/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define TRACE_TAG USB #include "sysdeps.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "adb.h" #include "daemon/usb.h" #include "transport.h" using namespace std::chrono_literals; #define MAX_PACKET_SIZE_FS 64 #define MAX_PACKET_SIZE_HS 512 #define MAX_PACKET_SIZE_SS 1024 // Kernels before 3.3 have a 16KiB transfer limit That limit was replaced // with a 16MiB global limit in 3.3, but each URB submitted required a // contiguous kernel allocation, so you would get ENOMEM if you tried to // send something larger than the biggest available contiguous kernel // memory region. Large contiguous allocations could be unreliable // on a device kernel that has been running for a while fragmenting its // memory so we start with a larger allocation, and shrink the amount if // necessary. #define USB_FFS_BULK_SIZE 16384 #define cpu_to_le16(x) htole16(x) #define cpu_to_le32(x) htole32(x) #define FUNCTIONFS_ENDPOINT_ALLOC _IOR('g', 231, __u32) static constexpr size_t ENDPOINT_ALLOC_RETRIES = 2; static int dummy_fd = -1; struct func_desc { struct usb_interface_descriptor intf; struct usb_endpoint_descriptor_no_audio source; struct usb_endpoint_descriptor_no_audio sink; } __attribute__((packed)); struct ss_func_desc { struct usb_interface_descriptor intf; struct usb_endpoint_descriptor_no_audio source; struct usb_ss_ep_comp_descriptor source_comp; struct usb_endpoint_descriptor_no_audio sink; struct usb_ss_ep_comp_descriptor sink_comp; } __attribute__((packed)); struct desc_v1 { struct usb_functionfs_descs_head_v1 { __le32 magic; __le32 length; __le32 fs_count; __le32 hs_count; } __attribute__((packed)) header; struct func_desc fs_descs, hs_descs; } __attribute__((packed)); struct desc_v2 { struct usb_functionfs_descs_head_v2 header; // The rest of the structure depends on the flags in the header. __le32 fs_count; __le32 hs_count; __le32 ss_count; __le32 os_count; struct func_desc fs_descs, hs_descs; struct ss_func_desc ss_descs; struct usb_os_desc_header os_header; struct usb_ext_compat_desc os_desc; } __attribute__((packed)); static struct func_desc fs_descriptors = { .intf = { .bLength = sizeof(fs_descriptors.intf), .bDescriptorType = USB_DT_INTERFACE, .bInterfaceNumber = 0, .bNumEndpoints = 2, .bInterfaceClass = ADB_CLASS, .bInterfaceSubClass = ADB_SUBCLASS, .bInterfaceProtocol = ADB_PROTOCOL, .iInterface = 1, /* first string from the provided table */ }, .source = { .bLength = sizeof(fs_descriptors.source), .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 1 | USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = MAX_PACKET_SIZE_FS, }, .sink = { .bLength = sizeof(fs_descriptors.sink), .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 2 | USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = MAX_PACKET_SIZE_FS, }, }; static struct func_desc hs_descriptors = { .intf = { .bLength = sizeof(hs_descriptors.intf), .bDescriptorType = USB_DT_INTERFACE, .bInterfaceNumber = 0, .bNumEndpoints = 2, .bInterfaceClass = ADB_CLASS, .bInterfaceSubClass = ADB_SUBCLASS, .bInterfaceProtocol = ADB_PROTOCOL, .iInterface = 1, /* first string from the provided table */ }, .source = { .bLength = sizeof(hs_descriptors.source), .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 1 | USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = MAX_PACKET_SIZE_HS, }, .sink = { .bLength = sizeof(hs_descriptors.sink), .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 2 | USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = MAX_PACKET_SIZE_HS, }, }; static struct ss_func_desc ss_descriptors = { .intf = { .bLength = sizeof(ss_descriptors.intf), .bDescriptorType = USB_DT_INTERFACE, .bInterfaceNumber = 0, .bNumEndpoints = 2, .bInterfaceClass = ADB_CLASS, .bInterfaceSubClass = ADB_SUBCLASS, .bInterfaceProtocol = ADB_PROTOCOL, .iInterface = 1, /* first string from the provided table */ }, .source = { .bLength = sizeof(ss_descriptors.source), .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 1 | USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = MAX_PACKET_SIZE_SS, }, .source_comp = { .bLength = sizeof(ss_descriptors.source_comp), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .bMaxBurst = 4, }, .sink = { .bLength = sizeof(ss_descriptors.sink), .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 2 | USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = MAX_PACKET_SIZE_SS, }, .sink_comp = { .bLength = sizeof(ss_descriptors.sink_comp), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .bMaxBurst = 4, }, }; struct usb_ext_compat_desc os_desc_compat = { .bFirstInterfaceNumber = 0, .Reserved1 = cpu_to_le32(1), .CompatibleID = {0}, .SubCompatibleID = {0}, .Reserved2 = {0}, }; static struct usb_os_desc_header os_desc_header = { .interface = cpu_to_le32(1), .dwLength = cpu_to_le32(sizeof(os_desc_header) + sizeof(os_desc_compat)), .bcdVersion = cpu_to_le32(1), .wIndex = cpu_to_le32(4), .bCount = cpu_to_le32(1), .Reserved = cpu_to_le32(0), }; #define STR_INTERFACE_ "ADB Interface" static const struct { struct usb_functionfs_strings_head header; struct { __le16 code; const char str1[sizeof(STR_INTERFACE_)]; } __attribute__((packed)) lang0; } __attribute__((packed)) strings = { .header = { .magic = cpu_to_le32(FUNCTIONFS_STRINGS_MAGIC), .length = cpu_to_le32(sizeof(strings)), .str_count = cpu_to_le32(1), .lang_count = cpu_to_le32(1), }, .lang0 = { cpu_to_le16(0x0409), /* en-us */ STR_INTERFACE_, }, }; bool init_functionfs(struct usb_handle* h) { ssize_t ret; struct desc_v1 v1_descriptor; struct desc_v2 v2_descriptor; size_t retries = 0; v2_descriptor.header.magic = cpu_to_le32(FUNCTIONFS_DESCRIPTORS_MAGIC_V2); v2_descriptor.header.length = cpu_to_le32(sizeof(v2_descriptor)); v2_descriptor.header.flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC | FUNCTIONFS_HAS_SS_DESC | FUNCTIONFS_HAS_MS_OS_DESC; v2_descriptor.fs_count = 3; v2_descriptor.hs_count = 3; v2_descriptor.ss_count = 5; v2_descriptor.os_count = 1; v2_descriptor.fs_descs = fs_descriptors; v2_descriptor.hs_descs = hs_descriptors; v2_descriptor.ss_descs = ss_descriptors; v2_descriptor.os_header = os_desc_header; v2_descriptor.os_desc = os_desc_compat; if (h->control < 0) { // might have already done this before D("OPENING %s", USB_FFS_ADB_EP0); h->control = adb_open(USB_FFS_ADB_EP0, O_RDWR); if (h->control < 0) { D("[ %s: cannot open control endpoint: errno=%d]", USB_FFS_ADB_EP0, errno); goto err; } ret = adb_write(h->control, &v2_descriptor, sizeof(v2_descriptor)); if (ret < 0) { v1_descriptor.header.magic = cpu_to_le32(FUNCTIONFS_DESCRIPTORS_MAGIC); v1_descriptor.header.length = cpu_to_le32(sizeof(v1_descriptor)); v1_descriptor.header.fs_count = 3; v1_descriptor.header.hs_count = 3; v1_descriptor.fs_descs = fs_descriptors; v1_descriptor.hs_descs = hs_descriptors; D("[ %s: Switching to V1_descriptor format errno=%d ]", USB_FFS_ADB_EP0, errno); ret = adb_write(h->control, &v1_descriptor, sizeof(v1_descriptor)); if (ret < 0) { D("[ %s: write descriptors failed: errno=%d ]", USB_FFS_ADB_EP0, errno); goto err; } } ret = adb_write(h->control, &strings, sizeof(strings)); if (ret < 0) { D("[ %s: writing strings failed: errno=%d]", USB_FFS_ADB_EP0, errno); goto err; } //Signal only when writing the descriptors to ffs android::base::SetProperty("sys.usb.ffs.ready", "1"); } h->bulk_out = adb_open(USB_FFS_ADB_OUT, O_RDWR); if (h->bulk_out < 0) { D("[ %s: cannot open bulk-out ep: errno=%d ]", USB_FFS_ADB_OUT, errno); goto err; } h->bulk_in = adb_open(USB_FFS_ADB_IN, O_RDWR); if (h->bulk_in < 0) { D("[ %s: cannot open bulk-in ep: errno=%d ]", USB_FFS_ADB_IN, errno); goto err; } h->max_rw = MAX_PAYLOAD; while (h->max_rw >= USB_FFS_BULK_SIZE && retries < ENDPOINT_ALLOC_RETRIES) { int ret_in = ioctl(h->bulk_in, FUNCTIONFS_ENDPOINT_ALLOC, static_cast<__u32>(h->max_rw)); int errno_in = errno; int ret_out = ioctl(h->bulk_out, FUNCTIONFS_ENDPOINT_ALLOC, static_cast<__u32>(h->max_rw)); int errno_out = errno; if (ret_in || ret_out) { if (errno_in == ENODEV || errno_out == ENODEV) { std::this_thread::sleep_for(100ms); retries += 1; continue; } h->max_rw /= 2; } else { return true; } } D("[ adb: cannot call endpoint alloc: errno=%d ]", errno); // Kernel pre-allocation could have failed for recoverable reasons. // Continue running with a safe max rw size. h->max_rw = USB_FFS_BULK_SIZE; return true; err: if (h->bulk_in > 0) { adb_close(h->bulk_in); h->bulk_in = -1; } if (h->bulk_out > 0) { adb_close(h->bulk_out); h->bulk_out = -1; } if (h->control > 0) { adb_close(h->control); h->control = -1; } return false; } static void usb_ffs_open_thread(void* x) { struct usb_handle* usb = (struct usb_handle*)x; adb_thread_setname("usb ffs open"); while (true) { // wait until the USB device needs opening std::unique_lock lock(usb->lock); while (!usb->open_new_connection) { usb->notify.wait(lock); } usb->open_new_connection = false; lock.unlock(); while (true) { if (init_functionfs(usb)) { break; } std::this_thread::sleep_for(1s); } D("[ usb_thread - registering device ]"); register_usb_transport(usb, 0, 0, 1); } // never gets here abort(); } static int usb_ffs_write(usb_handle* h, const void* data, int len) { D("about to write (fd=%d, len=%d)", h->bulk_in, len); const char* buf = static_cast(data); while (len > 0) { int write_len = std::min(h->max_rw, len); int n = adb_write(h->bulk_in, buf, write_len); if (n < 0) { D("ERROR: fd = %d, n = %d: %s", h->bulk_in, n, strerror(errno)); return -1; } buf += n; len -= n; } D("[ done fd=%d ]", h->bulk_in); return 0; } static int usb_ffs_read(usb_handle* h, void* data, int len) { D("about to read (fd=%d, len=%d)", h->bulk_out, len); char* buf = static_cast(data); while (len > 0) { int read_len = std::min(h->max_rw, len); int n = adb_read(h->bulk_out, buf, read_len); if (n < 0) { D("ERROR: fd = %d, n = %d: %s", h->bulk_out, n, strerror(errno)); return -1; } buf += n; len -= n; } D("[ done fd=%d ]", h->bulk_out); return 0; } static void usb_ffs_kick(usb_handle* h) { int err; err = ioctl(h->bulk_in, FUNCTIONFS_CLEAR_HALT); if (err < 0) { D("[ kick: source (fd=%d) clear halt failed (%d) ]", h->bulk_in, errno); } err = ioctl(h->bulk_out, FUNCTIONFS_CLEAR_HALT); if (err < 0) { D("[ kick: sink (fd=%d) clear halt failed (%d) ]", h->bulk_out, errno); } // don't close ep0 here, since we may not need to reinitialize it with // the same descriptors again. if however ep1/ep2 fail to re-open in // init_functionfs, only then would we close and open ep0 again. // Ditto the comment in usb_adb_kick. h->kicked = true; TEMP_FAILURE_RETRY(dup2(dummy_fd, h->bulk_out)); TEMP_FAILURE_RETRY(dup2(dummy_fd, h->bulk_in)); } static void usb_ffs_close(usb_handle* h) { h->kicked = false; adb_close(h->bulk_out); adb_close(h->bulk_in); // Notify usb_adb_open_thread to open a new connection. h->lock.lock(); h->open_new_connection = true; h->lock.unlock(); h->notify.notify_one(); } static void usb_ffs_init() { D("[ usb_init - using FunctionFS ]"); usb_handle* h = new usb_handle(); h->write = usb_ffs_write; h->read = usb_ffs_read; h->kick = usb_ffs_kick; h->close = usb_ffs_close; D("[ usb_init - starting thread ]"); std::thread(usb_ffs_open_thread, h).detach(); } void usb_init() { dummy_fd = adb_open("/dev/null", O_WRONLY); CHECK_NE(dummy_fd, -1); usb_ffs_init(); } int usb_write(usb_handle* h, const void* data, int len) { return h->write(h, data, len); } int usb_read(usb_handle* h, void* data, int len) { return h->read(h, data, len); } int usb_close(usb_handle* h) { h->close(h); return 0; } void usb_kick(usb_handle* h) { h->kick(h); }