/* * Copyright (C) 2008 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "usb.h" #include "util.h" using namespace std::chrono_literals; #define MAX_RETRIES 2 /* Timeout in seconds for usb_wait_for_disconnect. * It doesn't usually take long for a device to disconnect (almost always * under 2 seconds) but we'll time out after 3 seconds just in case. */ #define WAIT_FOR_DISCONNECT_TIMEOUT 3 #ifdef TRACE_USB #define DBG1(x...) fprintf(stderr, x) #define DBG(x...) fprintf(stderr, x) #else #define DBG(x...) #define DBG1(x...) #endif // Kernels before 3.3 have a 16KiB transfer limit. That limit was replaced // with a 16MiB global limit in 3.3, but each URB submitted required a // contiguous kernel allocation, so you would get ENOMEM if you tried to // send something larger than the biggest available contiguous kernel // memory region. 256KiB contiguous allocations are generally not reliable // on a device kernel that has been running for a while fragmenting its // memory, but that shouldn't be a problem for fastboot on the host. // In 3.6, the contiguous buffer limit was removed by allocating multiple // 16KiB chunks and having the USB driver stitch them back together while // transmitting using a scatter-gather list, so 256KiB bulk transfers should // be reliable. // 256KiB seems to work, but 1MiB bulk transfers lock up my z620 with a 3.13 // kernel. #define MAX_USBFS_BULK_SIZE (16 * 1024) struct usb_handle { char fname[64]; int desc; unsigned char ep_in; unsigned char ep_out; }; class LinuxUsbTransport : public UsbTransport { public: explicit LinuxUsbTransport(std::unique_ptr handle, uint32_t ms_timeout = 0) : handle_(std::move(handle)), ms_timeout_(ms_timeout) {} ~LinuxUsbTransport() override; ssize_t Read(void* data, size_t len) override; ssize_t Write(const void* data, size_t len) override; int Close() override; int Reset() override; int WaitForDisconnect() override; private: std::unique_ptr handle_; const uint32_t ms_timeout_; DISALLOW_COPY_AND_ASSIGN(LinuxUsbTransport); }; /* True if name isn't a valid name for a USB device in /sys/bus/usb/devices. * Device names are made up of numbers, dots, and dashes, e.g., '7-1.5'. * We reject interfaces (e.g., '7-1.5:1.0') and host controllers (e.g. 'usb1'). * The name must also start with a digit, to disallow '.' and '..' */ static inline int badname(const char *name) { if (!isdigit(*name)) return 1; while(*++name) { if(!isdigit(*name) && *name != '.' && *name != '-') return 1; } return 0; } static int check(void *_desc, int len, unsigned type, int size) { struct usb_descriptor_header *hdr = (struct usb_descriptor_header *)_desc; if(len < size) return -1; if(hdr->bLength < size) return -1; if(hdr->bLength > len) return -1; if(hdr->bDescriptorType != type) return -1; return 0; } static int filter_usb_device(char* sysfs_name, char *ptr, int len, int writable, ifc_match_func callback, int *ept_in_id, int *ept_out_id, int *ifc_id) { struct usb_device_descriptor *dev; struct usb_config_descriptor *cfg; struct usb_interface_descriptor *ifc; struct usb_endpoint_descriptor *ept; struct usb_ifc_info info; int in, out; unsigned i; unsigned e; if (check(ptr, len, USB_DT_DEVICE, USB_DT_DEVICE_SIZE)) return -1; dev = (struct usb_device_descriptor *)ptr; len -= dev->bLength; ptr += dev->bLength; if (check(ptr, len, USB_DT_CONFIG, USB_DT_CONFIG_SIZE)) return -1; cfg = (struct usb_config_descriptor *)ptr; len -= cfg->bLength; ptr += cfg->bLength; info.dev_vendor = dev->idVendor; info.dev_product = dev->idProduct; info.dev_class = dev->bDeviceClass; info.dev_subclass = dev->bDeviceSubClass; info.dev_protocol = dev->bDeviceProtocol; info.writable = writable; snprintf(info.device_path, sizeof(info.device_path), "usb:%s", sysfs_name); /* Read device serial number (if there is one). * We read the serial number from sysfs, since it's faster and more * reliable than issuing a control pipe read, and also won't * cause problems for devices which don't like getting descriptor * requests while they're in the middle of flashing. */ info.serial_number[0] = '\0'; if (dev->iSerialNumber) { char path[80]; int fd; snprintf(path, sizeof(path), "/sys/bus/usb/devices/%s/serial", sysfs_name); path[sizeof(path) - 1] = '\0'; fd = open(path, O_RDONLY); if (fd >= 0) { int chars_read = read(fd, info.serial_number, sizeof(info.serial_number) - 1); close(fd); if (chars_read <= 0) info.serial_number[0] = '\0'; else if (info.serial_number[chars_read - 1] == '\n') { // strip trailing newline info.serial_number[chars_read - 1] = '\0'; } } } for(i = 0; i < cfg->bNumInterfaces; i++) { while (len > 0) { struct usb_descriptor_header *hdr = (struct usb_descriptor_header *)ptr; if (check(hdr, len, USB_DT_INTERFACE, USB_DT_INTERFACE_SIZE) == 0) break; len -= hdr->bLength; ptr += hdr->bLength; } if (len <= 0) return -1; ifc = (struct usb_interface_descriptor *)ptr; len -= ifc->bLength; ptr += ifc->bLength; in = -1; out = -1; info.ifc_class = ifc->bInterfaceClass; info.ifc_subclass = ifc->bInterfaceSubClass; info.ifc_protocol = ifc->bInterfaceProtocol; for(e = 0; e < ifc->bNumEndpoints; e++) { while (len > 0) { struct usb_descriptor_header *hdr = (struct usb_descriptor_header *)ptr; if (check(hdr, len, USB_DT_ENDPOINT, USB_DT_ENDPOINT_SIZE) == 0) break; len -= hdr->bLength; ptr += hdr->bLength; } if (len < 0) { break; } ept = (struct usb_endpoint_descriptor *)ptr; len -= ept->bLength; ptr += ept->bLength; if((ept->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK) continue; if(ept->bEndpointAddress & USB_ENDPOINT_DIR_MASK) { in = ept->bEndpointAddress; } else { out = ept->bEndpointAddress; } // For USB 3.0 devices skip the SS Endpoint Companion descriptor if (check((struct usb_descriptor_hdr *)ptr, len, USB_DT_SS_ENDPOINT_COMP, USB_DT_SS_EP_COMP_SIZE) == 0) { len -= USB_DT_SS_EP_COMP_SIZE; ptr += USB_DT_SS_EP_COMP_SIZE; } } info.has_bulk_in = (in != -1); info.has_bulk_out = (out != -1); if(callback(&info) == 0) { *ept_in_id = in; *ept_out_id = out; *ifc_id = ifc->bInterfaceNumber; return 0; } } return -1; } static int read_sysfs_string(const char *sysfs_name, const char *sysfs_node, char* buf, int bufsize) { char path[80]; int fd, n; snprintf(path, sizeof(path), "/sys/bus/usb/devices/%s/%s", sysfs_name, sysfs_node); path[sizeof(path) - 1] = '\0'; fd = open(path, O_RDONLY); if (fd < 0) return -1; n = read(fd, buf, bufsize - 1); close(fd); if (n < 0) return -1; buf[n] = '\0'; return n; } static int read_sysfs_number(const char *sysfs_name, const char *sysfs_node) { char buf[16]; int value; if (read_sysfs_string(sysfs_name, sysfs_node, buf, sizeof(buf)) < 0) return -1; if (sscanf(buf, "%d", &value) != 1) return -1; return value; } /* Given the name of a USB device in sysfs, get the name for the same * device in devfs. Returns 0 for success, -1 for failure. */ static int convert_to_devfs_name(const char* sysfs_name, char* devname, int devname_size) { int busnum, devnum; busnum = read_sysfs_number(sysfs_name, "busnum"); if (busnum < 0) return -1; devnum = read_sysfs_number(sysfs_name, "devnum"); if (devnum < 0) return -1; snprintf(devname, devname_size, "/dev/bus/usb/%03d/%03d", busnum, devnum); return 0; } static std::unique_ptr find_usb_device(const char* base, ifc_match_func callback) { std::unique_ptr usb; char devname[64]; char desc[1024]; int n, in, out, ifc; struct dirent *de; int fd; int writable; std::unique_ptr busdir(opendir(base), closedir); if (busdir == 0) return 0; while ((de = readdir(busdir.get())) && (usb == nullptr)) { if (badname(de->d_name)) continue; if (!convert_to_devfs_name(de->d_name, devname, sizeof(devname))) { // DBG("[ scanning %s ]\n", devname); writable = 1; if ((fd = open(devname, O_RDWR)) < 0) { // Check if we have read-only access, so we can give a helpful // diagnostic like "adb devices" does. writable = 0; if ((fd = open(devname, O_RDONLY)) < 0) { continue; } } n = read(fd, desc, sizeof(desc)); if (filter_usb_device(de->d_name, desc, n, writable, callback, &in, &out, &ifc) == 0) { usb.reset(new usb_handle()); strcpy(usb->fname, devname); usb->ep_in = in; usb->ep_out = out; usb->desc = fd; n = ioctl(fd, USBDEVFS_CLAIMINTERFACE, &ifc); if (n != 0) { close(fd); usb.reset(); continue; } } else { close(fd); } } } return usb; } LinuxUsbTransport::~LinuxUsbTransport() { Close(); } ssize_t LinuxUsbTransport::Write(const void* _data, size_t len) { unsigned char *data = (unsigned char*) _data; unsigned count = 0; struct usbdevfs_bulktransfer bulk; int n; if (handle_->ep_out == 0 || handle_->desc == -1) { return -1; } do { int xfer; xfer = (len > MAX_USBFS_BULK_SIZE) ? MAX_USBFS_BULK_SIZE : len; bulk.ep = handle_->ep_out; bulk.len = xfer; bulk.data = data; bulk.timeout = ms_timeout_; n = ioctl(handle_->desc, USBDEVFS_BULK, &bulk); if(n != xfer) { DBG("ERROR: n = %d, errno = %d (%s)\n", n, errno, strerror(errno)); return -1; } count += xfer; len -= xfer; data += xfer; } while(len > 0); return count; } ssize_t LinuxUsbTransport::Read(void* _data, size_t len) { unsigned char *data = (unsigned char*) _data; unsigned count = 0; struct usbdevfs_bulktransfer bulk; int n, retry; if (handle_->ep_in == 0 || handle_->desc == -1) { return -1; } while (len > 0) { int xfer = (len > MAX_USBFS_BULK_SIZE) ? MAX_USBFS_BULK_SIZE : len; bulk.ep = handle_->ep_in; bulk.len = xfer; bulk.data = data; bulk.timeout = ms_timeout_; retry = 0; do { DBG("[ usb read %d fd = %d], fname=%s\n", xfer, handle_->desc, handle_->fname); n = ioctl(handle_->desc, USBDEVFS_BULK, &bulk); DBG("[ usb read %d ] = %d, fname=%s, Retry %d \n", xfer, n, handle_->fname, retry); if (n < 0) { DBG1("ERROR: n = %d, errno = %d (%s)\n",n, errno, strerror(errno)); if (++retry > MAX_RETRIES) return -1; std::this_thread::sleep_for(100ms); } } while (n < 0); count += n; len -= n; data += n; if(n < xfer) { break; } } return count; } int LinuxUsbTransport::Close() { int fd; fd = handle_->desc; handle_->desc = -1; if(fd >= 0) { close(fd); DBG("[ usb closed %d ]\n", fd); } return 0; } int LinuxUsbTransport::Reset() { int ret = 0; // We reset the USB connection if ((ret = ioctl(handle_->desc, USBDEVFS_RESET, 0))) { return ret; } return 0; } UsbTransport* usb_open(ifc_match_func callback, uint32_t timeout_ms) { std::unique_ptr handle = find_usb_device("/sys/bus/usb/devices", callback); return handle ? new LinuxUsbTransport(std::move(handle), timeout_ms) : nullptr; } /* Wait for the system to notice the device is gone, so that a subsequent * fastboot command won't try to access the device before it's rebooted. * Returns 0 for success, -1 for timeout. */ int LinuxUsbTransport::WaitForDisconnect() { double deadline = now() + WAIT_FOR_DISCONNECT_TIMEOUT; while (now() < deadline) { if (access(handle_->fname, F_OK)) return 0; std::this_thread::sleep_for(50ms); } return -1; }