/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fdevent.h" #include #include #include #include #include #include #include #include #include "adb.h" #include "adb_io.h" #include "fdevent_test.h" #include "socket.h" #include "sysdeps.h" #include "sysdeps/chrono.h" struct ThreadArg { int first_read_fd; int last_write_fd; size_t middle_pipe_count; }; class LocalSocketTest : public FdeventTest {}; constexpr auto SLEEP_FOR_FDEVENT = 100ms; TEST_F(LocalSocketTest, smoke) { // Join two socketpairs with a chain of intermediate socketpairs. int first[2]; std::vector> intermediates; int last[2]; constexpr size_t INTERMEDIATE_COUNT = 50; constexpr size_t MESSAGE_LOOP_COUNT = 100; const std::string MESSAGE = "socket_test"; intermediates.resize(INTERMEDIATE_COUNT); ASSERT_EQ(0, adb_socketpair(first)) << strerror(errno); ASSERT_EQ(0, adb_socketpair(last)) << strerror(errno); asocket* prev_tail = create_local_socket(first[1]); ASSERT_NE(nullptr, prev_tail); auto connect = [](asocket* tail, asocket* head) { tail->peer = head; head->peer = tail; tail->ready(tail); }; for (auto& intermediate : intermediates) { ASSERT_EQ(0, adb_socketpair(intermediate.data())) << strerror(errno); asocket* head = create_local_socket(intermediate[0]); ASSERT_NE(nullptr, head); asocket* tail = create_local_socket(intermediate[1]); ASSERT_NE(nullptr, tail); connect(prev_tail, head); prev_tail = tail; } asocket* end = create_local_socket(last[0]); ASSERT_NE(nullptr, end); connect(prev_tail, end); PrepareThread(); std::thread thread(fdevent_loop); for (size_t i = 0; i < MESSAGE_LOOP_COUNT; ++i) { std::string read_buffer = MESSAGE; std::string write_buffer(MESSAGE.size(), 'a'); ASSERT_TRUE(WriteFdExactly(first[0], &read_buffer[0], read_buffer.size())); ASSERT_TRUE(ReadFdExactly(last[1], &write_buffer[0], write_buffer.size())); ASSERT_EQ(read_buffer, write_buffer); } ASSERT_EQ(0, adb_close(first[0])); ASSERT_EQ(0, adb_close(last[1])); // Wait until the local sockets are closed. std::this_thread::sleep_for(SLEEP_FOR_FDEVENT); ASSERT_EQ(GetAdditionalLocalSocketCount(), fdevent_installed_count()); TerminateThread(thread); } struct CloseWithPacketArg { int socket_fd; size_t bytes_written; int cause_close_fd; }; static void CloseWithPacketThreadFunc(CloseWithPacketArg* arg) { asocket* s = create_local_socket(arg->socket_fd); ASSERT_TRUE(s != nullptr); arg->bytes_written = 0; while (true) { std::string data; data.resize(MAX_PAYLOAD); arg->bytes_written += data.size(); int ret = s->enqueue(s, std::move(data)); if (ret == 1) { // The writer has one packet waiting to send. break; } } asocket* cause_close_s = create_local_socket(arg->cause_close_fd); ASSERT_TRUE(cause_close_s != nullptr); cause_close_s->peer = s; s->peer = cause_close_s; cause_close_s->ready(cause_close_s); fdevent_loop(); } // This test checks if we can close local socket in the following situation: // The socket is closing but having some packets, so it is not closed. Then // some write error happens in the socket's file handler, e.g., the file // handler is closed. TEST_F(LocalSocketTest, close_socket_with_packet) { int socket_fd[2]; ASSERT_EQ(0, adb_socketpair(socket_fd)); int cause_close_fd[2]; ASSERT_EQ(0, adb_socketpair(cause_close_fd)); CloseWithPacketArg arg; arg.socket_fd = socket_fd[1]; arg.cause_close_fd = cause_close_fd[1]; PrepareThread(); std::thread thread(CloseWithPacketThreadFunc, &arg); // Wait until the fdevent_loop() starts. std::this_thread::sleep_for(SLEEP_FOR_FDEVENT); ASSERT_EQ(0, adb_close(cause_close_fd[0])); std::this_thread::sleep_for(SLEEP_FOR_FDEVENT); EXPECT_EQ(1u + GetAdditionalLocalSocketCount(), fdevent_installed_count()); ASSERT_EQ(0, adb_close(socket_fd[0])); std::this_thread::sleep_for(SLEEP_FOR_FDEVENT); ASSERT_EQ(GetAdditionalLocalSocketCount(), fdevent_installed_count()); TerminateThread(thread); } // This test checks if we can read packets from a closing local socket. TEST_F(LocalSocketTest, read_from_closing_socket) { int socket_fd[2]; ASSERT_EQ(0, adb_socketpair(socket_fd)); int cause_close_fd[2]; ASSERT_EQ(0, adb_socketpair(cause_close_fd)); CloseWithPacketArg arg; arg.socket_fd = socket_fd[1]; arg.cause_close_fd = cause_close_fd[1]; PrepareThread(); std::thread thread(CloseWithPacketThreadFunc, &arg); // Wait until the fdevent_loop() starts. std::this_thread::sleep_for(SLEEP_FOR_FDEVENT); ASSERT_EQ(0, adb_close(cause_close_fd[0])); std::this_thread::sleep_for(SLEEP_FOR_FDEVENT); EXPECT_EQ(1u + GetAdditionalLocalSocketCount(), fdevent_installed_count()); // Verify if we can read successfully. std::vector buf(arg.bytes_written); ASSERT_NE(0u, arg.bytes_written); ASSERT_EQ(true, ReadFdExactly(socket_fd[0], buf.data(), buf.size())); ASSERT_EQ(0, adb_close(socket_fd[0])); std::this_thread::sleep_for(SLEEP_FOR_FDEVENT); ASSERT_EQ(GetAdditionalLocalSocketCount(), fdevent_installed_count()); TerminateThread(thread); } // This test checks if we can close local socket in the following situation: // The socket is not closed and has some packets. When it fails to write to // the socket's file handler because the other end is closed, we check if the // socket is closed. TEST_F(LocalSocketTest, write_error_when_having_packets) { int socket_fd[2]; ASSERT_EQ(0, adb_socketpair(socket_fd)); int cause_close_fd[2]; ASSERT_EQ(0, adb_socketpair(cause_close_fd)); CloseWithPacketArg arg; arg.socket_fd = socket_fd[1]; arg.cause_close_fd = cause_close_fd[1]; PrepareThread(); std::thread thread(CloseWithPacketThreadFunc, &arg); // Wait until the fdevent_loop() starts. std::this_thread::sleep_for(SLEEP_FOR_FDEVENT); EXPECT_EQ(2u + GetAdditionalLocalSocketCount(), fdevent_installed_count()); ASSERT_EQ(0, adb_close(socket_fd[0])); std::this_thread::sleep_for(SLEEP_FOR_FDEVENT); ASSERT_EQ(GetAdditionalLocalSocketCount(), fdevent_installed_count()); TerminateThread(thread); } #if defined(__linux__) static void ClientThreadFunc() { std::string error; int fd = network_loopback_client(5038, SOCK_STREAM, &error); ASSERT_GE(fd, 0) << error; std::this_thread::sleep_for(200ms); ASSERT_EQ(0, adb_close(fd)); } struct CloseRdHupSocketArg { int socket_fd; }; static void CloseRdHupSocketThreadFunc(CloseRdHupSocketArg* arg) { asocket* s = create_local_socket(arg->socket_fd); ASSERT_TRUE(s != nullptr); fdevent_loop(); } // This test checks if we can close sockets in CLOSE_WAIT state. TEST_F(LocalSocketTest, close_socket_in_CLOSE_WAIT_state) { std::string error; int listen_fd = network_inaddr_any_server(5038, SOCK_STREAM, &error); ASSERT_GE(listen_fd, 0); std::thread client_thread(ClientThreadFunc); int accept_fd = adb_socket_accept(listen_fd, nullptr, nullptr); ASSERT_GE(accept_fd, 0); CloseRdHupSocketArg arg; arg.socket_fd = accept_fd; PrepareThread(); std::thread thread(CloseRdHupSocketThreadFunc, &arg); // Wait until the fdevent_loop() starts. std::this_thread::sleep_for(SLEEP_FOR_FDEVENT); EXPECT_EQ(1u + GetAdditionalLocalSocketCount(), fdevent_installed_count()); // Wait until the client closes its socket. client_thread.join(); std::this_thread::sleep_for(SLEEP_FOR_FDEVENT); ASSERT_EQ(GetAdditionalLocalSocketCount(), fdevent_installed_count()); TerminateThread(thread); } #endif // defined(__linux__) #if ADB_HOST // Checks that skip_host_serial(serial) returns a pointer to the part of |serial| which matches // |expected|, otherwise logs the failure to gtest. void VerifySkipHostSerial(std::string serial, const char* expected) { char* result = internal::skip_host_serial(&serial[0]); if (expected == nullptr) { EXPECT_EQ(nullptr, result); } else { EXPECT_STREQ(expected, result); } } // Check [tcp:|udp:][:]: format. TEST(socket_test, test_skip_host_serial) { for (const std::string& protocol : {"", "tcp:", "udp:"}) { VerifySkipHostSerial(protocol, nullptr); VerifySkipHostSerial(protocol + "foo", nullptr); VerifySkipHostSerial(protocol + "foo:bar", ":bar"); VerifySkipHostSerial(protocol + "foo:bar:baz", ":bar:baz"); VerifySkipHostSerial(protocol + "foo:123:bar", ":bar"); VerifySkipHostSerial(protocol + "foo:123:456", ":456"); VerifySkipHostSerial(protocol + "foo:123:bar:baz", ":bar:baz"); // Don't register a port unless it's all numbers and ends with ':'. VerifySkipHostSerial(protocol + "foo:123", ":123"); VerifySkipHostSerial(protocol + "foo:123bar:baz", ":123bar:baz"); VerifySkipHostSerial(protocol + "100.100.100.100:5555:foo", ":foo"); VerifySkipHostSerial(protocol + "[0123:4567:89ab:CDEF:0:9:a:f]:5555:foo", ":foo"); VerifySkipHostSerial(protocol + "[::1]:5555:foo", ":foo"); // If we can't find both [] then treat it as a normal serial with [ in it. VerifySkipHostSerial(protocol + "[0123:foo", ":foo"); // Don't be fooled by random IPv6 addresses in the command string. VerifySkipHostSerial(protocol + "foo:ping [0123:4567:89ab:CDEF:0:9:a:f]:5555", ":ping [0123:4567:89ab:CDEF:0:9:a:f]:5555"); } } // Check :: format. TEST(socket_test, test_skip_host_serial_prefix) { for (const std::string& prefix : {"usb:", "product:", "model:", "device:"}) { VerifySkipHostSerial(prefix, nullptr); VerifySkipHostSerial(prefix + "foo", nullptr); VerifySkipHostSerial(prefix + "foo:bar", ":bar"); VerifySkipHostSerial(prefix + "foo:bar:baz", ":bar:baz"); VerifySkipHostSerial(prefix + "foo:123:bar", ":123:bar"); } } #endif // ADB_HOST