/* * Copyright 2016, The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "crash_test.h" #include "debuggerd/handler.h" #include "gtest/gtest.h" #include "libdebuggerd/utility.h" #include "protocol.h" #include "tombstoned/tombstoned.h" #include "util.h" using namespace std::chrono_literals; using android::base::SendFileDescriptors; using android::base::unique_fd; using ::testing::HasSubstr; #if defined(__LP64__) #define ARCH_SUFFIX "64" #else #define ARCH_SUFFIX "" #endif constexpr char kWaitForDebuggerKey[] = "debug.debuggerd.wait_for_debugger"; #define TIMEOUT(seconds, expr) \ [&]() { \ struct sigaction old_sigaction; \ struct sigaction new_sigaction = {}; \ new_sigaction.sa_handler = [](int) {}; \ if (sigaction(SIGALRM, &new_sigaction, &old_sigaction) != 0) { \ err(1, "sigaction failed"); \ } \ alarm(seconds * android::base::HwTimeoutMultiplier()); \ auto value = expr; \ int saved_errno = errno; \ if (sigaction(SIGALRM, &old_sigaction, nullptr) != 0) { \ err(1, "sigaction failed"); \ } \ alarm(0); \ errno = saved_errno; \ return value; \ }() // Backtrace frame dump could contain: // #01 pc 0001cded /data/tmp/debuggerd_test32 (raise_debugger_signal+80) // or // #01 pc 00022a09 /data/tmp/debuggerd_test32 (offset 0x12000) (raise_debugger_signal+80) #define ASSERT_BACKTRACE_FRAME(result, frame_name) \ ASSERT_MATCH(result, \ R"(#\d\d pc [0-9a-f]+\s+ \S+ (\(offset 0x[0-9a-f]+\) )?\()" frame_name R"(\+)"); static void tombstoned_intercept(pid_t target_pid, unique_fd* intercept_fd, unique_fd* output_fd, InterceptResponse* response, DebuggerdDumpType intercept_type) { intercept_fd->reset(socket_local_client(kTombstonedInterceptSocketName, ANDROID_SOCKET_NAMESPACE_RESERVED, SOCK_SEQPACKET)); if (intercept_fd->get() == -1) { FAIL() << "failed to contact tombstoned: " << strerror(errno); } InterceptRequest req = { .dump_type = intercept_type, .pid = target_pid, }; unique_fd output_pipe_write; if (!Pipe(output_fd, &output_pipe_write)) { FAIL() << "failed to create output pipe: " << strerror(errno); } std::string pipe_size_str; int pipe_buffer_size; if (!android::base::ReadFileToString("/proc/sys/fs/pipe-max-size", &pipe_size_str)) { FAIL() << "failed to read /proc/sys/fs/pipe-max-size: " << strerror(errno); } pipe_size_str = android::base::Trim(pipe_size_str); if (!android::base::ParseInt(pipe_size_str.c_str(), &pipe_buffer_size, 0)) { FAIL() << "failed to parse pipe max size"; } if (fcntl(output_fd->get(), F_SETPIPE_SZ, pipe_buffer_size) != pipe_buffer_size) { FAIL() << "failed to set pipe size: " << strerror(errno); } ASSERT_GE(pipe_buffer_size, 1024 * 1024); ssize_t rc = SendFileDescriptors(intercept_fd->get(), &req, sizeof(req), output_pipe_write.get()); output_pipe_write.reset(); if (rc != sizeof(req)) { FAIL() << "failed to send output fd to tombstoned: " << strerror(errno); } rc = TEMP_FAILURE_RETRY(read(intercept_fd->get(), response, sizeof(*response))); if (rc == -1) { FAIL() << "failed to read response from tombstoned: " << strerror(errno); } else if (rc == 0) { FAIL() << "failed to read response from tombstoned (EOF)"; } else if (rc != sizeof(*response)) { FAIL() << "received packet of unexpected length from tombstoned: expected " << sizeof(*response) << ", received " << rc; } } static bool pac_supported() { #if defined(__aarch64__) return getauxval(AT_HWCAP) & HWCAP_PACA; #else return false; #endif } class CrasherTest : public ::testing::Test { public: pid_t crasher_pid = -1; bool previous_wait_for_debugger; unique_fd crasher_pipe; unique_fd intercept_fd; CrasherTest(); ~CrasherTest(); void StartIntercept(unique_fd* output_fd, DebuggerdDumpType intercept_type = kDebuggerdTombstone); // Returns -1 if we fail to read a response from tombstoned, otherwise the received return code. void FinishIntercept(int* result); void StartProcess(std::function function, std::function forker = fork); void StartCrasher(const std::string& crash_type); void FinishCrasher(); void AssertDeath(int signo); static void Trap(void* ptr); }; CrasherTest::CrasherTest() { previous_wait_for_debugger = android::base::GetBoolProperty(kWaitForDebuggerKey, false); android::base::SetProperty(kWaitForDebuggerKey, "0"); // Clear the old property too, just in case someone's been using it // on this device. (We only document the new name, but we still support // the old name so we don't break anyone's existing setups.) android::base::SetProperty("debug.debuggerd.wait_for_gdb", "0"); } CrasherTest::~CrasherTest() { if (crasher_pid != -1) { kill(crasher_pid, SIGKILL); int status; TEMP_FAILURE_RETRY(waitpid(crasher_pid, &status, WUNTRACED)); } android::base::SetProperty(kWaitForDebuggerKey, previous_wait_for_debugger ? "1" : "0"); } void CrasherTest::StartIntercept(unique_fd* output_fd, DebuggerdDumpType intercept_type) { if (crasher_pid == -1) { FAIL() << "crasher hasn't been started"; } InterceptResponse response = {}; tombstoned_intercept(crasher_pid, &this->intercept_fd, output_fd, &response, intercept_type); ASSERT_EQ(InterceptStatus::kRegistered, response.status) << "Error message: " << response.error_message; } void CrasherTest::FinishIntercept(int* result) { InterceptResponse response; ssize_t rc = TIMEOUT(30, read(intercept_fd.get(), &response, sizeof(response))); if (rc == -1) { FAIL() << "failed to read response from tombstoned: " << strerror(errno); } else if (rc == 0) { *result = -1; } else if (rc != sizeof(response)) { FAIL() << "received packet of unexpected length from tombstoned: expected " << sizeof(response) << ", received " << rc; } else { *result = response.status == InterceptStatus::kStarted ? 1 : 0; } } void CrasherTest::StartProcess(std::function function, std::function forker) { unique_fd read_pipe; unique_fd crasher_read_pipe; if (!Pipe(&crasher_read_pipe, &crasher_pipe)) { FAIL() << "failed to create pipe: " << strerror(errno); } crasher_pid = forker(); if (crasher_pid == -1) { FAIL() << "fork failed: " << strerror(errno); } else if (crasher_pid == 0) { char dummy; crasher_pipe.reset(); TEMP_FAILURE_RETRY(read(crasher_read_pipe.get(), &dummy, 1)); function(); _exit(0); } } void CrasherTest::FinishCrasher() { if (crasher_pipe == -1) { FAIL() << "crasher pipe uninitialized"; } ssize_t rc = TEMP_FAILURE_RETRY(write(crasher_pipe.get(), "\n", 1)); if (rc == -1) { FAIL() << "failed to write to crasher pipe: " << strerror(errno); } else if (rc == 0) { FAIL() << "crasher pipe was closed"; } } void CrasherTest::AssertDeath(int signo) { int status; pid_t pid = TIMEOUT(30, waitpid(crasher_pid, &status, 0)); if (pid != crasher_pid) { printf("failed to wait for crasher (expected pid %d, return value %d): %s\n", crasher_pid, pid, strerror(errno)); sleep(100); FAIL() << "failed to wait for crasher: " << strerror(errno); } if (signo == 0) { ASSERT_TRUE(WIFEXITED(status)) << "Terminated due to unexpected signal " << WTERMSIG(status); ASSERT_EQ(0, WEXITSTATUS(signo)); } else { ASSERT_FALSE(WIFEXITED(status)); ASSERT_TRUE(WIFSIGNALED(status)) << "crasher didn't terminate via a signal"; ASSERT_EQ(signo, WTERMSIG(status)); } crasher_pid = -1; } static void ConsumeFd(unique_fd fd, std::string* output) { ASSERT_TRUE(android::base::ReadFdToString(fd, output)); } class LogcatCollector { public: LogcatCollector() { system("logcat -c"); } void Collect(std::string* output) { FILE* cmd_stdout = popen("logcat -d '*:S DEBUG'", "r"); ASSERT_NE(cmd_stdout, nullptr); unique_fd tmp_fd(TEMP_FAILURE_RETRY(dup(fileno(cmd_stdout)))); ConsumeFd(std::move(tmp_fd), output); pclose(cmd_stdout); } }; TEST_F(CrasherTest, smoke) { int intercept_result; unique_fd output_fd; StartProcess([]() { *reinterpret_cast(0xdead) = '1'; }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); #ifdef __LP64__ ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\), code 1 \(SEGV_MAPERR\), fault addr 0x000000000000dead)"); #else ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\), code 1 \(SEGV_MAPERR\), fault addr 0x0000dead)"); #endif if (mte_supported()) { // Test that the default TAGGED_ADDR_CTRL value is set. ASSERT_MATCH(result, R"(tagged_addr_ctrl: 000000000007fff3)" R"( \(PR_TAGGED_ADDR_ENABLE, PR_MTE_TCF_SYNC, mask 0xfffe\))"); } if (pac_supported()) { // Test that the default PAC_ENABLED_KEYS value is set. ASSERT_MATCH(result, R"(pac_enabled_keys: 000000000000000f)" R"( \(PR_PAC_APIAKEY, PR_PAC_APIBKEY, PR_PAC_APDAKEY, PR_PAC_APDBKEY\))"); } } TEST_F(CrasherTest, tagged_fault_addr) { #if !defined(__aarch64__) GTEST_SKIP() << "Requires aarch64"; #endif // HWASan crashes with SIGABRT on tag mismatch. SKIP_WITH_HWASAN; int intercept_result; unique_fd output_fd; StartProcess([]() { *reinterpret_cast(0x100000000000dead) = '1'; }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); // The address can either be tagged (new kernels) or untagged (old kernels). ASSERT_MATCH( result, R"(signal 11 \(SIGSEGV\), code 1 \(SEGV_MAPERR\), fault addr 0x[01]00000000000dead)"); } void CrasherTest::Trap(void* ptr) { void (*volatile f)(void*) = nullptr; __asm__ __volatile__("" : : "r"(f) : "memory"); f(ptr); } TEST_F(CrasherTest, heap_addr_in_register) { #if defined(__i386__) GTEST_SKIP() << "architecture does not pass arguments in registers"; #endif // The memory dump in HWASan crashes sadly shows the memory near the registers // in the HWASan dump function, rather the faulting context. This is a known // issue. SKIP_WITH_HWASAN; int intercept_result; unique_fd output_fd; StartProcess([]() { // Crash with a heap pointer in the first argument register. Trap(malloc(1)); }); StartIntercept(&output_fd); FinishCrasher(); int status; ASSERT_EQ(crasher_pid, TIMEOUT(30, waitpid(crasher_pid, &status, 0))); ASSERT_TRUE(WIFSIGNALED(status)) << "crasher didn't terminate via a signal"; // Don't test the signal number because different architectures use different signals for // __builtin_trap(). FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); #if defined(__aarch64__) ASSERT_MATCH(result, "memory near x0 \\(\\[anon:"); #elif defined(__arm__) ASSERT_MATCH(result, "memory near r0 \\(\\[anon:"); #elif defined(__riscv) ASSERT_MATCH(result, "memory near a0 \\(\\[anon:"); #elif defined(__x86_64__) ASSERT_MATCH(result, "memory near rdi \\(\\[anon:"); #else ASSERT_TRUE(false) << "unsupported architecture"; #endif } #if defined(__aarch64__) static void SetTagCheckingLevelSync() { if (mallopt(M_BIONIC_SET_HEAP_TAGGING_LEVEL, M_HEAP_TAGGING_LEVEL_SYNC) == 0) { abort(); } } static void SetTagCheckingLevelAsync() { if (mallopt(M_BIONIC_SET_HEAP_TAGGING_LEVEL, M_HEAP_TAGGING_LEVEL_ASYNC) == 0) { abort(); } } #endif struct SizeParamCrasherTest : CrasherTest, testing::WithParamInterface {}; INSTANTIATE_TEST_SUITE_P(Sizes, SizeParamCrasherTest, testing::Values(0, 16, 131072)); TEST_P(SizeParamCrasherTest, mte_uaf) { #if defined(__aarch64__) if (!mte_supported()) { GTEST_SKIP() << "Requires MTE"; } // Any UAF on a zero-sized allocation will be out-of-bounds so it won't be reported. if (GetParam() == 0) { return; } LogcatCollector logcat_collector; int intercept_result; unique_fd output_fd; StartProcess([&]() { SetTagCheckingLevelSync(); volatile int* p = (volatile int*)malloc(GetParam()); free((void *)p); p[0] = 42; }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::vector log_sources(2); ConsumeFd(std::move(output_fd), &log_sources[0]); logcat_collector.Collect(&log_sources[1]); // Tag dump only available in the tombstone, not logcat. ASSERT_MATCH(log_sources[0], "Memory tags around the fault address"); for (const auto& result : log_sources) { ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\))"); ASSERT_MATCH(result, R"(Cause: \[MTE\]: Use After Free, 0 bytes into a )" + std::to_string(GetParam()) + R"(-byte allocation)"); ASSERT_MATCH(result, R"(deallocated by thread .*?\n.*#00 pc)"); ASSERT_MATCH(result, R"((^|\s)allocated by thread .*?\n.*#00 pc)"); } #else GTEST_SKIP() << "Requires aarch64"; #endif } TEST_P(SizeParamCrasherTest, mte_oob_uaf) { #if defined(__aarch64__) if (!mte_supported()) { GTEST_SKIP() << "Requires MTE"; } int intercept_result; unique_fd output_fd; StartProcess([&]() { SetTagCheckingLevelSync(); volatile int* p = (volatile int*)malloc(GetParam()); free((void *)p); p[-1] = 42; }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\))"); ASSERT_NOT_MATCH(result, R"(Cause: \[MTE\]: Use After Free, 4 bytes left)"); #else GTEST_SKIP() << "Requires aarch64"; #endif } TEST_P(SizeParamCrasherTest, mte_overflow) { #if defined(__aarch64__) if (!mte_supported()) { GTEST_SKIP() << "Requires MTE"; } LogcatCollector logcat_collector; int intercept_result; unique_fd output_fd; StartProcess([&]() { SetTagCheckingLevelSync(); volatile char* p = (volatile char*)malloc(GetParam()); p[GetParam()] = 42; }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::vector log_sources(2); ConsumeFd(std::move(output_fd), &log_sources[0]); logcat_collector.Collect(&log_sources[1]); // Tag dump only in tombstone, not logcat, and tagging is not used for // overflow protection in the scudo secondary (guard pages are used instead). if (GetParam() < 0x10000) { ASSERT_MATCH(log_sources[0], "Memory tags around the fault address"); } for (const auto& result : log_sources) { ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\))"); ASSERT_MATCH(result, R"(Cause: \[MTE\]: Buffer Overflow, 0 bytes right of a )" + std::to_string(GetParam()) + R"(-byte allocation)"); ASSERT_MATCH(result, R"((^|\s)allocated by thread .*?\n.*#00 pc)"); } #else GTEST_SKIP() << "Requires aarch64"; #endif } TEST_P(SizeParamCrasherTest, mte_underflow) { #if defined(__aarch64__) if (!mte_supported()) { GTEST_SKIP() << "Requires MTE"; } int intercept_result; unique_fd output_fd; StartProcess([&]() { SetTagCheckingLevelSync(); volatile int* p = (volatile int*)malloc(GetParam()); p[-1] = 42; }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\), code 9 \(SEGV_MTESERR\))"); ASSERT_MATCH(result, R"(Cause: \[MTE\]: Buffer Underflow, 4 bytes left of a )" + std::to_string(GetParam()) + R"(-byte allocation)"); ASSERT_MATCH(result, R"((^|\s)allocated by thread .* #00 pc)"); ASSERT_MATCH(result, "Memory tags around the fault address"); #else GTEST_SKIP() << "Requires aarch64"; #endif } __attribute__((noinline)) void mte_illegal_setjmp_helper(jmp_buf& jump_buf) { // This frame is at least 8 bytes for storing and restoring the LR before the // setjmp below. So this can never get an empty stack frame, even if we omit // the frame pointer. So, the SP of this is always less (numerically) than the // calling function frame. setjmp(jump_buf); } TEST_F(CrasherTest, mte_illegal_setjmp) { // This setjmp is illegal because it jumps back into a function that already returned. // Quoting man 3 setjmp: // If the function which called setjmp() returns before longjmp() is // called, the behavior is undefined. Some kind of subtle or // unsubtle chaos is sure to result. // https://man7.org/linux/man-pages/man3/longjmp.3.html #if defined(__aarch64__) if (!mte_supported()) { GTEST_SKIP() << "Requires MTE"; } int intercept_result; unique_fd output_fd; StartProcess([&]() { SetTagCheckingLevelSync(); jmp_buf jump_buf; mte_illegal_setjmp_helper(jump_buf); longjmp(jump_buf, 1); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); // In our test-case, we have a NEGATIVE stack adjustment, which is being // interpreted as unsigned integer, and thus is "too large". // TODO(fmayer): fix the error message for this ASSERT_MATCH(result, R"(memtag_handle_longjmp: stack adjustment too large)"); #else GTEST_SKIP() << "Requires aarch64"; #endif } TEST_F(CrasherTest, mte_async) { #if defined(__aarch64__) if (!mte_supported()) { GTEST_SKIP() << "Requires MTE"; } int intercept_result; unique_fd output_fd; StartProcess([&]() { SetTagCheckingLevelAsync(); volatile int* p = (volatile int*)malloc(16); p[-1] = 42; }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\), code [89] \(SEGV_MTE[AS]ERR\), fault addr)"); #else GTEST_SKIP() << "Requires aarch64"; #endif } TEST_F(CrasherTest, mte_multiple_causes) { #if defined(__aarch64__) if (!mte_supported()) { GTEST_SKIP() << "Requires MTE"; } LogcatCollector logcat_collector; int intercept_result; unique_fd output_fd; StartProcess([]() { SetTagCheckingLevelSync(); // Make two allocations with the same tag and close to one another. Check for both properties // with a bounds check -- this relies on the fact that only if the allocations have the same tag // would they be measured as closer than 128 bytes to each other. Otherwise they would be about // (some non-zero value << 56) apart. // // The out-of-bounds access will be considered either an overflow of one or an underflow of the // other. std::set allocs; for (int i = 0; i != 4096; ++i) { uintptr_t alloc = reinterpret_cast(malloc(16)); auto it = allocs.insert(alloc).first; if (it != allocs.begin() && *std::prev(it) + 128 > alloc) { *reinterpret_cast(*std::prev(it) + 16) = 42; } if (std::next(it) != allocs.end() && alloc + 128 > *std::next(it)) { *reinterpret_cast(alloc + 16) = 42; } } }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::vector log_sources(2); ConsumeFd(std::move(output_fd), &log_sources[0]); logcat_collector.Collect(&log_sources[1]); // Tag dump only in the tombstone, not logcat. ASSERT_MATCH(log_sources[0], "Memory tags around the fault address"); for (const auto& result : log_sources) { ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\))"); ASSERT_THAT(result, HasSubstr("Note: multiple potential causes for this crash were detected, " "listing them in decreasing order of likelihood.")); // Adjacent untracked allocations may cause us to see the wrong underflow here (or only // overflows), so we can't match explicitly for an underflow message. ASSERT_MATCH(result, R"(Cause: \[MTE\]: Buffer Overflow, 0 bytes right of a 16-byte allocation)"); // Ensure there's at least two allocation traces (one for each cause). ASSERT_MATCH( result, R"((^|\s)allocated by thread .*?\n.*#00 pc(.|\n)*?(^|\s)allocated by thread .*?\n.*#00 pc)"); } #else GTEST_SKIP() << "Requires aarch64"; #endif } #if defined(__aarch64__) static uintptr_t CreateTagMapping() { // Some of the MTE tag dump tests assert that there is an inaccessible page to the left and right // of the PROT_MTE page, so map three pages and set the two guard pages to PROT_NONE. size_t page_size = getpagesize(); void* mapping = mmap(nullptr, page_size * 3, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); uintptr_t mapping_uptr = reinterpret_cast(mapping); if (mapping == MAP_FAILED) { return 0; } mprotect(reinterpret_cast(mapping_uptr + page_size), page_size, PROT_READ | PROT_WRITE | PROT_MTE); // Stripe the mapping, where even granules get tag '1', and odd granules get tag '0'. for (uintptr_t offset = 0; offset < page_size; offset += 2 * kTagGranuleSize) { uintptr_t tagged_addr = mapping_uptr + page_size + offset + (1ULL << 56); __asm__ __volatile__(".arch_extension mte; stg %0, [%0]" : : "r"(tagged_addr) : "memory"); } return mapping_uptr + page_size; } #endif TEST_F(CrasherTest, mte_register_tag_dump) { #if defined(__aarch64__) if (!mte_supported()) { GTEST_SKIP() << "Requires MTE"; } int intercept_result; unique_fd output_fd; StartProcess([&]() { SetTagCheckingLevelSync(); Trap(reinterpret_cast(CreateTagMapping())); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(memory near x0: .* .* 01.............0 0000000000000000 0000000000000000 ................ 00.............0)"); #else GTEST_SKIP() << "Requires aarch64"; #endif } TEST_F(CrasherTest, mte_fault_tag_dump_front_truncated) { #if defined(__aarch64__) if (!mte_supported()) { GTEST_SKIP() << "Requires MTE"; } int intercept_result; unique_fd output_fd; StartProcess([&]() { SetTagCheckingLevelSync(); volatile char* p = reinterpret_cast(CreateTagMapping()); p[0] = 0; // Untagged pointer, tagged memory. }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(Memory tags around the fault address.* \s*=>0x[0-9a-f]+000:\[1\] 0 1 0)"); #else GTEST_SKIP() << "Requires aarch64"; #endif } TEST_F(CrasherTest, mte_fault_tag_dump) { #if defined(__aarch64__) if (!mte_supported()) { GTEST_SKIP() << "Requires MTE"; } int intercept_result; unique_fd output_fd; StartProcess([&]() { SetTagCheckingLevelSync(); volatile char* p = reinterpret_cast(CreateTagMapping()); p[320] = 0; // Untagged pointer, tagged memory. }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(Memory tags around the fault address.* \s*0x[0-9a-f]+: 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 \s*=>0x[0-9a-f]+: 1 0 1 0 \[1\] 0 1 0 1 0 1 0 1 0 1 0 \s*0x[0-9a-f]+: 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 )"); #else GTEST_SKIP() << "Requires aarch64"; #endif } TEST_F(CrasherTest, mte_fault_tag_dump_rear_truncated) { #if defined(__aarch64__) if (!mte_supported()) { GTEST_SKIP() << "Requires MTE"; } int intercept_result; unique_fd output_fd; StartProcess([&]() { SetTagCheckingLevelSync(); size_t page_size = getpagesize(); volatile char* p = reinterpret_cast(CreateTagMapping()); p[page_size - kTagGranuleSize * 2] = 0; // Untagged pointer, tagged memory. }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(Memory tags around the fault address)"); ASSERT_MATCH(result, R"(\s*0x[0-9a-f]+: 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 \s*=>0x[0-9a-f]+: 1 0 1 0 1 0 1 0 1 0 1 0 1 0 \[1\] 0 )"); // Ensure truncation happened and there's a newline after the tag fault. #else GTEST_SKIP() << "Requires aarch64"; #endif } TEST_F(CrasherTest, LD_PRELOAD) { int intercept_result; unique_fd output_fd; StartProcess([]() { setenv("LD_PRELOAD", "nonexistent.so", 1); *reinterpret_cast(0xdead) = '1'; }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\), code 1 \(SEGV_MAPERR\), fault addr 0x0+dead)"); } TEST_F(CrasherTest, abort) { int intercept_result; unique_fd output_fd; StartProcess([]() { abort(); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_BACKTRACE_FRAME(result, "abort"); } TEST_F(CrasherTest, signal) { int intercept_result; unique_fd output_fd; StartProcess([]() { while (true) { sleep(1); } }); StartIntercept(&output_fd); FinishCrasher(); ASSERT_EQ(0, kill(crasher_pid, SIGSEGV)); AssertDeath(SIGSEGV); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH( result, R"(signal 11 \(SIGSEGV\), code 0 \(SI_USER from pid \d+, uid \d+\), fault addr --------)"); ASSERT_MATCH(result, R"(backtrace:)"); } TEST_F(CrasherTest, abort_message) { int intercept_result; unique_fd output_fd; StartProcess([]() { // Arrived at experimentally; // logd truncates at 4062. // strlen("Abort message: ''") is 17. // That's 4045, but we also want a NUL. char buf[4045 + 1]; memset(buf, 'x', sizeof(buf)); buf[sizeof(buf) - 1] = '\0'; android_set_abort_message(buf); abort(); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(Abort message: 'x{4045}')"); } static char g_crash_detail_value_changes[] = "crash_detail_value"; static char g_crash_detail_value[] = "crash_detail_value"; static char g_crash_detail_value2[] = "crash_detail_value2"; inline crash_detail_t* _Nullable android_register_crash_detail_strs(const char* _Nonnull name, const char* _Nonnull data) { return android_crash_detail_register(name, strlen(name), data, strlen(data)); } TEST_F(CrasherTest, crash_detail_single) { int intercept_result; unique_fd output_fd; StartProcess([]() { android_register_crash_detail_strs("CRASH_DETAIL_NAME", g_crash_detail_value); abort(); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(CRASH_DETAIL_NAME: 'crash_detail_value')"); } TEST_F(CrasherTest, crash_detail_replace_data) { int intercept_result; unique_fd output_fd; StartProcess([]() { auto *cd = android_register_crash_detail_strs("CRASH_DETAIL_NAME", "original_data"); android_crash_detail_replace_data(cd, "new_data", strlen("new_data")); abort(); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(CRASH_DETAIL_NAME: 'new_data')"); // Ensure the old one no longer shows up, i.e. that we actually replaced // it, not added a new one. ASSERT_NOT_MATCH(result, R"(CRASH_DETAIL_NAME: 'original_data')"); } TEST_F(CrasherTest, crash_detail_replace_name) { int intercept_result; unique_fd output_fd; StartProcess([]() { auto *cd = android_register_crash_detail_strs("old_name", g_crash_detail_value); android_crash_detail_replace_name(cd, "new_name", strlen("new_name")); abort(); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(new_name: 'crash_detail_value')"); // Ensure the old one no longer shows up, i.e. that we actually replaced // it, not added a new one. ASSERT_NOT_MATCH(result, R"(old_name: 'crash_detail_value')"); } TEST_F(CrasherTest, crash_detail_single_byte_name) { int intercept_result; unique_fd output_fd; StartProcess([]() { android_register_crash_detail_strs("CRASH_DETAIL_NAME\1", g_crash_detail_value); abort(); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(CRASH_DETAIL_NAME\\1: 'crash_detail_value')"); } TEST_F(CrasherTest, crash_detail_single_bytes) { int intercept_result; unique_fd output_fd; StartProcess([]() { android_crash_detail_register("CRASH_DETAIL_NAME", strlen("CRASH_DETAIL_NAME"), "\1", sizeof("\1")); abort(); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(CRASH_DETAIL_NAME: '\\1\\0')"); } TEST_F(CrasherTest, crash_detail_mixed) { int intercept_result; unique_fd output_fd; StartProcess([]() { const char data[] = "helloworld\1\255\3"; android_register_crash_detail_strs("CRASH_DETAIL_NAME", data); abort(); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(CRASH_DETAIL_NAME: 'helloworld\\1\\255\\3')"); } TEST_F(CrasherTest, crash_detail_many) { int intercept_result; unique_fd output_fd; StartProcess([]() { for (int i = 0; i < 1000; ++i) { std::string name = "CRASH_DETAIL_NAME" + std::to_string(i); std::string value = "CRASH_DETAIL_VALUE" + std::to_string(i); auto* h = android_register_crash_detail_strs(name.data(), value.data()); android_crash_detail_unregister(h); } android_register_crash_detail_strs("FINAL_NAME", "FINAL_VALUE"); android_register_crash_detail_strs("FINAL_NAME2", "FINAL_VALUE2"); abort(); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_NOT_MATCH(result, "CRASH_DETAIL_NAME"); ASSERT_NOT_MATCH(result, "CRASH_DETAIL_VALUE"); ASSERT_MATCH(result, R"(FINAL_NAME: 'FINAL_VALUE')"); ASSERT_MATCH(result, R"(FINAL_NAME2: 'FINAL_VALUE2')"); } TEST_F(CrasherTest, crash_detail_single_changes) { int intercept_result; unique_fd output_fd; StartProcess([]() { android_register_crash_detail_strs("CRASH_DETAIL_NAME", g_crash_detail_value_changes); g_crash_detail_value_changes[0] = 'C'; abort(); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(CRASH_DETAIL_NAME: 'Crash_detail_value')"); } TEST_F(CrasherTest, crash_detail_multiple) { int intercept_result; unique_fd output_fd; StartProcess([]() { android_register_crash_detail_strs("CRASH_DETAIL_NAME", g_crash_detail_value); android_register_crash_detail_strs("CRASH_DETAIL_NAME2", g_crash_detail_value2); abort(); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(CRASH_DETAIL_NAME: 'crash_detail_value')"); ASSERT_MATCH(result, R"(CRASH_DETAIL_NAME2: 'crash_detail_value2')"); } TEST_F(CrasherTest, crash_detail_remove) { int intercept_result; unique_fd output_fd; StartProcess([]() { auto* detail1 = android_register_crash_detail_strs("CRASH_DETAIL_NAME", g_crash_detail_value); android_crash_detail_unregister(detail1); android_register_crash_detail_strs("CRASH_DETAIL_NAME2", g_crash_detail_value2); abort(); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_NOT_MATCH(result, R"(CRASH_DETAIL_NAME: 'crash_detail_value')"); ASSERT_MATCH(result, R"(CRASH_DETAIL_NAME2: 'crash_detail_value2')"); } TEST_F(CrasherTest, abort_message_newline_trimmed) { int intercept_result; unique_fd output_fd; StartProcess([]() { android_set_abort_message("Message with a newline.\n"); abort(); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(Abort message: 'Message with a newline.')"); } TEST_F(CrasherTest, abort_message_multiple_newlines_trimmed) { int intercept_result; unique_fd output_fd; StartProcess([]() { android_set_abort_message("Message with multiple newlines.\n\n\n\n\n"); abort(); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(Abort message: 'Message with multiple newlines.')"); } TEST_F(CrasherTest, abort_message_backtrace) { int intercept_result; unique_fd output_fd; StartProcess([]() { android_set_abort_message("not actually aborting"); raise(BIONIC_SIGNAL_DEBUGGER); exit(0); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(0); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_NOT_MATCH(result, R"(Abort message:)"); } TEST_F(CrasherTest, intercept_timeout) { int intercept_result; unique_fd output_fd; StartProcess([]() { abort(); }); StartIntercept(&output_fd); // Don't let crasher finish until we timeout. FinishIntercept(&intercept_result); ASSERT_NE(1, intercept_result) << "tombstoned reported success? (intercept_result = " << intercept_result << ")"; FinishCrasher(); AssertDeath(SIGABRT); } TEST_F(CrasherTest, wait_for_debugger) { if (!android::base::SetProperty(kWaitForDebuggerKey, "1")) { FAIL() << "failed to enable wait_for_debugger"; } sleep(1); StartProcess([]() { abort(); }); FinishCrasher(); int status; ASSERT_EQ(crasher_pid, TEMP_FAILURE_RETRY(waitpid(crasher_pid, &status, WUNTRACED))); ASSERT_TRUE(WIFSTOPPED(status)); ASSERT_EQ(SIGSTOP, WSTOPSIG(status)); ASSERT_EQ(0, kill(crasher_pid, SIGCONT)); AssertDeath(SIGABRT); } TEST_F(CrasherTest, backtrace) { std::string result; int intercept_result; unique_fd output_fd; StartProcess([]() { abort(); }); StartIntercept(&output_fd, kDebuggerdNativeBacktrace); std::this_thread::sleep_for(500ms); sigval val; val.sival_int = 1; ASSERT_EQ(0, sigqueue(crasher_pid, BIONIC_SIGNAL_DEBUGGER, val)) << strerror(errno); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; ConsumeFd(std::move(output_fd), &result); ASSERT_BACKTRACE_FRAME(result, "read"); int status; ASSERT_EQ(0, waitpid(crasher_pid, &status, WNOHANG | WUNTRACED)); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; ConsumeFd(std::move(output_fd), &result); ASSERT_BACKTRACE_FRAME(result, "abort"); } TEST_F(CrasherTest, PR_SET_DUMPABLE_0_crash) { int intercept_result; unique_fd output_fd; StartProcess([]() { prctl(PR_SET_DUMPABLE, 0); abort(); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_BACKTRACE_FRAME(result, "abort"); } TEST_F(CrasherTest, capabilities) { ASSERT_EQ(0U, getuid()) << "capability test requires root"; StartProcess([]() { if (prctl(PR_SET_KEEPCAPS, 1, 0, 0, 0) != 0) { err(1, "failed to set PR_SET_KEEPCAPS"); } if (setresuid(1, 1, 1) != 0) { err(1, "setresuid failed"); } __user_cap_header_struct capheader; __user_cap_data_struct capdata[2]; memset(&capheader, 0, sizeof(capheader)); memset(&capdata, 0, sizeof(capdata)); capheader.version = _LINUX_CAPABILITY_VERSION_3; capheader.pid = 0; // Turn on every third capability. static_assert(CAP_LAST_CAP > 33, "CAP_LAST_CAP <= 32"); for (int i = 0; i < CAP_LAST_CAP; i += 3) { capdata[CAP_TO_INDEX(i)].permitted |= CAP_TO_MASK(i); capdata[CAP_TO_INDEX(i)].effective |= CAP_TO_MASK(i); } // Make sure CAP_SYS_PTRACE is off. capdata[CAP_TO_INDEX(CAP_SYS_PTRACE)].permitted &= ~(CAP_TO_MASK(CAP_SYS_PTRACE)); capdata[CAP_TO_INDEX(CAP_SYS_PTRACE)].effective &= ~(CAP_TO_MASK(CAP_SYS_PTRACE)); if (capset(&capheader, &capdata[0]) != 0) { err(1, "capset failed"); } if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_CLEAR_ALL, 0, 0, 0) != 0) { err(1, "failed to drop ambient capabilities"); } pthread_setname_np(pthread_self(), "thread_name"); raise(SIGSYS); }); unique_fd output_fd; StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSYS); std::string result; int intercept_result; FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(name: thread_name\s+>>> .+debuggerd_test(32|64) <<<)"); ASSERT_BACKTRACE_FRAME(result, "tgkill"); } TEST_F(CrasherTest, fake_pid) { int intercept_result; unique_fd output_fd; // Prime the getpid/gettid caches. UNUSED(getpid()); UNUSED(gettid()); std::function clone_fn = []() { return syscall(__NR_clone, SIGCHLD, nullptr, nullptr, nullptr, nullptr); }; StartProcess( []() { ASSERT_NE(getpid(), syscall(__NR_getpid)); ASSERT_NE(gettid(), syscall(__NR_gettid)); raise(SIGSEGV); }, clone_fn); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_BACKTRACE_FRAME(result, "tgkill"); } static const char* const kDebuggerdSeccompPolicy = "/system/etc/seccomp_policy/crash_dump." ABI_STRING ".policy"; static void setup_jail(minijail* jail) { if (!jail) { LOG(FATAL) << "failed to create minijail"; } std::string policy; if (!android::base::ReadFileToString(kDebuggerdSeccompPolicy, &policy)) { PLOG(FATAL) << "failed to read policy file"; } // Allow a bunch of syscalls used by the tests. policy += "\nclone: 1"; policy += "\nsigaltstack: 1"; policy += "\nnanosleep: 1"; policy += "\ngetrlimit: 1"; policy += "\nugetrlimit: 1"; FILE* tmp_file = tmpfile(); if (!tmp_file) { PLOG(FATAL) << "tmpfile failed"; } unique_fd tmp_fd(TEMP_FAILURE_RETRY(dup(fileno(tmp_file)))); if (!android::base::WriteStringToFd(policy, tmp_fd.get())) { PLOG(FATAL) << "failed to write policy to tmpfile"; } if (lseek(tmp_fd.get(), 0, SEEK_SET) != 0) { PLOG(FATAL) << "failed to seek tmp_fd"; } minijail_no_new_privs(jail); minijail_log_seccomp_filter_failures(jail); minijail_use_seccomp_filter(jail); minijail_parse_seccomp_filters_from_fd(jail, tmp_fd.release()); } static pid_t seccomp_fork_impl(void (*prejail)()) { ScopedMinijail jail{minijail_new()}; setup_jail(jail.get()); pid_t result = fork(); if (result == -1) { return result; } else if (result != 0) { return result; } // Spawn and detach a thread that spins forever. std::atomic thread_ready(false); std::thread thread([&jail, &thread_ready]() { minijail_enter(jail.get()); thread_ready = true; for (;;) ; }); thread.detach(); while (!thread_ready) { continue; } if (prejail) { prejail(); } minijail_enter(jail.get()); return result; } static pid_t seccomp_fork() { return seccomp_fork_impl(nullptr); } TEST_F(CrasherTest, seccomp_crash) { int intercept_result; unique_fd output_fd; StartProcess([]() { abort(); }, &seccomp_fork); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_BACKTRACE_FRAME(result, "abort"); } static pid_t seccomp_fork_rlimit() { return seccomp_fork_impl([]() { struct rlimit rlim = { .rlim_cur = 512 * 1024 * 1024, .rlim_max = 512 * 1024 * 1024, }; if (setrlimit(RLIMIT_AS, &rlim) != 0) { raise(SIGINT); } }); } TEST_F(CrasherTest, seccomp_crash_oom) { int intercept_result; unique_fd output_fd; StartProcess( []() { std::vector vec; for (int i = 0; i < 512; ++i) { char* buf = static_cast(malloc(1024 * 1024)); if (!buf) { abort(); } memset(buf, 0xff, 1024 * 1024); vec.push_back(buf); } }, &seccomp_fork_rlimit); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; // We can't actually generate a backtrace, just make sure that the process terminates. } __attribute__((__noinline__)) extern "C" bool raise_debugger_signal(DebuggerdDumpType dump_type) { siginfo_t siginfo; siginfo.si_code = SI_QUEUE; siginfo.si_pid = getpid(); siginfo.si_uid = getuid(); if (dump_type != kDebuggerdNativeBacktrace && dump_type != kDebuggerdTombstone) { PLOG(FATAL) << "invalid dump type"; } siginfo.si_value.sival_int = dump_type == kDebuggerdNativeBacktrace; if (syscall(__NR_rt_tgsigqueueinfo, getpid(), gettid(), BIONIC_SIGNAL_DEBUGGER, &siginfo) != 0) { PLOG(ERROR) << "libdebuggerd_client: failed to send signal to self"; return false; } return true; } extern "C" void foo() { LOG(INFO) << "foo"; std::this_thread::sleep_for(1s); } extern "C" void bar() { LOG(INFO) << "bar"; std::this_thread::sleep_for(1s); } TEST_F(CrasherTest, seccomp_tombstone) { int intercept_result; unique_fd output_fd; static const auto dump_type = kDebuggerdTombstone; StartProcess( []() { std::thread a(foo); std::thread b(bar); std::this_thread::sleep_for(100ms); raise_debugger_signal(dump_type); _exit(0); }, &seccomp_fork); StartIntercept(&output_fd, dump_type); FinishCrasher(); AssertDeath(0); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_BACKTRACE_FRAME(result, "raise_debugger_signal"); ASSERT_BACKTRACE_FRAME(result, "foo"); ASSERT_BACKTRACE_FRAME(result, "bar"); } TEST_F(CrasherTest, seccomp_tombstone_thread_abort) { int intercept_result; unique_fd output_fd; static const auto dump_type = kDebuggerdTombstone; StartProcess( []() { std::thread abort_thread([] { abort(); }); abort_thread.join(); }, &seccomp_fork); StartIntercept(&output_fd, dump_type); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_BACKTRACE_FRAME(result, "abort"); } TEST_F(CrasherTest, seccomp_tombstone_multiple_threads_abort) { int intercept_result; unique_fd output_fd; static const auto dump_type = kDebuggerdTombstone; StartProcess( []() { std::thread a(foo); std::thread b(bar); std::this_thread::sleep_for(100ms); std::thread abort_thread([] { abort(); }); abort_thread.join(); }, &seccomp_fork); StartIntercept(&output_fd, dump_type); FinishCrasher(); AssertDeath(SIGABRT); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_BACKTRACE_FRAME(result, "abort"); ASSERT_BACKTRACE_FRAME(result, "foo"); ASSERT_BACKTRACE_FRAME(result, "bar"); ASSERT_BACKTRACE_FRAME(result, "main"); } TEST_F(CrasherTest, seccomp_backtrace) { int intercept_result; unique_fd output_fd; static const auto dump_type = kDebuggerdNativeBacktrace; StartProcess( []() { std::thread a(foo); std::thread b(bar); std::this_thread::sleep_for(100ms); raise_debugger_signal(dump_type); _exit(0); }, &seccomp_fork); StartIntercept(&output_fd, dump_type); FinishCrasher(); AssertDeath(0); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_BACKTRACE_FRAME(result, "raise_debugger_signal"); ASSERT_BACKTRACE_FRAME(result, "foo"); ASSERT_BACKTRACE_FRAME(result, "bar"); } TEST_F(CrasherTest, seccomp_backtrace_from_thread) { int intercept_result; unique_fd output_fd; static const auto dump_type = kDebuggerdNativeBacktrace; StartProcess( []() { std::thread a(foo); std::thread b(bar); std::this_thread::sleep_for(100ms); std::thread raise_thread([] { raise_debugger_signal(dump_type); _exit(0); }); raise_thread.join(); }, &seccomp_fork); StartIntercept(&output_fd, dump_type); FinishCrasher(); AssertDeath(0); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_BACKTRACE_FRAME(result, "raise_debugger_signal"); ASSERT_BACKTRACE_FRAME(result, "foo"); ASSERT_BACKTRACE_FRAME(result, "bar"); ASSERT_BACKTRACE_FRAME(result, "main"); } TEST_F(CrasherTest, seccomp_crash_logcat) { StartProcess([]() { abort(); }, &seccomp_fork); FinishCrasher(); // Make sure we don't get SIGSYS when trying to dump a crash to logcat. AssertDeath(SIGABRT); } TEST_F(CrasherTest, competing_tracer) { int intercept_result; unique_fd output_fd; StartProcess([]() { raise(SIGABRT); }); StartIntercept(&output_fd); ASSERT_EQ(0, ptrace(PTRACE_SEIZE, crasher_pid, 0, 0)); FinishCrasher(); int status; ASSERT_EQ(crasher_pid, TEMP_FAILURE_RETRY(waitpid(crasher_pid, &status, 0))); ASSERT_TRUE(WIFSTOPPED(status)); ASSERT_EQ(SIGABRT, WSTOPSIG(status)); ASSERT_EQ(0, ptrace(PTRACE_CONT, crasher_pid, 0, SIGABRT)); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); std::string regex = R"(failed to attach to thread \d+, already traced by )"; regex += std::to_string(gettid()); regex += R"( \(.+debuggerd_test)"; ASSERT_MATCH(result, regex.c_str()); ASSERT_EQ(crasher_pid, TEMP_FAILURE_RETRY(waitpid(crasher_pid, &status, 0))); ASSERT_TRUE(WIFSTOPPED(status)); ASSERT_EQ(SIGABRT, WSTOPSIG(status)); ASSERT_EQ(0, ptrace(PTRACE_DETACH, crasher_pid, 0, SIGABRT)); AssertDeath(SIGABRT); } struct GwpAsanTestParameters { size_t alloc_size; bool free_before_access; int access_offset; std::string cause_needle; // Needle to be found in the "Cause: [GWP-ASan]" line. }; struct GwpAsanCrasherTest : CrasherTest, testing::WithParamInterface< std::tuple> {}; GwpAsanTestParameters gwp_asan_tests[] = { {/* alloc_size */ 7, /* free_before_access */ true, /* access_offset */ 0, "Use After Free, 0 bytes into a 7-byte allocation"}, {/* alloc_size */ 15, /* free_before_access */ true, /* access_offset */ 1, "Use After Free, 1 byte into a 15-byte allocation"}, {/* alloc_size */ 4096, /* free_before_access */ false, /* access_offset */ 4098, "Buffer Overflow, 2 bytes right of a 4096-byte allocation"}, {/* alloc_size */ 4096, /* free_before_access */ false, /* access_offset */ -1, "Buffer Underflow, 1 byte left of a 4096-byte allocation"}, }; INSTANTIATE_TEST_SUITE_P( GwpAsanTests, GwpAsanCrasherTest, testing::Combine(testing::ValuesIn(gwp_asan_tests), /* recoverable */ testing::Bool(), /* seccomp */ testing::Bool()), [](const testing::TestParamInfo< std::tuple>& info) { const GwpAsanTestParameters& params = std::get<0>(info.param); std::string name = params.free_before_access ? "UseAfterFree" : "Overflow"; name += testing::PrintToString(params.alloc_size); name += "Alloc"; if (params.access_offset < 0) { name += "Left"; name += testing::PrintToString(params.access_offset * -1); } else { name += "Right"; name += testing::PrintToString(params.access_offset); } name += "Bytes"; if (std::get<1>(info.param)) name += "Recoverable"; if (std::get<2>(info.param)) name += "Seccomp"; return name; }); TEST_P(GwpAsanCrasherTest, run_gwp_asan_test) { if (mte_supported()) { // Skip this test on MTE hardware, as MTE will reliably catch these errors // instead of GWP-ASan. GTEST_SKIP() << "Skipped on MTE."; } // Skip this test on HWASan, which will reliably catch test errors as well. SKIP_WITH_HWASAN; GwpAsanTestParameters params = std::get<0>(GetParam()); bool recoverable = std::get<1>(GetParam()); LogcatCollector logcat_collector; int intercept_result; unique_fd output_fd; StartProcess([&recoverable]() { const char* env[] = {"GWP_ASAN_SAMPLE_RATE=1", "GWP_ASAN_PROCESS_SAMPLING=1", "GWP_ASAN_MAX_ALLOCS=40000", nullptr, nullptr}; if (recoverable) { env[3] = "GWP_ASAN_RECOVERABLE=true"; } std::string test_name = ::testing::UnitTest::GetInstance()->current_test_info()->name(); test_name = std::regex_replace(test_name, std::regex("run_gwp_asan_test"), "DISABLED_run_gwp_asan_test"); std::string test_filter = "--gtest_filter=*"; test_filter += test_name; std::string this_binary = android::base::GetExecutablePath(); const char* args[] = {this_binary.c_str(), "--gtest_also_run_disabled_tests", test_filter.c_str(), nullptr}; // We check the crash report from a debuggerd handler and from logcat. The // echo from stdout/stderr of the subprocess trips up atest, because it // doesn't like that two tests started in a row without the first one // finishing (even though the second one is in a subprocess). close(STDOUT_FILENO); close(STDERR_FILENO); execve(this_binary.c_str(), const_cast(args), const_cast(env)); }); StartIntercept(&output_fd); FinishCrasher(); if (recoverable) { AssertDeath(0); } else { AssertDeath(SIGSEGV); } FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::vector log_sources(2); ConsumeFd(std::move(output_fd), &log_sources[0]); logcat_collector.Collect(&log_sources[1]); // seccomp forces the fallback handler, which doesn't print GWP-ASan debugging // information. Make sure the recovery still works, but the report won't be // hugely useful, it looks like a regular SEGV. bool seccomp = std::get<2>(GetParam()); if (!seccomp) { for (const auto& result : log_sources) { ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\), code 2 \(SEGV_ACCERR\))"); ASSERT_MATCH(result, R"(Cause: \[GWP-ASan\]: )" + params.cause_needle); if (params.free_before_access) { ASSERT_MATCH(result, R"(deallocated by thread .*\n.*#00 pc)"); } ASSERT_MATCH(result, R"((^|\s)allocated by thread .*\n.*#00 pc)"); } } } TEST_P(GwpAsanCrasherTest, DISABLED_run_gwp_asan_test) { GwpAsanTestParameters params = std::get<0>(GetParam()); bool seccomp = std::get<2>(GetParam()); if (seccomp) { ScopedMinijail jail{minijail_new()}; setup_jail(jail.get()); minijail_enter(jail.get()); } // Use 'volatile' to prevent a very clever compiler eliminating the store. char* volatile p = reinterpret_cast(malloc(params.alloc_size)); if (params.free_before_access) free(static_cast(const_cast(p))); p[params.access_offset] = 42; if (!params.free_before_access) free(static_cast(const_cast(p))); bool recoverable = std::get<1>(GetParam()); ASSERT_TRUE(recoverable); // Non-recoverable should have crashed. // As we're in recoverable mode, trigger another 2x use-after-frees (ensuring // we end with at least one in a different slot), make sure the process still // doesn't crash. p = reinterpret_cast(malloc(params.alloc_size)); char* volatile p2 = reinterpret_cast(malloc(params.alloc_size)); free(static_cast(const_cast(p))); free(static_cast(const_cast(p2))); *p = 42; *p2 = 42; // Under clang coverage (which is a default TEST_MAPPING presubmit target), the // recoverable+seccomp tests fail because the minijail prevents some atexit syscalls that clang // coverage does. Thus, skip the atexit handlers. _exit(0); } TEST_F(CrasherTest, fdsan_warning_abort_message) { int intercept_result; unique_fd output_fd; StartProcess([]() { android_fdsan_set_error_level(ANDROID_FDSAN_ERROR_LEVEL_WARN_ONCE); unique_fd fd(TEMP_FAILURE_RETRY(open("/dev/null", O_RDONLY | O_CLOEXEC))); if (fd == -1) { abort(); } close(fd.get()); _exit(0); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(0); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, "Abort message: 'attempted to close"); } TEST(crash_dump, zombie) { pid_t forkpid = fork(); pid_t rc; int status; if (forkpid == 0) { errno = 0; rc = waitpid(-1, &status, WNOHANG | __WALL | __WNOTHREAD); if (rc != -1 || errno != ECHILD) { errx(2, "first waitpid returned %d (%s), expected failure with ECHILD", rc, strerror(errno)); } raise(BIONIC_SIGNAL_DEBUGGER); errno = 0; rc = TEMP_FAILURE_RETRY(waitpid(-1, &status, __WALL | __WNOTHREAD)); if (rc != -1 || errno != ECHILD) { errx(2, "second waitpid returned %d (%s), expected failure with ECHILD", rc, strerror(errno)); } _exit(0); } else { rc = TEMP_FAILURE_RETRY(waitpid(forkpid, &status, 0)); ASSERT_EQ(forkpid, rc); ASSERT_TRUE(WIFEXITED(status)); ASSERT_EQ(0, WEXITSTATUS(status)); } } TEST(tombstoned, no_notify) { // Do this a few times. for (int i = 0; i < 3; ++i) { pid_t pid = 123'456'789 + i; unique_fd intercept_fd, output_fd; InterceptResponse response = {}; tombstoned_intercept(pid, &intercept_fd, &output_fd, &response, kDebuggerdTombstone); ASSERT_EQ(InterceptStatus::kRegistered, response.status) << "Error message: " << response.error_message; { unique_fd tombstoned_socket, input_fd; ASSERT_TRUE(tombstoned_connect(pid, &tombstoned_socket, &input_fd, kDebuggerdTombstone)); ASSERT_TRUE(android::base::WriteFully(input_fd.get(), &pid, sizeof(pid))); } pid_t read_pid; ASSERT_TRUE(android::base::ReadFully(output_fd.get(), &read_pid, sizeof(read_pid))); ASSERT_EQ(read_pid, pid); } } TEST(tombstoned, stress) { // Spawn threads to simultaneously do a bunch of failing dumps and a bunch of successful dumps. static constexpr int kDumpCount = 100; std::atomic start(false); std::vector threads; threads.emplace_back([&start]() { while (!start) { continue; } // Use a way out of range pid, to avoid stomping on an actual process. pid_t pid_base = 1'000'000; for (int dump = 0; dump < kDumpCount; ++dump) { pid_t pid = pid_base + dump; unique_fd intercept_fd, output_fd; InterceptResponse response = {}; tombstoned_intercept(pid, &intercept_fd, &output_fd, &response, kDebuggerdTombstone); ASSERT_EQ(InterceptStatus::kRegistered, response.status) << "Error messeage: " << response.error_message; // Pretend to crash, and then immediately close the socket. unique_fd sockfd(socket_local_client(kTombstonedCrashSocketName, ANDROID_SOCKET_NAMESPACE_RESERVED, SOCK_SEQPACKET)); if (sockfd == -1) { FAIL() << "failed to connect to tombstoned: " << strerror(errno); } TombstonedCrashPacket packet = {}; packet.packet_type = CrashPacketType::kDumpRequest; packet.packet.dump_request.pid = pid; if (TEMP_FAILURE_RETRY(write(sockfd, &packet, sizeof(packet))) != sizeof(packet)) { FAIL() << "failed to write to tombstoned: " << strerror(errno); } continue; } }); threads.emplace_back([&start]() { while (!start) { continue; } // Use a way out of range pid, to avoid stomping on an actual process. pid_t pid_base = 2'000'000; for (int dump = 0; dump < kDumpCount; ++dump) { pid_t pid = pid_base + dump; unique_fd intercept_fd, output_fd; InterceptResponse response = {}; tombstoned_intercept(pid, &intercept_fd, &output_fd, &response, kDebuggerdTombstone); ASSERT_EQ(InterceptStatus::kRegistered, response.status) << "Error message: " << response.error_message; { unique_fd tombstoned_socket, input_fd; ASSERT_TRUE(tombstoned_connect(pid, &tombstoned_socket, &input_fd, kDebuggerdTombstone)); ASSERT_TRUE(android::base::WriteFully(input_fd.get(), &pid, sizeof(pid))); tombstoned_notify_completion(tombstoned_socket.get()); } // TODO: Fix the race that requires this sleep. std::this_thread::sleep_for(50ms); pid_t read_pid; ASSERT_TRUE(android::base::ReadFully(output_fd.get(), &read_pid, sizeof(read_pid))); ASSERT_EQ(read_pid, pid); } }); start = true; for (std::thread& thread : threads) { thread.join(); } } TEST(tombstoned, intercept_java_trace_smoke) { // Using a "real" PID is a little dangerous here - if the test fails // or crashes, we might end up getting a bogus / unreliable stack // trace. const pid_t self = getpid(); unique_fd intercept_fd, output_fd; InterceptResponse response = {}; tombstoned_intercept(self, &intercept_fd, &output_fd, &response, kDebuggerdJavaBacktrace); ASSERT_EQ(InterceptStatus::kRegistered, response.status) << "Error message: " << response.error_message; // First connect to tombstoned requesting a native tombstone. This // should result in a "regular" FD and not the installed intercept. const char native[] = "native"; unique_fd tombstoned_socket, input_fd; ASSERT_TRUE(tombstoned_connect(self, &tombstoned_socket, &input_fd, kDebuggerdTombstone)); ASSERT_TRUE(android::base::WriteFully(input_fd.get(), native, sizeof(native))); tombstoned_notify_completion(tombstoned_socket.get()); // Then, connect to tombstoned asking for a java backtrace. This *should* // trigger the intercept. const char java[] = "java"; ASSERT_TRUE(tombstoned_connect(self, &tombstoned_socket, &input_fd, kDebuggerdJavaBacktrace)); ASSERT_TRUE(android::base::WriteFully(input_fd.get(), java, sizeof(java))); tombstoned_notify_completion(tombstoned_socket.get()); char outbuf[sizeof(java)]; ASSERT_TRUE(android::base::ReadFully(output_fd.get(), outbuf, sizeof(outbuf))); ASSERT_STREQ("java", outbuf); } TEST(tombstoned, intercept_multiple_dump_types) { const pid_t fake_pid = 1'234'567; unique_fd intercept_fd, output_fd; InterceptResponse response = {}; tombstoned_intercept(fake_pid, &intercept_fd, &output_fd, &response, kDebuggerdJavaBacktrace); ASSERT_EQ(InterceptStatus::kRegistered, response.status) << "Error message: " << response.error_message; unique_fd intercept_fd_2, output_fd_2; tombstoned_intercept(fake_pid, &intercept_fd_2, &output_fd_2, &response, kDebuggerdNativeBacktrace); ASSERT_EQ(InterceptStatus::kRegistered, response.status) << "Error message: " << response.error_message; } TEST(tombstoned, intercept_bad_pid) { const pid_t fake_pid = -1; unique_fd intercept_fd, output_fd; InterceptResponse response = {}; tombstoned_intercept(fake_pid, &intercept_fd, &output_fd, &response, kDebuggerdNativeBacktrace); ASSERT_EQ(InterceptStatus::kFailed, response.status) << "Error message: " << response.error_message; ASSERT_MATCH(response.error_message, "bad pid"); } TEST(tombstoned, intercept_bad_dump_types) { const pid_t fake_pid = 1'234'567; unique_fd intercept_fd, output_fd; InterceptResponse response = {}; tombstoned_intercept(fake_pid, &intercept_fd, &output_fd, &response, static_cast(20)); ASSERT_EQ(InterceptStatus::kFailed, response.status) << "Error message: " << response.error_message; ASSERT_MATCH(response.error_message, "bad dump type \\[unknown\\]"); tombstoned_intercept(fake_pid, &intercept_fd, &output_fd, &response, kDebuggerdAnyIntercept); ASSERT_EQ(InterceptStatus::kFailed, response.status) << "Error message: " << response.error_message; ASSERT_MATCH(response.error_message, "bad dump type kDebuggerdAnyIntercept"); tombstoned_intercept(fake_pid, &intercept_fd, &output_fd, &response, kDebuggerdTombstoneProto); ASSERT_EQ(InterceptStatus::kFailed, response.status) << "Error message: " << response.error_message; ASSERT_MATCH(response.error_message, "bad dump type kDebuggerdTombstoneProto"); } TEST(tombstoned, intercept_already_registered) { const pid_t fake_pid = 1'234'567; unique_fd intercept_fd1, output_fd1; InterceptResponse response = {}; tombstoned_intercept(fake_pid, &intercept_fd1, &output_fd1, &response, kDebuggerdTombstone); ASSERT_EQ(InterceptStatus::kRegistered, response.status) << "Error message: " << response.error_message; unique_fd intercept_fd2, output_fd2; tombstoned_intercept(fake_pid, &intercept_fd2, &output_fd2, &response, kDebuggerdTombstone); ASSERT_EQ(InterceptStatus::kFailedAlreadyRegistered, response.status) << "Error message: " << response.error_message; ASSERT_MATCH(response.error_message, "already registered, type kDebuggerdTombstone"); } TEST(tombstoned, intercept_tombstone_proto_matched_to_tombstone) { const pid_t fake_pid = 1'234'567; unique_fd intercept_fd, output_fd; InterceptResponse response = {}; tombstoned_intercept(fake_pid, &intercept_fd, &output_fd, &response, kDebuggerdTombstone); ASSERT_EQ(InterceptStatus::kRegistered, response.status) << "Error message: " << response.error_message; const char data[] = "tombstone_proto"; unique_fd tombstoned_socket, input_fd; ASSERT_TRUE( tombstoned_connect(fake_pid, &tombstoned_socket, &input_fd, kDebuggerdTombstoneProto)); ASSERT_TRUE(android::base::WriteFully(input_fd.get(), data, sizeof(data))); tombstoned_notify_completion(tombstoned_socket.get()); char outbuf[sizeof(data)]; ASSERT_TRUE(android::base::ReadFully(output_fd.get(), outbuf, sizeof(outbuf))); ASSERT_STREQ("tombstone_proto", outbuf); } TEST(tombstoned, intercept_any) { const pid_t fake_pid = 1'234'567; unique_fd intercept_fd, output_fd; InterceptResponse response = {}; tombstoned_intercept(fake_pid, &intercept_fd, &output_fd, &response, kDebuggerdNativeBacktrace); ASSERT_EQ(InterceptStatus::kRegistered, response.status) << "Error message: " << response.error_message; const char any[] = "any"; unique_fd tombstoned_socket, input_fd; ASSERT_TRUE(tombstoned_connect(fake_pid, &tombstoned_socket, &input_fd, kDebuggerdAnyIntercept)); ASSERT_TRUE(android::base::WriteFully(input_fd.get(), any, sizeof(any))); tombstoned_notify_completion(tombstoned_socket.get()); char outbuf[sizeof(any)]; ASSERT_TRUE(android::base::ReadFully(output_fd.get(), outbuf, sizeof(outbuf))); ASSERT_STREQ("any", outbuf); } TEST(tombstoned, intercept_any_failed_with_multiple_intercepts) { const pid_t fake_pid = 1'234'567; InterceptResponse response = {}; unique_fd intercept_fd1, output_fd1; tombstoned_intercept(fake_pid, &intercept_fd1, &output_fd1, &response, kDebuggerdNativeBacktrace); ASSERT_EQ(InterceptStatus::kRegistered, response.status) << "Error message: " << response.error_message; unique_fd intercept_fd2, output_fd2; tombstoned_intercept(fake_pid, &intercept_fd2, &output_fd2, &response, kDebuggerdJavaBacktrace); ASSERT_EQ(InterceptStatus::kRegistered, response.status) << "Error message: " << response.error_message; unique_fd tombstoned_socket, input_fd; ASSERT_FALSE(tombstoned_connect(fake_pid, &tombstoned_socket, &input_fd, kDebuggerdAnyIntercept)); } TEST(tombstoned, intercept_multiple_verify_intercept) { // Need to use our pid for java since that will verify the pid. const pid_t fake_pid = getpid(); InterceptResponse response = {}; unique_fd intercept_fd1, output_fd1; tombstoned_intercept(fake_pid, &intercept_fd1, &output_fd1, &response, kDebuggerdNativeBacktrace); ASSERT_EQ(InterceptStatus::kRegistered, response.status) << "Error message: " << response.error_message; unique_fd intercept_fd2, output_fd2; tombstoned_intercept(fake_pid, &intercept_fd2, &output_fd2, &response, kDebuggerdJavaBacktrace); ASSERT_EQ(InterceptStatus::kRegistered, response.status) << "Error message: " << response.error_message; unique_fd intercept_fd3, output_fd3; tombstoned_intercept(fake_pid, &intercept_fd3, &output_fd3, &response, kDebuggerdTombstone); ASSERT_EQ(InterceptStatus::kRegistered, response.status) << "Error message: " << response.error_message; const char native_data[] = "native"; unique_fd tombstoned_socket1, input_fd1; ASSERT_TRUE( tombstoned_connect(fake_pid, &tombstoned_socket1, &input_fd1, kDebuggerdNativeBacktrace)); ASSERT_TRUE(android::base::WriteFully(input_fd1.get(), native_data, sizeof(native_data))); tombstoned_notify_completion(tombstoned_socket1.get()); char native_outbuf[sizeof(native_data)]; ASSERT_TRUE(android::base::ReadFully(output_fd1.get(), native_outbuf, sizeof(native_outbuf))); ASSERT_STREQ("native", native_outbuf); const char java_data[] = "java"; unique_fd tombstoned_socket2, input_fd2; ASSERT_TRUE( tombstoned_connect(fake_pid, &tombstoned_socket2, &input_fd2, kDebuggerdJavaBacktrace)); ASSERT_TRUE(android::base::WriteFully(input_fd2.get(), java_data, sizeof(java_data))); tombstoned_notify_completion(tombstoned_socket2.get()); char java_outbuf[sizeof(java_data)]; ASSERT_TRUE(android::base::ReadFully(output_fd2.get(), java_outbuf, sizeof(java_outbuf))); ASSERT_STREQ("java", java_outbuf); const char tomb_data[] = "tombstone"; unique_fd tombstoned_socket3, input_fd3; ASSERT_TRUE(tombstoned_connect(fake_pid, &tombstoned_socket3, &input_fd3, kDebuggerdTombstone)); ASSERT_TRUE(android::base::WriteFully(input_fd3.get(), tomb_data, sizeof(tomb_data))); tombstoned_notify_completion(tombstoned_socket3.get()); char tomb_outbuf[sizeof(tomb_data)]; ASSERT_TRUE(android::base::ReadFully(output_fd3.get(), tomb_outbuf, sizeof(tomb_outbuf))); ASSERT_STREQ("tombstone", tomb_outbuf); } TEST(tombstoned, interceptless_backtrace) { // Generate 50 backtraces, and then check to see that we haven't created 50 new tombstones. auto get_tombstone_timestamps = []() -> std::map { std::map result; for (int i = 0; i < 99; ++i) { std::string path = android::base::StringPrintf("/data/tombstones/tombstone_%02d", i); struct stat st; if (stat(path.c_str(), &st) == 0) { result[i] = st.st_mtim.tv_sec; } } return result; }; auto before = get_tombstone_timestamps(); for (int i = 0; i < 50; ++i) { raise_debugger_signal(kDebuggerdNativeBacktrace); } auto after = get_tombstone_timestamps(); int diff = 0; for (int i = 0; i < 99; ++i) { if (after.count(i) == 0) { continue; } if (before.count(i) == 0) { ++diff; continue; } if (before[i] != after[i]) { ++diff; } } // We can't be sure that nothing's crash looping in the background. // This should be good enough, though... ASSERT_LT(diff, 10) << "too many new tombstones; is something crashing in the background?"; } static __attribute__((__noinline__)) void overflow_stack(void* p) { void* buf[1]; buf[0] = p; static volatile void* global = buf; if (global) { global = buf; overflow_stack(&buf); } } TEST_F(CrasherTest, stack_overflow) { int intercept_result; unique_fd output_fd; StartProcess([]() { overflow_stack(nullptr); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(Cause: stack pointer[^\n]*stack overflow.\n)"); } static std::string GetTestLibraryPath() { std::string test_lib(testing::internal::GetArgvs()[0]); auto const value = test_lib.find_last_of('/'); if (value == std::string::npos) { test_lib = "./"; } else { test_lib = test_lib.substr(0, value + 1) + "./"; } return test_lib + "libcrash_test.so"; } static void CreateEmbeddedLibrary(int out_fd) { std::string test_lib(GetTestLibraryPath()); android::base::unique_fd fd(open(test_lib.c_str(), O_RDONLY | O_CLOEXEC)); ASSERT_NE(fd.get(), -1); off_t file_size = lseek(fd, 0, SEEK_END); ASSERT_EQ(lseek(fd, 0, SEEK_SET), 0); std::vector contents(file_size); ASSERT_TRUE(android::base::ReadFully(fd, contents.data(), contents.size())); // Put the shared library data at a pagesize() offset. ASSERT_EQ(lseek(out_fd, 4 * getpagesize(), SEEK_CUR), 4 * getpagesize()); ASSERT_EQ(static_cast(write(out_fd, contents.data(), contents.size())), contents.size()); } TEST_F(CrasherTest, non_zero_offset_in_library) { int intercept_result; unique_fd output_fd; TemporaryFile tf; CreateEmbeddedLibrary(tf.fd); StartProcess([&tf]() { android_dlextinfo extinfo{}; extinfo.flags = ANDROID_DLEXT_USE_LIBRARY_FD | ANDROID_DLEXT_USE_LIBRARY_FD_OFFSET; extinfo.library_fd = tf.fd; extinfo.library_fd_offset = 4 * getpagesize(); void* handle = android_dlopen_ext(tf.path, RTLD_NOW, &extinfo); if (handle == nullptr) { _exit(1); } void (*crash_func)() = reinterpret_cast(dlsym(handle, "crash")); if (crash_func == nullptr) { _exit(1); } crash_func(); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); // Verify the crash includes an offset value in the backtrace. std::string match_str = android::base::StringPrintf("%s\\!libcrash_test.so \\(offset 0x%x\\)", tf.path, 4 * getpagesize()); ASSERT_MATCH(result, match_str); } static bool CopySharedLibrary(const char* tmp_dir, std::string* tmp_so_name) { std::string test_lib(GetTestLibraryPath()); *tmp_so_name = std::string(tmp_dir) + "/libcrash_test.so"; std::string cp_cmd = android::base::StringPrintf("cp %s %s", test_lib.c_str(), tmp_dir); // Copy the shared so to a tempory directory. return system(cp_cmd.c_str()) == 0; } TEST_F(CrasherTest, unreadable_elf) { int intercept_result; unique_fd output_fd; std::string tmp_so_name; StartProcess([&tmp_so_name]() { TemporaryDir td; if (!CopySharedLibrary(td.path, &tmp_so_name)) { _exit(1); } void* handle = dlopen(tmp_so_name.c_str(), RTLD_NOW); if (handle == nullptr) { _exit(1); } // Delete the original shared library so that we get the warning // about unreadable elf files. if (unlink(tmp_so_name.c_str()) == -1) { _exit(1); } void (*crash_func)() = reinterpret_cast(dlsym(handle, "crash")); if (crash_func == nullptr) { _exit(1); } crash_func(); }); StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(NOTE: Function names and BuildId information is missing )"); std::string match_str = "NOTE: " + tmp_so_name; ASSERT_MATCH(result, match_str); } void CheckForTombstone(const struct stat& text_st, std::optional& tombstone_file) { static std::regex tombstone_re("tombstone_\\d+"); std::unique_ptr dir_h(opendir("/data/tombstones"), closedir); ASSERT_TRUE(dir_h != nullptr); dirent* entry; while ((entry = readdir(dir_h.get())) != nullptr) { if (!std::regex_match(entry->d_name, tombstone_re)) { continue; } std::string path = android::base::StringPrintf("/data/tombstones/%s", entry->d_name); struct stat st; if (TEMP_FAILURE_RETRY(stat(path.c_str(), &st)) != 0) { continue; } if (st.st_dev == text_st.st_dev && st.st_ino == text_st.st_ino) { tombstone_file = path; break; } } } TEST(tombstoned, proto) { const pid_t self = getpid(); unique_fd tombstoned_socket, text_fd, proto_fd; ASSERT_TRUE( tombstoned_connect(self, &tombstoned_socket, &text_fd, &proto_fd, kDebuggerdTombstoneProto)); tombstoned_notify_completion(tombstoned_socket.get()); ASSERT_NE(-1, text_fd.get()); ASSERT_NE(-1, proto_fd.get()); struct stat text_st; ASSERT_EQ(0, fstat(text_fd.get(), &text_st)); std::optional tombstone_file; // Allow up to 5 seconds for the tombstone to be written to the system. const auto max_wait_time = std::chrono::seconds(5) * android::base::HwTimeoutMultiplier(); const auto start = std::chrono::high_resolution_clock::now(); while (true) { std::this_thread::sleep_for(100ms); CheckForTombstone(text_st, tombstone_file); if (tombstone_file) { break; } if (std::chrono::high_resolution_clock::now() - start > max_wait_time) { break; } } ASSERT_TRUE(tombstone_file) << "Timed out trying to find tombstone file."; std::string proto_path = tombstone_file.value() + ".pb"; struct stat proto_fd_st; struct stat proto_file_st; ASSERT_EQ(0, fstat(proto_fd.get(), &proto_fd_st)); ASSERT_EQ(0, stat(proto_path.c_str(), &proto_file_st)); ASSERT_EQ(proto_fd_st.st_dev, proto_file_st.st_dev); ASSERT_EQ(proto_fd_st.st_ino, proto_file_st.st_ino); } TEST(tombstoned, proto_intercept) { const pid_t self = getpid(); unique_fd intercept_fd, output_fd; InterceptResponse response = {}; tombstoned_intercept(self, &intercept_fd, &output_fd, &response, kDebuggerdTombstone); ASSERT_EQ(InterceptStatus::kRegistered, response.status) << "Error message: " << response.error_message; unique_fd tombstoned_socket, text_fd, proto_fd; ASSERT_TRUE( tombstoned_connect(self, &tombstoned_socket, &text_fd, &proto_fd, kDebuggerdTombstoneProto)); ASSERT_TRUE(android::base::WriteStringToFd("foo", text_fd.get())); tombstoned_notify_completion(tombstoned_socket.get()); text_fd.reset(); std::string output; ASSERT_TRUE(android::base::ReadFdToString(output_fd, &output)); ASSERT_EQ("foo", output); } // Verify that when an intercept is present for the main thread, and the signal // is received on a different thread, the intercept still works. TEST_F(CrasherTest, intercept_for_main_thread_signal_on_side_thread) { StartProcess([]() { std::thread thread([]() { // Raise the signal on the side thread. raise_debugger_signal(kDebuggerdNativeBacktrace); }); thread.join(); _exit(0); }); unique_fd output_fd; StartIntercept(&output_fd, kDebuggerdNativeBacktrace); FinishCrasher(); AssertDeath(0); int intercept_result; FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_BACKTRACE_FRAME(result, "raise_debugger_signal"); } static std::string format_pointer(uintptr_t ptr) { #if defined(__LP64__) return android::base::StringPrintf("%08x'%08x", static_cast(ptr >> 32), static_cast(ptr & 0xffffffff)); #else return android::base::StringPrintf("%08x", static_cast(ptr & 0xffffffff)); #endif } static std::string format_pointer(void* ptr) { return format_pointer(reinterpret_cast(ptr)); } static std::string format_full_pointer(uintptr_t ptr) { #if defined(__LP64__) return android::base::StringPrintf("%016" PRIx64, ptr); #else return android::base::StringPrintf("%08x", ptr); #endif } static std::string format_full_pointer(void* ptr) { return format_full_pointer(reinterpret_cast(ptr)); } __attribute__((__noinline__)) int crash_call(uintptr_t ptr) { int* crash_ptr = reinterpret_cast(ptr); *crash_ptr = 1; return *crash_ptr; } // Verify that a fault address before the first map is properly handled. TEST_F(CrasherTest, fault_address_before_first_map) { StartProcess([]() { ASSERT_EQ(0, crash_call(0x1024)); _exit(0); }); unique_fd output_fd; StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); int intercept_result; FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\), code 1 \(SEGV_MAPERR\), fault addr 0x0+1024)"); ASSERT_MATCH(result, R"(\nmemory map \(.*\):\n)"); std::string match_str = android::base::StringPrintf( R"(memory map .*:\n--->Fault address falls at %s before any mapped regions\n )", format_pointer(0x1024).c_str()); ASSERT_MATCH(result, match_str); } // Verify that a fault address after the last map is properly handled. TEST_F(CrasherTest, fault_address_after_last_map) { // This makes assumptions about the memory layout that are not true in HWASan // processes. SKIP_WITH_HWASAN; uintptr_t crash_uptr = untag_address(UINTPTR_MAX - 15); StartProcess([crash_uptr]() { ASSERT_EQ(0, crash_call(crash_uptr)); _exit(0); }); unique_fd output_fd; StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); int intercept_result; FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); std::string match_str = R"(signal 11 \(SIGSEGV\), code 1 \(SEGV_MAPERR\), fault addr 0x)"; match_str += format_full_pointer(crash_uptr); ASSERT_MATCH(result, match_str); ASSERT_MATCH(result, R"(\nmemory map \(.*\): \(fault address prefixed with --->\)\n)"); // Verifies that the fault address error message is at the end of the // maps section. To do this, the check below looks for the start of the // open files section or the start of the log file section. It's possible // for either of these sections to be present after the maps section right // now. // If the sections move around, this check might need to be modified. match_str = android::base::StringPrintf( R"(\n--->Fault address falls at %s after any mapped regions\n(---------|\nopen files:))", format_pointer(crash_uptr).c_str()); ASSERT_MATCH(result, match_str); } // Verify that a fault address between maps is properly handled. TEST_F(CrasherTest, fault_address_between_maps) { // Create a map before the fork so it will be present in the child. void* start_ptr = mmap(nullptr, 3 * getpagesize(), PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); ASSERT_NE(MAP_FAILED, start_ptr); // Unmap the page in the middle. void* middle_ptr = reinterpret_cast(reinterpret_cast(start_ptr) + getpagesize()); ASSERT_EQ(0, munmap(middle_ptr, getpagesize())); StartProcess([middle_ptr]() { ASSERT_EQ(0, crash_call(reinterpret_cast(middle_ptr))); _exit(0); }); // Unmap the two maps. ASSERT_EQ(0, munmap(start_ptr, getpagesize())); void* end_ptr = reinterpret_cast(reinterpret_cast(start_ptr) + 2 * getpagesize()); ASSERT_EQ(0, munmap(end_ptr, getpagesize())); unique_fd output_fd; StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); int intercept_result; FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); std::string match_str = R"(signal 11 \(SIGSEGV\), code 1 \(SEGV_MAPERR\), fault addr 0x)"; match_str += format_full_pointer(reinterpret_cast(middle_ptr)); ASSERT_MATCH(result, match_str); ASSERT_MATCH(result, R"(\nmemory map \(.*\): \(fault address prefixed with --->\)\n)"); match_str = android::base::StringPrintf( R"( %s.*\n--->Fault address falls at %s between mapped regions\n %s)", format_pointer(start_ptr).c_str(), format_pointer(middle_ptr).c_str(), format_pointer(end_ptr).c_str()); ASSERT_MATCH(result, match_str); } // Verify that a fault address happens in the correct map. TEST_F(CrasherTest, fault_address_in_map) { // Create a map before the fork so it will be present in the child. void* ptr = mmap(nullptr, getpagesize(), 0, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); ASSERT_NE(MAP_FAILED, ptr); StartProcess([ptr]() { ASSERT_EQ(0, crash_call(reinterpret_cast(ptr))); _exit(0); }); ASSERT_EQ(0, munmap(ptr, getpagesize())); unique_fd output_fd; StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); int intercept_result; FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); std::string match_str = R"(signal 11 \(SIGSEGV\), code 2 \(SEGV_ACCERR\), fault addr 0x)"; match_str += format_full_pointer(reinterpret_cast(ptr)); ASSERT_MATCH(result, match_str); ASSERT_MATCH(result, R"(\nmemory map \(.*\): \(fault address prefixed with --->\)\n)"); match_str = android::base::StringPrintf(R"(\n--->%s.*\n)", format_pointer(ptr).c_str()); ASSERT_MATCH(result, match_str); } static constexpr uint32_t kDexData[] = { 0x0a786564, 0x00383330, 0xc98b3ab8, 0xf3749d94, 0xaecca4d8, 0xffc7b09a, 0xdca9ca7f, 0x5be5deab, 0x00000220, 0x00000070, 0x12345678, 0x00000000, 0x00000000, 0x0000018c, 0x00000008, 0x00000070, 0x00000004, 0x00000090, 0x00000002, 0x000000a0, 0x00000000, 0x00000000, 0x00000003, 0x000000b8, 0x00000001, 0x000000d0, 0x00000130, 0x000000f0, 0x00000122, 0x0000012a, 0x00000132, 0x00000146, 0x00000151, 0x00000154, 0x00000158, 0x0000016d, 0x00000001, 0x00000002, 0x00000004, 0x00000006, 0x00000004, 0x00000002, 0x00000000, 0x00000005, 0x00000002, 0x0000011c, 0x00000000, 0x00000000, 0x00010000, 0x00000007, 0x00000001, 0x00000000, 0x00000000, 0x00000001, 0x00000001, 0x00000000, 0x00000003, 0x00000000, 0x0000017e, 0x00000000, 0x00010001, 0x00000001, 0x00000173, 0x00000004, 0x00021070, 0x000e0000, 0x00010001, 0x00000000, 0x00000178, 0x00000001, 0x0000000e, 0x00000001, 0x3c060003, 0x74696e69, 0x4c06003e, 0x6e69614d, 0x4c12003b, 0x6176616a, 0x6e616c2f, 0x624f2f67, 0x7463656a, 0x4d09003b, 0x2e6e6961, 0x6176616a, 0x00560100, 0x004c5602, 0x6a4c5b13, 0x2f617661, 0x676e616c, 0x7274532f, 0x3b676e69, 0x616d0400, 0x01006e69, 0x000e0700, 0x07000103, 0x0000000e, 0x81000002, 0x01f00480, 0x02880901, 0x0000000c, 0x00000000, 0x00000001, 0x00000000, 0x00000001, 0x00000008, 0x00000070, 0x00000002, 0x00000004, 0x00000090, 0x00000003, 0x00000002, 0x000000a0, 0x00000005, 0x00000003, 0x000000b8, 0x00000006, 0x00000001, 0x000000d0, 0x00002001, 0x00000002, 0x000000f0, 0x00001001, 0x00000001, 0x0000011c, 0x00002002, 0x00000008, 0x00000122, 0x00002003, 0x00000002, 0x00000173, 0x00002000, 0x00000001, 0x0000017e, 0x00001000, 0x00000001, 0x0000018c, }; TEST_F(CrasherTest, verify_dex_pc_with_function_name) { StartProcess([]() { TemporaryDir td; std::string tmp_so_name; if (!CopySharedLibrary(td.path, &tmp_so_name)) { _exit(1); } // In order to cause libunwindstack to look for this __dex_debug_descriptor // move the library to which has a basename of libart.so. std::string art_so_name = android::base::Dirname(tmp_so_name) + "/libart.so"; ASSERT_EQ(0, rename(tmp_so_name.c_str(), art_so_name.c_str())); void* handle = dlopen(art_so_name.c_str(), RTLD_NOW | RTLD_LOCAL); if (handle == nullptr) { _exit(1); } void* ptr = mmap(nullptr, sizeof(kDexData), PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); ASSERT_TRUE(ptr != MAP_FAILED); memcpy(ptr, kDexData, sizeof(kDexData)); prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, ptr, sizeof(kDexData), "dex"); JITCodeEntry dex_entry = {.symfile_addr = reinterpret_cast(ptr), .symfile_size = sizeof(kDexData)}; JITDescriptor* dex_debug = reinterpret_cast(dlsym(handle, "__dex_debug_descriptor")); ASSERT_TRUE(dex_debug != nullptr); dex_debug->version = 1; dex_debug->action_flag = 0; dex_debug->relevant_entry = 0; dex_debug->first_entry = reinterpret_cast(&dex_entry); // This sets the magic dex pc value for register 0, using the value // of register 1 + 0x102. asm(".cfi_escape " "0x16 /* DW_CFA_val_expression */, 0, 0x0a /* size */," "0x0c /* DW_OP_const4u */, 0x44, 0x45, 0x58, 0x31, /* magic = 'DEX1' */" "0x13 /* DW_OP_drop */," "0x92 /* DW_OP_bregx */, 1, 0x82, 0x02 /* 2-byte SLEB128 */"); // For each different architecture, set register one to the dex ptr mmap // created above. Then do a nullptr dereference to force a crash. #if defined(__arm__) asm volatile( "mov r1, %[base]\n" "mov r2, #0\n" "str r2, [r2]\n" : [base] "+r"(ptr) : : "r1", "r2", "memory"); #elif defined(__aarch64__) asm volatile( "mov x1, %[base]\n" "mov x2, #0\n" "str xzr, [x2]\n" : [base] "+r"(ptr) : : "x1", "x2", "memory"); #elif defined(__riscv) // TODO: x1 is ra (the link register) on riscv64, so this might have // unintended consequences, but we'll need to change the .cfi_escape if so. asm volatile( "mv x1, %[base]\n" "sw zero, 0(zero)\n" : [base] "+r"(ptr) : : "x1", "memory"); #elif defined(__i386__) asm volatile( "mov %[base], %%ecx\n" "movl $0, 0\n" : [base] "+r"(ptr) : : "ecx", "memory"); #elif defined(__x86_64__) asm volatile( "mov %[base], %%rdx\n" "movq $0, 0\n" : [base] "+r"(ptr) : : "rdx", "memory"); #else #error "Unsupported architecture" #endif _exit(0); }); unique_fd output_fd; StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGSEGV); int intercept_result; FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); // Verify the process crashed properly. ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\), code 1 \(SEGV_MAPERR\), fault addr 0x0*)"); // Now verify that the dex_pc frame includes a proper function name. ASSERT_MATCH(result, R"( \[anon:dex\] \(Main\.\\+2)"); } static std::string format_map_pointer(uintptr_t ptr) { #if defined(__LP64__) return android::base::StringPrintf("%08x'%08x", static_cast(ptr >> 32), static_cast(ptr & 0xffffffff)); #else return android::base::StringPrintf("%08x", ptr); #endif } // Verify that map data is properly formatted. TEST_F(CrasherTest, verify_map_format) { // Create multiple maps to make sure that the map data is formatted properly. void* none_map = mmap(nullptr, getpagesize(), 0, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); ASSERT_NE(MAP_FAILED, none_map); void* r_map = mmap(nullptr, getpagesize(), PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); ASSERT_NE(MAP_FAILED, r_map); void* w_map = mmap(nullptr, getpagesize(), PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); ASSERT_NE(MAP_FAILED, w_map); void* x_map = mmap(nullptr, getpagesize(), PROT_EXEC, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); ASSERT_NE(MAP_FAILED, x_map); TemporaryFile tf; ASSERT_EQ(0x2000, lseek(tf.fd, 0x2000, SEEK_SET)); char c = 'f'; ASSERT_EQ(1, write(tf.fd, &c, 1)); ASSERT_EQ(0x5000, lseek(tf.fd, 0x5000, SEEK_SET)); ASSERT_EQ(1, write(tf.fd, &c, 1)); ASSERT_EQ(0, lseek(tf.fd, 0, SEEK_SET)); void* file_map = mmap(nullptr, 0x3001, PROT_READ, MAP_PRIVATE, tf.fd, 0x2000); ASSERT_NE(MAP_FAILED, file_map); StartProcess([]() { abort(); }); ASSERT_EQ(0, munmap(none_map, getpagesize())); ASSERT_EQ(0, munmap(r_map, getpagesize())); ASSERT_EQ(0, munmap(w_map, getpagesize())); ASSERT_EQ(0, munmap(x_map, getpagesize())); ASSERT_EQ(0, munmap(file_map, 0x3001)); unique_fd output_fd; StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); int intercept_result; FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); std::string match_str; // Verify none. match_str = android::base::StringPrintf( " %s-%s --- 0 1000\\n", format_map_pointer(reinterpret_cast(none_map)).c_str(), format_map_pointer(reinterpret_cast(none_map) + getpagesize() - 1).c_str()); ASSERT_MATCH(result, match_str); // Verify read-only. match_str = android::base::StringPrintf( " %s-%s r-- 0 1000\\n", format_map_pointer(reinterpret_cast(r_map)).c_str(), format_map_pointer(reinterpret_cast(r_map) + getpagesize() - 1).c_str()); ASSERT_MATCH(result, match_str); // Verify write-only. match_str = android::base::StringPrintf( " %s-%s -w- 0 1000\\n", format_map_pointer(reinterpret_cast(w_map)).c_str(), format_map_pointer(reinterpret_cast(w_map) + getpagesize() - 1).c_str()); ASSERT_MATCH(result, match_str); // Verify exec-only. match_str = android::base::StringPrintf( " %s-%s --x 0 1000\\n", format_map_pointer(reinterpret_cast(x_map)).c_str(), format_map_pointer(reinterpret_cast(x_map) + getpagesize() - 1).c_str()); ASSERT_MATCH(result, match_str); // Verify file map with non-zero offset and a name. match_str = android::base::StringPrintf( " %s-%s r-- 2000 4000 %s\\n", format_map_pointer(reinterpret_cast(file_map)).c_str(), format_map_pointer(reinterpret_cast(file_map) + 0x3fff).c_str(), tf.path); ASSERT_MATCH(result, match_str); } // Verify that the tombstone map data is correct. TEST_F(CrasherTest, verify_header) { StartProcess([]() { abort(); }); unique_fd output_fd; StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); int intercept_result; FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); std::string match_str = android::base::StringPrintf( "Build fingerprint: '%s'\\nRevision: '%s'\\n", android::base::GetProperty("ro.build.fingerprint", "unknown").c_str(), android::base::GetProperty("ro.revision", "unknown").c_str()); match_str += android::base::StringPrintf("ABI: '%s'\n", ABI_STRING); ASSERT_MATCH(result, match_str); } // Verify that the thread header is formatted properly. TEST_F(CrasherTest, verify_thread_header) { void* shared_map = mmap(nullptr, sizeof(pid_t), PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); ASSERT_NE(MAP_FAILED, shared_map); memset(shared_map, 0, sizeof(pid_t)); StartProcess([&shared_map]() { std::atomic_bool tid_written; std::thread thread([&tid_written, &shared_map]() { pid_t tid = gettid(); memcpy(shared_map, &tid, sizeof(pid_t)); tid_written = true; volatile bool done = false; while (!done) ; }); thread.detach(); while (!tid_written.load(std::memory_order_acquire)) ; abort(); }); pid_t primary_pid = crasher_pid; unique_fd output_fd; StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); int intercept_result; FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; // Read the tid data out. pid_t tid; memcpy(&tid, shared_map, sizeof(pid_t)); ASSERT_NE(0, tid); ASSERT_EQ(0, munmap(shared_map, sizeof(pid_t))); std::string result; ConsumeFd(std::move(output_fd), &result); // Verify that there are two headers, one where the tid is "primary_pid" // and the other where the tid is "tid". std::string match_str = android::base::StringPrintf("pid: %d, tid: %d, name: .* >>> .* <<<\\n", primary_pid, primary_pid); ASSERT_MATCH(result, match_str); match_str = android::base::StringPrintf("pid: %d, tid: %d, name: .* >>> .* <<<\\n", primary_pid, tid); ASSERT_MATCH(result, match_str); } // Verify that there is a BuildID present in the map section and set properly. TEST_F(CrasherTest, verify_build_id) { StartProcess([]() { abort(); }); unique_fd output_fd; StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); int intercept_result; FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); // Find every /system or /apex lib and verify the BuildID is displayed // properly. bool found_valid_elf = false; std::smatch match; std::regex build_id_regex(R"( ((/system/|/apex/)\S+) \(BuildId: ([^\)]+)\))"); for (std::string prev_file; std::regex_search(result, match, build_id_regex); result = match.suffix()) { if (prev_file == match[1]) { // Already checked this file. continue; } prev_file = match[1]; auto elf_memory = unwindstack::Memory::CreateFileMemory(prev_file, 0); unwindstack::Elf elf(elf_memory); if (!elf.Init() || !elf.valid()) { // Skipping invalid elf files. continue; } ASSERT_EQ(match[3], elf.GetPrintableBuildID()); found_valid_elf = true; } ASSERT_TRUE(found_valid_elf) << "Did not find any elf files with valid BuildIDs to check."; } const char kLogMessage[] = "Should not see this log message."; // Verify that the logd process does not read the log. TEST_F(CrasherTest, logd_skips_reading_logs) { StartProcess([]() { pthread_setname_np(pthread_self(), "logd"); LOG(INFO) << kLogMessage; abort(); }); unique_fd output_fd; StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); int intercept_result; FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); // logd should not contain our log message. ASSERT_NOT_MATCH(result, kLogMessage); } // Verify that the logd process does not read the log when the non-main // thread crashes. TEST_F(CrasherTest, logd_skips_reading_logs_not_main_thread) { StartProcess([]() { pthread_setname_np(pthread_self(), "logd"); LOG(INFO) << kLogMessage; std::thread thread([]() { pthread_setname_np(pthread_self(), "not_logd_thread"); // Raise the signal on the side thread. raise_debugger_signal(kDebuggerdTombstone); }); thread.join(); _exit(0); }); unique_fd output_fd; StartIntercept(&output_fd, kDebuggerdTombstone); FinishCrasher(); AssertDeath(0); int intercept_result; FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_BACKTRACE_FRAME(result, "raise_debugger_signal"); ASSERT_NOT_MATCH(result, kLogMessage); } // Disable this test since there is a high liklihood that this would // be flaky since it requires 500 messages being in the log. TEST_F(CrasherTest, DISABLED_max_log_messages) { StartProcess([]() { for (size_t i = 0; i < 600; i++) { LOG(INFO) << "Message number " << i; } abort(); }); unique_fd output_fd; StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); int intercept_result; FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_NOT_MATCH(result, "Message number 99"); ASSERT_MATCH(result, "Message number 100"); ASSERT_MATCH(result, "Message number 599"); } TEST_F(CrasherTest, log_with_newline) { StartProcess([]() { LOG(INFO) << "This line has a newline.\nThis is on the next line."; abort(); }); unique_fd output_fd; StartIntercept(&output_fd); FinishCrasher(); AssertDeath(SIGABRT); int intercept_result; FinishIntercept(&intercept_result); ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; std::string result; ConsumeFd(std::move(output_fd), &result); ASSERT_MATCH(result, ":\\s*This line has a newline."); ASSERT_MATCH(result, ":\\s*This is on the next line."); }