) { PolicyFile policy_file; bool ok = IsSplitPolicyDevice() ? OpenSplitPolicy(&policy_file) : OpenMonolithicPolicy(&policy_file); if (!ok) { LOG(FATAL) << "Unable to open SELinux policy"; } if (!android::base::ReadFdToString(policy_file.fd, policy)) { PLOG(FATAL) << "Failed to read policy file: " << policy_file.path; } } void SelinuxSetEnforcement() { bool kernel_enforcing = (security_getenforce() == 1); bool is_enforcing = IsEnforcing(); if (kernel_enforcing != is_enforcing) { if (security_setenforce(is_enforcing)) { PLOG(FATAL) << "security_setenforce(" << (is_enforcing ? "true" : "false") << ") failed"; } } if (auto result = WriteFile("/sys/fs/selinux/checkreqprot", "0"); !result.ok()) { LOG(FATAL) << "Unable to write to /sys/fs/selinux/checkreqprot: " << result.error(); } } constexpr size_t kKlogMessageSize = 1024; void SelinuxAvcLog(char* buf, size_t buf_len) { CHECK_GT(buf_len, 0u); size_t str_len = strnlen(buf, buf_len); // trim newline at end of string if (buf[str_len - 1] == '\n') { buf[str_len - 1] = '\0'; } struct NetlinkMessage { nlmsghdr hdr; char buf[kKlogMessageSize]; } request = {}; request.hdr.nlmsg_flags = NLM_F_REQUEST; request.hdr.nlmsg_type = AUDIT_USER_AVC; request.hdr.nlmsg_len = sizeof(request); strlcpy(request.buf, buf, sizeof(request.buf)); auto fd = unique_fd{socket(PF_NETLINK, SOCK_RAW | SOCK_CLOEXEC, NETLINK_AUDIT)}; if (!fd.ok()) { return; } TEMP_FAILURE_RETRY(send(fd, &request, sizeof(request), 0)); } } // namespace void SelinuxRestoreContext() { LOG(INFO) << "Running restorecon..."; selinux_android_restorecon("/dev", 0); selinux_android_restorecon("/dev/kmsg", 0); if constexpr (WORLD_WRITABLE_KMSG) { selinux_android_restorecon("/dev/kmsg_debug", 0); } selinux_android_restorecon("/dev/null", 0); selinux_android_restorecon("/dev/ptmx", 0); selinux_android_restorecon("/dev/socket", 0); selinux_android_restorecon("/dev/random", 0); selinux_android_restorecon("/dev/urandom", 0); selinux_android_restorecon("/dev/__properties__", 0); selinux_android_restorecon("/dev/block", SELINUX_ANDROID_RESTORECON_RECURSE); selinux_android_restorecon("/dev/dm-user", SELINUX_ANDROID_RESTORECON_RECURSE); selinux_android_restorecon("/dev/device-mapper", 0); selinux_android_restorecon("/apex", 0); selinux_android_restorecon("/linkerconfig", 0); // adb remount, snapshot-based updates, and DSUs all create files during // first-stage init. selinux_android_restorecon(SnapshotManager::GetGlobalRollbackIndicatorPath().c_str(), 0); selinux_android_restorecon("/metadata/gsi", SELINUX_ANDROID_RESTORECON_RECURSE | SELINUX_ANDROID_RESTORECON_SKIP_SEHASH); } int SelinuxKlogCallback(int type, const char* fmt, ...) { android::base::LogSeverity severity = android::base::ERROR; if (type == SELINUX_WARNING) { severity = android::base::WARNING; } else if (type == SELINUX_INFO) { severity = android::base::INFO; } char buf[kKlogMessageSize]; va_list ap; va_start(ap, fmt); int length_written = vsnprintf(buf, sizeof(buf), fmt, ap); va_end(ap); if (length_written <= 0) { return 0; } if (type == SELINUX_AVC) { SelinuxAvcLog(buf, sizeof(buf)); } else { android::base::KernelLogger(android::base::MAIN, severity, "selinux", nullptr, 0, buf); } return 0; } void SelinuxSetupKernelLogging() { selinux_callback cb; cb.func_log = SelinuxKlogCallback; selinux_set_callback(SELINUX_CB_LOG, cb); } int SelinuxGetVendorAndroidVersion() { static int vendor_android_version = [] { if (!IsSplitPolicyDevice()) { // If this device does not split sepolicy files, it's not a Treble device and therefore, // we assume it's always on the latest platform. return __ANDROID_API_FUTURE__; } std::string version; if (!GetVendorMappingVersion(&version)) { LOG(FATAL) << "Could not read vendor SELinux version"; } int major_version; std::string major_version_str(version, 0, version.find('.')); if (!ParseInt(major_version_str, &major_version)) { PLOG(FATAL) << "Failed to parse the vendor sepolicy major version " << major_version_str; } return major_version; }(); return vendor_android_version; } // This is for R system.img/system_ext.img to work on old vendor.img as system_ext.img // is introduced in R. We mount system_ext in second stage init because the first-stage // init in boot.img won't be updated in the system-only OTA scenario. void MountMissingSystemPartitions() { android::fs_mgr::Fstab fstab; if (!ReadDefaultFstab(&fstab)) { LOG(ERROR) << "Could not read default fstab"; } android::fs_mgr::Fstab mounts; if (!ReadFstabFromFile("/proc/mounts", &mounts)) { LOG(ERROR) << "Could not read /proc/mounts"; } static const std::vector kPartitionNames = {"system_ext", "product"}; android::fs_mgr::Fstab extra_fstab; for (const auto& name : kPartitionNames) { if (GetEntryForMountPoint(&mounts, "/"s + name)) { // The partition is already mounted. continue; } auto system_entry = GetEntryForMountPoint(&fstab, "/system"); if (!system_entry) { LOG(ERROR) << "Could not find mount entry for /system"; break; } if (!system_entry->fs_mgr_flags.logical) { LOG(INFO) << "Skipping mount of " << name << ", system is not dynamic."; break; } auto entry = *system_entry; auto partition_name = name + fs_mgr_get_slot_suffix(); auto replace_name = "system"s + fs_mgr_get_slot_suffix(); entry.mount_point = "/"s + name; entry.blk_device = android::base::StringReplace(entry.blk_device, replace_name, partition_name, false); if (!fs_mgr_update_logical_partition(&entry)) { LOG(ERROR) << "Could not update logical partition"; continue; } extra_fstab.emplace_back(std::move(entry)); } SkipMountingPartitions(&extra_fstab, true /* verbose */); if (extra_fstab.empty()) { return; } BlockDevInitializer block_dev_init; for (auto& entry : extra_fstab) { if (access(entry.blk_device.c_str(), F_OK) != 0) { auto block_dev = android::base::Basename(entry.blk_device); if (!block_dev_init.InitDmDevice(block_dev)) { LOG(ERROR) << "Failed to find device-mapper node: " << block_dev; continue; } } if (fs_mgr_do_mount_one(entry)) { LOG(ERROR) << "Could not mount " << entry.mount_point; } } } static void LoadSelinuxPolicy(std::string& policy) { LOG(INFO) << "Loading SELinux policy"; set_selinuxmnt("/sys/fs/selinux"); if (security_load_policy(policy.data(), policy.size()) < 0) { PLOG(FATAL) << "SELinux: Could not load policy"; } } // The SELinux setup process is carefully orchestrated around snapuserd. Policy // must be loaded off dynamic partitions, and during an OTA, those partitions // cannot be read without snapuserd. But, with kernel-privileged snapuserd // running, loading the policy will immediately trigger audits. // // We use a five-step process to address this: // (1) Read the policy into a string, with snapuserd running. // (2) Rewrite the snapshot device-mapper tables, to generate new dm-user // devices and to flush I/O. // (3) Kill snapuserd, which no longer has any dm-user devices to attach to. // (4) Load the sepolicy and issue critical restorecons in /dev, carefully // avoiding anything that would read from /system. // (5) Re-launch snapuserd and attach it to the dm-user devices from step (2). // // After this sequence, it is safe to enable enforcing mode and continue booting. int SetupSelinux(char** argv) { SetStdioToDevNull(argv); InitKernelLogging(argv); if (REBOOT_BOOTLOADER_ON_PANIC) { InstallRebootSignalHandlers(); } boot_clock::time_point start_time = boot_clock::now(); MountMissingSystemPartitions(); SelinuxSetupKernelLogging(); LOG(INFO) << "Opening SELinux policy"; PrepareApexSepolicy(); // Read the policy before potentially killing snapuserd. std::string policy; ReadPolicy(&policy); CleanupApexSepolicy(); auto snapuserd_helper = SnapuserdSelinuxHelper::CreateIfNeeded(); if (snapuserd_helper) { // Kill the old snapused to avoid audit messages. After this we cannot // read from /system (or other dynamic partitions) until we call // FinishTransition(). snapuserd_helper->StartTransition(); } LoadSelinuxPolicy(policy); if (snapuserd_helper) { // Before enforcing, finish the pending snapuserd transition. snapuserd_helper->FinishTransition(); snapuserd_helper = nullptr; } // This restorecon is intentionally done before SelinuxSetEnforcement because the permissions // needed to transition files from tmpfs to *_contexts_file context should not be granted to // any process after selinux is set into enforcing mode. if (selinux_android_restorecon("/dev/selinux/", SELINUX_ANDROID_RESTORECON_RECURSE) == -1) { PLOG(FATAL) << "restorecon failed of /dev/selinux failed"; } SelinuxSetEnforcement(); // We're in the kernel domain and want to transition to the init domain. File systems that // store SELabels in their xattrs, such as ext4 do not need an explicit restorecon here, // but other file systems do. In particular, this is needed for ramdisks such as the // recovery image for A/B devices. if (selinux_android_restorecon("/system/bin/init", 0) == -1) { PLOG(FATAL) << "restorecon failed of /system/bin/init failed"; } setenv(kEnvSelinuxStartedAt, std::to_string(start_time.time_since_epoch().count()).c_str(), 1); const char* path = "/system/bin/init"; const char* args[] = {path, "second_stage", nullptr}; execv(path, const_cast(args)); // execv() only returns if an error happened, in which case we // panic and never return from this function. PLOG(FATAL) << "execv(\"" << path << "\") failed"; return 1; } } // namespace init } // namespace android