platform_system_core/libunwindstack/Memory.cpp
Christopher Ferris 5f118519fd Add a method to share the process memory object.
New function to create the process memory object. This allows for
a future where different remote process memory objects could be created
depending on the way remote memory can be created. Even different local
memory objects that access memory without doing any checks.

It also allows MemoryRange objects to share one single process memory object
and could help if the process memory object caches data.

Small changes to MapInfo::CreateMemory to when some errors are detected.
- Always check if the map is a device map, instead of only if the name
  is not empty.
- Check if a memory map is readable before creating the memory from process
  memory.

Bug: 23762183

Test: Ran unit tests, unwound on device using the new code.
Change-Id: I12a93c2dc19639689a528ec41c67bfac74d431b3
2017-09-05 14:30:22 -07:00

273 lines
7.3 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/ptrace.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
#include <algorithm>
#include <memory>
#include <android-base/unique_fd.h>
#include <unwindstack/Memory.h>
#include "Check.h"
namespace unwindstack {
bool Memory::ReadString(uint64_t addr, std::string* string, uint64_t max_read) {
string->clear();
uint64_t bytes_read = 0;
while (bytes_read < max_read) {
uint8_t value;
if (!Read(addr, &value, sizeof(value))) {
return false;
}
if (value == '\0') {
return true;
}
string->push_back(value);
addr++;
bytes_read++;
}
return false;
}
std::shared_ptr<Memory> Memory::CreateProcessMemory(pid_t pid) {
if (pid == getpid()) {
return std::shared_ptr<Memory>(new MemoryLocal());
}
return std::shared_ptr<Memory>(new MemoryRemote(pid));
}
bool MemoryBuffer::Read(uint64_t addr, void* dst, size_t size) {
uint64_t last_read_byte;
if (__builtin_add_overflow(size, addr, &last_read_byte)) {
return false;
}
if (last_read_byte > raw_.size()) {
return false;
}
memcpy(dst, &raw_[addr], size);
return true;
}
uint8_t* MemoryBuffer::GetPtr(size_t offset) {
if (offset < raw_.size()) {
return &raw_[offset];
}
return nullptr;
}
MemoryFileAtOffset::~MemoryFileAtOffset() {
Clear();
}
void MemoryFileAtOffset::Clear() {
if (data_) {
munmap(&data_[-offset_], size_ + offset_);
data_ = nullptr;
}
}
bool MemoryFileAtOffset::Init(const std::string& file, uint64_t offset, uint64_t size) {
// Clear out any previous data if it exists.
Clear();
android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(file.c_str(), O_RDONLY | O_CLOEXEC)));
if (fd == -1) {
return false;
}
struct stat buf;
if (fstat(fd, &buf) == -1) {
return false;
}
if (offset >= static_cast<uint64_t>(buf.st_size)) {
return false;
}
offset_ = offset & (getpagesize() - 1);
uint64_t aligned_offset = offset & ~(getpagesize() - 1);
if (aligned_offset > static_cast<uint64_t>(buf.st_size) ||
offset > static_cast<uint64_t>(buf.st_size)) {
return false;
}
size_ = buf.st_size - aligned_offset;
uint64_t max_size;
if (!__builtin_add_overflow(size, offset_, &max_size) && max_size < size_) {
// Truncate the mapped size.
size_ = max_size;
}
void* map = mmap(nullptr, size_, PROT_READ, MAP_PRIVATE, fd, aligned_offset);
if (map == MAP_FAILED) {
return false;
}
data_ = &reinterpret_cast<uint8_t*>(map)[offset_];
size_ -= offset_;
return true;
}
bool MemoryFileAtOffset::Read(uint64_t addr, void* dst, size_t size) {
uint64_t max_size;
if (__builtin_add_overflow(addr, size, &max_size) || max_size > size_) {
return false;
}
memcpy(dst, &data_[addr], size);
return true;
}
bool MemoryRemote::PtraceRead(uint64_t addr, long* value) {
#if !defined(__LP64__)
// Cannot read an address greater than 32 bits.
if (addr > UINT32_MAX) {
return false;
}
#endif
// ptrace() returns -1 and sets errno when the operation fails.
// To disambiguate -1 from a valid result, we clear errno beforehand.
errno = 0;
*value = ptrace(PTRACE_PEEKTEXT, pid_, reinterpret_cast<void*>(addr), nullptr);
if (*value == -1 && errno) {
return false;
}
return true;
}
bool MemoryRemote::Read(uint64_t addr, void* dst, size_t bytes) {
// Make sure that there is no overflow.
uint64_t max_size;
if (__builtin_add_overflow(addr, bytes, &max_size)) {
return false;
}
size_t bytes_read = 0;
long data;
size_t align_bytes = addr & (sizeof(long) - 1);
if (align_bytes != 0) {
if (!PtraceRead(addr & ~(sizeof(long) - 1), &data)) {
return false;
}
size_t copy_bytes = std::min(sizeof(long) - align_bytes, bytes);
memcpy(dst, reinterpret_cast<uint8_t*>(&data) + align_bytes, copy_bytes);
addr += copy_bytes;
dst = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(dst) + copy_bytes);
bytes -= copy_bytes;
bytes_read += copy_bytes;
}
for (size_t i = 0; i < bytes / sizeof(long); i++) {
if (!PtraceRead(addr, &data)) {
return false;
}
memcpy(dst, &data, sizeof(long));
dst = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(dst) + sizeof(long));
addr += sizeof(long);
bytes_read += sizeof(long);
}
size_t left_over = bytes & (sizeof(long) - 1);
if (left_over) {
if (!PtraceRead(addr, &data)) {
return false;
}
memcpy(dst, &data, left_over);
bytes_read += left_over;
}
return true;
}
bool MemoryLocal::Read(uint64_t addr, void* dst, size_t size) {
// Make sure that there is no overflow.
uint64_t max_size;
if (__builtin_add_overflow(addr, size, &max_size)) {
return false;
}
// The process_vm_readv call will not always work on remote
// processes, so only use it for reads from the current pid.
// Use this method to avoid crashes if an address is invalid since
// unwind data could try to access any part of the address space.
struct iovec local_io;
local_io.iov_base = dst;
local_io.iov_len = size;
struct iovec remote_io;
remote_io.iov_base = reinterpret_cast<void*>(static_cast<uintptr_t>(addr));
remote_io.iov_len = size;
ssize_t bytes_read = process_vm_readv(getpid(), &local_io, 1, &remote_io, 1, 0);
if (bytes_read == -1) {
return false;
}
return static_cast<size_t>(bytes_read) == size;
}
bool MemoryOffline::Init(const std::string& file, uint64_t offset) {
if (!MemoryFileAtOffset::Init(file, offset)) {
return false;
}
// The first uint64_t value is the start of memory.
if (!MemoryFileAtOffset::Read(0, &start_, sizeof(start_))) {
return false;
}
// Subtract the first 64 bit value from the total size.
size_ -= sizeof(start_);
return true;
}
bool MemoryOffline::Read(uint64_t addr, void* dst, size_t size) {
uint64_t max_size;
if (__builtin_add_overflow(addr, size, &max_size)) {
return false;
}
uint64_t real_size;
if (__builtin_add_overflow(start_, offset_, &real_size) ||
__builtin_add_overflow(real_size, size_, &real_size)) {
return false;
}
if (addr < start_ || max_size > real_size) {
return false;
}
memcpy(dst, &data_[addr + offset_ - start_ + sizeof(start_)], size);
return true;
}
MemoryRange::MemoryRange(const std::shared_ptr<Memory>& memory, uint64_t begin, uint64_t end)
: memory_(memory), begin_(begin), length_(end - begin) {
CHECK(end > begin);
}
bool MemoryRange::Read(uint64_t addr, void* dst, size_t size) {
uint64_t max_read;
if (__builtin_add_overflow(addr, size, &max_read) || max_read > length_) {
return false;
}
// The check above guarantees that addr + begin_ will not overflow.
return memory_->Read(addr + begin_, dst, size);
}
} // namespace unwindstack