/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include "Elf.h" #include "ElfInterface.h" #include "Machine.h" #include "MapInfo.h" #include "Regs.h" #include "User.h" template uint64_t RegsTmpl::GetRelPc(Elf* elf, const MapInfo* map_info) { uint64_t load_bias = 0; if (elf->valid()) { load_bias = elf->interface()->load_bias(); } return pc_ - map_info->start + load_bias + map_info->elf_offset; } template bool RegsTmpl::GetReturnAddressFromDefault(Memory* memory, uint64_t* value) { switch (return_loc_.type) { case LOCATION_REGISTER: assert(return_loc_.value < total_regs_); *value = regs_[return_loc_.value]; return true; case LOCATION_SP_OFFSET: AddressType return_value; if (!memory->Read(sp_ + return_loc_.value, &return_value, sizeof(return_value))) { return false; } *value = return_value; return true; case LOCATION_UNKNOWN: default: return false; } } RegsArm::RegsArm() : RegsTmpl(ARM_REG_LAST, ARM_REG_SP, Location(LOCATION_REGISTER, ARM_REG_LR)) { } uint64_t RegsArm::GetAdjustedPc(uint64_t rel_pc, Elf* elf) { if (!elf->valid()) { return rel_pc; } uint64_t load_bias = elf->interface()->load_bias(); if (rel_pc < load_bias) { return rel_pc; } uint64_t adjusted_rel_pc = rel_pc - load_bias; if (adjusted_rel_pc < 5) { return rel_pc; } if (adjusted_rel_pc & 1) { // This is a thumb instruction, it could be 2 or 4 bytes. uint32_t value; if (rel_pc < 5 || !elf->memory()->Read(adjusted_rel_pc - 5, &value, sizeof(value)) || (value & 0xe000f000) != 0xe000f000) { return rel_pc - 2; } } return rel_pc - 4; } RegsArm64::RegsArm64() : RegsTmpl(ARM64_REG_LAST, ARM64_REG_SP, Location(LOCATION_REGISTER, ARM64_REG_LR)) { } uint64_t RegsArm64::GetAdjustedPc(uint64_t rel_pc, Elf* elf) { if (!elf->valid()) { return rel_pc; } if (rel_pc < 4) { return rel_pc; } return rel_pc - 4; } RegsX86::RegsX86() : RegsTmpl(X86_REG_LAST, X86_REG_SP, Location(LOCATION_SP_OFFSET, -4)) { } uint64_t RegsX86::GetAdjustedPc(uint64_t rel_pc, Elf* elf) { if (!elf->valid()) { return rel_pc; } if (rel_pc == 0) { return 0; } return rel_pc - 1; } RegsX86_64::RegsX86_64() : RegsTmpl(X86_64_REG_LAST, X86_64_REG_SP, Location(LOCATION_SP_OFFSET, -8)) { } uint64_t RegsX86_64::GetAdjustedPc(uint64_t rel_pc, Elf* elf) { if (!elf->valid()) { return rel_pc; } if (rel_pc == 0) { return 0; } return rel_pc - 1; } static Regs* ReadArm(void* remote_data) { arm_user_regs* user = reinterpret_cast(remote_data); RegsArm* regs = new RegsArm(); memcpy(regs->RawData(), &user->regs[0], ARM_REG_LAST * sizeof(uint32_t)); regs->set_pc(user->regs[ARM_REG_PC]); regs->set_sp(user->regs[ARM_REG_SP]); return regs; } static Regs* ReadArm64(void* remote_data) { arm64_user_regs* user = reinterpret_cast(remote_data); RegsArm64* regs = new RegsArm64(); memcpy(regs->RawData(), &user->regs[0], (ARM64_REG_R31 + 1) * sizeof(uint64_t)); regs->set_pc(user->pc); regs->set_sp(user->sp); return regs; } static Regs* ReadX86(void* remote_data) { x86_user_regs* user = reinterpret_cast(remote_data); RegsX86* regs = new RegsX86(); (*regs)[X86_REG_EAX] = user->eax; (*regs)[X86_REG_EBX] = user->ebx; (*regs)[X86_REG_ECX] = user->ecx; (*regs)[X86_REG_EDX] = user->edx; (*regs)[X86_REG_EBP] = user->ebp; (*regs)[X86_REG_EDI] = user->edi; (*regs)[X86_REG_ESI] = user->esi; (*regs)[X86_REG_ESP] = user->esp; (*regs)[X86_REG_EIP] = user->eip; regs->set_pc(user->eip); regs->set_sp(user->esp); return regs; } static Regs* ReadX86_64(void* remote_data) { x86_64_user_regs* user = reinterpret_cast(remote_data); RegsX86_64* regs = new RegsX86_64(); (*regs)[X86_64_REG_RAX] = user->rax; (*regs)[X86_64_REG_RBX] = user->rbx; (*regs)[X86_64_REG_RCX] = user->rcx; (*regs)[X86_64_REG_RDX] = user->rdx; (*regs)[X86_64_REG_R8] = user->r8; (*regs)[X86_64_REG_R9] = user->r9; (*regs)[X86_64_REG_R10] = user->r10; (*regs)[X86_64_REG_R11] = user->r11; (*regs)[X86_64_REG_R12] = user->r12; (*regs)[X86_64_REG_R13] = user->r13; (*regs)[X86_64_REG_R14] = user->r14; (*regs)[X86_64_REG_R15] = user->r15; (*regs)[X86_64_REG_RDI] = user->rdi; (*regs)[X86_64_REG_RSI] = user->rsi; (*regs)[X86_64_REG_RBP] = user->rbp; (*regs)[X86_64_REG_RSP] = user->rsp; (*regs)[X86_64_REG_RIP] = user->rip; regs->set_pc(user->rip); regs->set_sp(user->rsp); return regs; } // This function assumes that reg_data is already aligned to a 64 bit value. // If not this could crash with an unaligned access. Regs* Regs::RemoteGet(pid_t pid, uint32_t* machine_type) { // Make the buffer large enough to contain the largest registers type. std::vector buffer(MAX_USER_REGS_SIZE / sizeof(uint64_t)); struct iovec io; io.iov_base = buffer.data(); io.iov_len = buffer.size() * sizeof(uint64_t); if (ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, reinterpret_cast(&io)) == -1) { return nullptr; } switch (io.iov_len) { case sizeof(x86_user_regs): *machine_type = EM_386; return ReadX86(buffer.data()); case sizeof(x86_64_user_regs): *machine_type = EM_X86_64; return ReadX86_64(buffer.data()); case sizeof(arm_user_regs): *machine_type = EM_ARM; return ReadArm(buffer.data()); case sizeof(arm64_user_regs): *machine_type = EM_AARCH64; return ReadArm64(buffer.data()); } return nullptr; }