/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include "DwarfError.h" #include "DwarfOp.h" namespace unwindstack { template constexpr typename DwarfOp::OpCallback DwarfOp::kCallbackTable[256]; template bool DwarfOp::Eval(uint64_t start, uint64_t end, uint8_t dwarf_version) { uint32_t iterations = 0; is_register_ = false; stack_.clear(); memory_->set_cur_offset(start); while (memory_->cur_offset() < end) { if (!Decode(dwarf_version)) { return false; } // To protect against a branch that creates an infinite loop, // terminate if the number of iterations gets too high. if (iterations++ == 1000) { last_error_ = DWARF_ERROR_TOO_MANY_ITERATIONS; return false; } } return true; } template bool DwarfOp::Decode(uint8_t dwarf_version) { last_error_ = DWARF_ERROR_NONE; if (!memory_->ReadBytes(&cur_op_, 1)) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } const auto* op = &kCallbackTable[cur_op_]; const auto handle_func = op->handle_func; if (handle_func == nullptr) { last_error_ = DWARF_ERROR_ILLEGAL_VALUE; return false; } // Check for an unsupported opcode. if (dwarf_version < op->supported_version) { last_error_ = DWARF_ERROR_ILLEGAL_VALUE; return false; } // Make sure that the required number of stack elements is available. if (stack_.size() < op->num_required_stack_values) { last_error_ = DWARF_ERROR_STACK_INDEX_NOT_VALID; return false; } operands_.clear(); for (size_t i = 0; i < op->num_operands; i++) { uint64_t value; if (!memory_->ReadEncodedValue(op->operands[i], &value)) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } operands_.push_back(value); } return (this->*handle_func)(); } template void DwarfOp::GetLogInfo(uint64_t start, uint64_t end, std::vector* lines) { memory_->set_cur_offset(start); while (memory_->cur_offset() < end) { uint8_t cur_op; if (!memory_->ReadBytes(&cur_op, 1)) { return; } std::string raw_string(android::base::StringPrintf("Raw Data: 0x%02x", cur_op)); std::string log_string; const auto* op = &kCallbackTable[cur_op]; if (op->handle_func == nullptr) { log_string = "Illegal"; } else { log_string = op->name; uint64_t start_offset = memory_->cur_offset(); for (size_t i = 0; i < op->num_operands; i++) { uint64_t value; if (!memory_->ReadEncodedValue(op->operands[i], &value)) { return; } log_string += ' ' + std::to_string(value); } uint64_t end_offset = memory_->cur_offset(); memory_->set_cur_offset(start_offset); for (size_t i = start_offset; i < end_offset; i++) { uint8_t byte; if (!memory_->ReadBytes(&byte, 1)) { return; } raw_string += android::base::StringPrintf(" 0x%02x", byte); } memory_->set_cur_offset(end_offset); } lines->push_back(std::move(log_string)); lines->push_back(std::move(raw_string)); } } template bool DwarfOp::op_deref() { // Read the address and dereference it. AddressType addr = StackPop(); AddressType value; if (!regular_memory()->Read(addr, &value, sizeof(value))) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } stack_.push_front(value); return true; } template bool DwarfOp::op_deref_size() { AddressType bytes_to_read = OperandAt(0); if (bytes_to_read > sizeof(AddressType) || bytes_to_read == 0) { last_error_ = DWARF_ERROR_ILLEGAL_VALUE; return false; } // Read the address and dereference it. AddressType addr = StackPop(); AddressType value = 0; if (!regular_memory()->Read(addr, &value, bytes_to_read)) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } stack_.push_front(value); return true; } template bool DwarfOp::op_push() { // Push all of the operands. for (auto operand : operands_) { stack_.push_front(operand); } return true; } template bool DwarfOp::op_dup() { stack_.push_front(StackAt(0)); return true; } template bool DwarfOp::op_drop() { StackPop(); return true; } template bool DwarfOp::op_over() { stack_.push_front(StackAt(1)); return true; } template bool DwarfOp::op_pick() { AddressType index = OperandAt(0); if (index > StackSize()) { last_error_ = DWARF_ERROR_STACK_INDEX_NOT_VALID; return false; } stack_.push_front(StackAt(index)); return true; } template bool DwarfOp::op_swap() { AddressType old_value = stack_[0]; stack_[0] = stack_[1]; stack_[1] = old_value; return true; } template bool DwarfOp::op_rot() { AddressType top = stack_[0]; stack_[0] = stack_[1]; stack_[1] = stack_[2]; stack_[2] = top; return true; } template bool DwarfOp::op_abs() { SignedType signed_value = static_cast(stack_[0]); if (signed_value < 0) { signed_value = -signed_value; } stack_[0] = static_cast(signed_value); return true; } template bool DwarfOp::op_and() { AddressType top = StackPop(); stack_[0] &= top; return true; } template bool DwarfOp::op_div() { AddressType top = StackPop(); if (top == 0) { last_error_ = DWARF_ERROR_ILLEGAL_VALUE; return false; } SignedType signed_divisor = static_cast(top); SignedType signed_dividend = static_cast(stack_[0]); stack_[0] = static_cast(signed_dividend / signed_divisor); return true; } template bool DwarfOp::op_minus() { AddressType top = StackPop(); stack_[0] -= top; return true; } template bool DwarfOp::op_mod() { AddressType top = StackPop(); if (top == 0) { last_error_ = DWARF_ERROR_ILLEGAL_VALUE; return false; } stack_[0] %= top; return true; } template bool DwarfOp::op_mul() { AddressType top = StackPop(); stack_[0] *= top; return true; } template bool DwarfOp::op_neg() { SignedType signed_value = static_cast(stack_[0]); stack_[0] = static_cast(-signed_value); return true; } template bool DwarfOp::op_not() { stack_[0] = ~stack_[0]; return true; } template bool DwarfOp::op_or() { AddressType top = StackPop(); stack_[0] |= top; return true; } template bool DwarfOp::op_plus() { AddressType top = StackPop(); stack_[0] += top; return true; } template bool DwarfOp::op_plus_uconst() { stack_[0] += OperandAt(0); return true; } template bool DwarfOp::op_shl() { AddressType top = StackPop(); stack_[0] <<= top; return true; } template bool DwarfOp::op_shr() { AddressType top = StackPop(); stack_[0] >>= top; return true; } template bool DwarfOp::op_shra() { AddressType top = StackPop(); SignedType signed_value = static_cast(stack_[0]) >> top; stack_[0] = static_cast(signed_value); return true; } template bool DwarfOp::op_xor() { AddressType top = StackPop(); stack_[0] ^= top; return true; } template bool DwarfOp::op_bra() { // Requires one stack element. AddressType top = StackPop(); int16_t offset = static_cast(OperandAt(0)); uint64_t cur_offset; if (top != 0) { cur_offset = memory_->cur_offset() + offset; } else { cur_offset = memory_->cur_offset() - offset; } memory_->set_cur_offset(cur_offset); return true; } template bool DwarfOp::op_eq() { AddressType top = StackPop(); stack_[0] = bool_to_dwarf_bool(stack_[0] == top); return true; } template bool DwarfOp::op_ge() { AddressType top = StackPop(); stack_[0] = bool_to_dwarf_bool(stack_[0] >= top); return true; } template bool DwarfOp::op_gt() { AddressType top = StackPop(); stack_[0] = bool_to_dwarf_bool(stack_[0] > top); return true; } template bool DwarfOp::op_le() { AddressType top = StackPop(); stack_[0] = bool_to_dwarf_bool(stack_[0] <= top); return true; } template bool DwarfOp::op_lt() { AddressType top = StackPop(); stack_[0] = bool_to_dwarf_bool(stack_[0] < top); return true; } template bool DwarfOp::op_ne() { AddressType top = StackPop(); stack_[0] = bool_to_dwarf_bool(stack_[0] != top); return true; } template bool DwarfOp::op_skip() { int16_t offset = static_cast(OperandAt(0)); uint64_t cur_offset = memory_->cur_offset() + offset; memory_->set_cur_offset(cur_offset); return true; } template bool DwarfOp::op_lit() { stack_.push_front(cur_op() - 0x30); return true; } template bool DwarfOp::op_reg() { is_register_ = true; stack_.push_front(cur_op() - 0x50); return true; } template bool DwarfOp::op_regx() { is_register_ = true; stack_.push_front(OperandAt(0)); return true; } // It's not clear for breg/bregx, if this op should read the current // value of the register, or where we think that register is located. // For simplicity, the code will read the value before doing the unwind. template bool DwarfOp::op_breg() { uint16_t reg = cur_op() - 0x70; if (reg >= regs_->total_regs()) { last_error_ = DWARF_ERROR_ILLEGAL_VALUE; return false; } stack_.push_front((*regs_)[reg] + OperandAt(0)); return true; } template bool DwarfOp::op_bregx() { AddressType reg = OperandAt(0); if (reg >= regs_->total_regs()) { last_error_ = DWARF_ERROR_ILLEGAL_VALUE; return false; } stack_.push_front((*regs_)[reg] + OperandAt(1)); return true; } template bool DwarfOp::op_nop() { return true; } template bool DwarfOp::op_not_implemented() { last_error_ = DWARF_ERROR_NOT_IMPLEMENTED; return false; } // Explicitly instantiate DwarfOp. template class DwarfOp; template class DwarfOp; } // namespace unwindstack