platform_system_core/sdcard/sdcard.c
Daniel Rosenberg db4638ee30 Fix overflow in path building
An incorrect size was causing an unsigned value
to wrap, causing it to write past the end of
the buffer.

Bug: 28085658
Change-Id: Ie9625c729cca024d514ba2880ff97209d435a165
2016-04-12 16:38:41 -07:00

2101 lines
67 KiB
C

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "sdcard"
#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <limits.h>
#include <linux/fuse.h>
#include <pthread.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/inotify.h>
#include <sys/mount.h>
#include <sys/param.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/statfs.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
#include <cutils/fs.h>
#include <cutils/hashmap.h>
#include <cutils/log.h>
#include <cutils/multiuser.h>
#include <cutils/properties.h>
#include <packagelistparser/packagelistparser.h>
#include <private/android_filesystem_config.h>
/* README
*
* What is this?
*
* sdcard is a program that uses FUSE to emulate FAT-on-sdcard style
* directory permissions (all files are given fixed owner, group, and
* permissions at creation, owner, group, and permissions are not
* changeable, symlinks and hardlinks are not createable, etc.
*
* See usage() for command line options.
*
* It must be run as root, but will drop to requested UID/GID as soon as it
* mounts a filesystem. It will refuse to run if requested UID/GID are zero.
*
* Things I believe to be true:
*
* - ops that return a fuse_entry (LOOKUP, MKNOD, MKDIR, LINK, SYMLINK,
* CREAT) must bump that node's refcount
* - don't forget that FORGET can forget multiple references (req->nlookup)
* - if an op that returns a fuse_entry fails writing the reply to the
* kernel, you must rollback the refcount to reflect the reference the
* kernel did not actually acquire
*
* This daemon can also derive custom filesystem permissions based on directory
* structure when requested. These custom permissions support several features:
*
* - Apps can access their own files in /Android/data/com.example/ without
* requiring any additional GIDs.
* - Separate permissions for protecting directories like Pictures and Music.
* - Multi-user separation on the same physical device.
*/
#define FUSE_TRACE 0
#if FUSE_TRACE
#define TRACE(x...) ALOGD(x)
#else
#define TRACE(x...) do {} while (0)
#endif
#define ERROR(x...) ALOGE(x)
#define PROP_SDCARDFS_DEVICE "ro.sys.sdcardfs"
#define PROP_SDCARDFS_USER "persist.sys.sdcardfs"
#define FUSE_UNKNOWN_INO 0xffffffff
/* Maximum number of bytes to write in one request. */
#define MAX_WRITE (256 * 1024)
/* Maximum number of bytes to read in one request. */
#define MAX_READ (128 * 1024)
/* Largest possible request.
* The request size is bounded by the maximum size of a FUSE_WRITE request because it has
* the largest possible data payload. */
#define MAX_REQUEST_SIZE (sizeof(struct fuse_in_header) + sizeof(struct fuse_write_in) + MAX_WRITE)
/* Pseudo-error constant used to indicate that no fuse status is needed
* or that a reply has already been written. */
#define NO_STATUS 1
/* Supplementary groups to execute with */
static const gid_t kGroups[1] = { AID_PACKAGE_INFO };
/* Permission mode for a specific node. Controls how file permissions
* are derived for children nodes. */
typedef enum {
/* Nothing special; this node should just inherit from its parent. */
PERM_INHERIT,
/* This node is one level above a normal root; used for legacy layouts
* which use the first level to represent user_id. */
PERM_PRE_ROOT,
/* This node is "/" */
PERM_ROOT,
/* This node is "/Android" */
PERM_ANDROID,
/* This node is "/Android/data" */
PERM_ANDROID_DATA,
/* This node is "/Android/obb" */
PERM_ANDROID_OBB,
/* This node is "/Android/media" */
PERM_ANDROID_MEDIA,
} perm_t;
struct handle {
int fd;
};
struct dirhandle {
DIR *d;
};
struct node {
__u32 refcount;
__u64 nid;
__u64 gen;
/*
* The inode number for this FUSE node. Note that this isn't stable across
* multiple invocations of the FUSE daemon.
*/
__u32 ino;
/* State derived based on current position in hierarchy. */
perm_t perm;
userid_t userid;
uid_t uid;
bool under_android;
struct node *next; /* per-dir sibling list */
struct node *child; /* first contained file by this dir */
struct node *parent; /* containing directory */
size_t namelen;
char *name;
/* If non-null, this is the real name of the file in the underlying storage.
* This may differ from the field "name" only by case.
* strlen(actual_name) will always equal strlen(name), so it is safe to use
* namelen for both fields.
*/
char *actual_name;
/* If non-null, an exact underlying path that should be grafted into this
* position. Used to support things like OBB. */
char* graft_path;
size_t graft_pathlen;
bool deleted;
};
static int str_hash(void *key) {
return hashmapHash(key, strlen(key));
}
/** Test if two string keys are equal ignoring case */
static bool str_icase_equals(void *keyA, void *keyB) {
return strcasecmp(keyA, keyB) == 0;
}
/* Global data for all FUSE mounts */
struct fuse_global {
pthread_mutex_t lock;
uid_t uid;
gid_t gid;
bool multi_user;
char source_path[PATH_MAX];
char obb_path[PATH_MAX];
Hashmap* package_to_appid;
__u64 next_generation;
struct node root;
/* Used to allocate unique inode numbers for fuse nodes. We use
* a simple counter based scheme where inode numbers from deleted
* nodes aren't reused. Note that inode allocations are not stable
* across multiple invocation of the sdcard daemon, but that shouldn't
* be a huge problem in practice.
*
* Note that we restrict inodes to 32 bit unsigned integers to prevent
* truncation on 32 bit processes when unsigned long long stat.st_ino is
* assigned to an unsigned long ino_t type in an LP32 process.
*
* Also note that fuse_attr and fuse_dirent inode values are 64 bits wide
* on both LP32 and LP64, but the fuse kernel code doesn't squash 64 bit
* inode numbers into 32 bit values on 64 bit kernels (see fuse_squash_ino
* in fs/fuse/inode.c).
*
* Accesses must be guarded by |lock|.
*/
__u32 inode_ctr;
struct fuse* fuse_default;
struct fuse* fuse_read;
struct fuse* fuse_write;
};
/* Single FUSE mount */
struct fuse {
struct fuse_global* global;
char dest_path[PATH_MAX];
int fd;
gid_t gid;
mode_t mask;
};
/* Private data used by a single FUSE handler */
struct fuse_handler {
struct fuse* fuse;
int token;
/* To save memory, we never use the contents of the request buffer and the read
* buffer at the same time. This allows us to share the underlying storage. */
union {
__u8 request_buffer[MAX_REQUEST_SIZE];
__u8 read_buffer[MAX_READ + PAGE_SIZE];
};
};
static inline void *id_to_ptr(__u64 nid)
{
return (void *) (uintptr_t) nid;
}
static inline __u64 ptr_to_id(void *ptr)
{
return (__u64) (uintptr_t) ptr;
}
static void acquire_node_locked(struct node* node)
{
node->refcount++;
TRACE("ACQUIRE %p (%s) rc=%d\n", node, node->name, node->refcount);
}
static void remove_node_from_parent_locked(struct node* node);
static void release_node_locked(struct node* node)
{
TRACE("RELEASE %p (%s) rc=%d\n", node, node->name, node->refcount);
if (node->refcount > 0) {
node->refcount--;
if (!node->refcount) {
TRACE("DESTROY %p (%s)\n", node, node->name);
remove_node_from_parent_locked(node);
/* TODO: remove debugging - poison memory */
memset(node->name, 0xef, node->namelen);
free(node->name);
free(node->actual_name);
memset(node, 0xfc, sizeof(*node));
free(node);
}
} else {
ERROR("Zero refcnt %p\n", node);
}
}
static void add_node_to_parent_locked(struct node *node, struct node *parent) {
node->parent = parent;
node->next = parent->child;
parent->child = node;
acquire_node_locked(parent);
}
static void remove_node_from_parent_locked(struct node* node)
{
if (node->parent) {
if (node->parent->child == node) {
node->parent->child = node->parent->child->next;
} else {
struct node *node2;
node2 = node->parent->child;
while (node2->next != node)
node2 = node2->next;
node2->next = node->next;
}
release_node_locked(node->parent);
node->parent = NULL;
node->next = NULL;
}
}
/* Gets the absolute path to a node into the provided buffer.
*
* Populates 'buf' with the path and returns the length of the path on success,
* or returns -1 if the path is too long for the provided buffer.
*/
static ssize_t get_node_path_locked(struct node* node, char* buf, size_t bufsize) {
const char* name;
size_t namelen;
if (node->graft_path) {
name = node->graft_path;
namelen = node->graft_pathlen;
} else if (node->actual_name) {
name = node->actual_name;
namelen = node->namelen;
} else {
name = node->name;
namelen = node->namelen;
}
if (bufsize < namelen + 1) {
return -1;
}
ssize_t pathlen = 0;
if (node->parent && node->graft_path == NULL) {
pathlen = get_node_path_locked(node->parent, buf, bufsize - namelen - 1);
if (pathlen < 0) {
return -1;
}
buf[pathlen++] = '/';
}
memcpy(buf + pathlen, name, namelen + 1); /* include trailing \0 */
return pathlen + namelen;
}
/* Finds the absolute path of a file within a given directory.
* Performs a case-insensitive search for the file and sets the buffer to the path
* of the first matching file. If 'search' is zero or if no match is found, sets
* the buffer to the path that the file would have, assuming the name were case-sensitive.
*
* Populates 'buf' with the path and returns the actual name (within 'buf') on success,
* or returns NULL if the path is too long for the provided buffer.
*/
static char* find_file_within(const char* path, const char* name,
char* buf, size_t bufsize, int search)
{
size_t pathlen = strlen(path);
size_t namelen = strlen(name);
size_t childlen = pathlen + namelen + 1;
char* actual;
if (bufsize <= childlen) {
return NULL;
}
memcpy(buf, path, pathlen);
buf[pathlen] = '/';
actual = buf + pathlen + 1;
memcpy(actual, name, namelen + 1);
if (search && access(buf, F_OK)) {
struct dirent* entry;
DIR* dir = opendir(path);
if (!dir) {
ERROR("opendir %s failed: %s\n", path, strerror(errno));
return actual;
}
while ((entry = readdir(dir))) {
if (!strcasecmp(entry->d_name, name)) {
/* we have a match - replace the name, don't need to copy the null again */
memcpy(actual, entry->d_name, namelen);
break;
}
}
closedir(dir);
}
return actual;
}
static void attr_from_stat(struct fuse* fuse, struct fuse_attr *attr,
const struct stat *s, const struct node* node) {
attr->ino = node->ino;
attr->size = s->st_size;
attr->blocks = s->st_blocks;
attr->atime = s->st_atim.tv_sec;
attr->mtime = s->st_mtim.tv_sec;
attr->ctime = s->st_ctim.tv_sec;
attr->atimensec = s->st_atim.tv_nsec;
attr->mtimensec = s->st_mtim.tv_nsec;
attr->ctimensec = s->st_ctim.tv_nsec;
attr->mode = s->st_mode;
attr->nlink = s->st_nlink;
attr->uid = node->uid;
if (fuse->gid == AID_SDCARD_RW) {
/* As an optimization, certain trusted system components only run
* as owner but operate across all users. Since we're now handing
* out the sdcard_rw GID only to trusted apps, we're okay relaxing
* the user boundary enforcement for the default view. The UIDs
* assigned to app directories are still multiuser aware. */
attr->gid = AID_SDCARD_RW;
} else {
attr->gid = multiuser_get_uid(node->userid, fuse->gid);
}
int visible_mode = 0775 & ~fuse->mask;
if (node->perm == PERM_PRE_ROOT) {
/* Top of multi-user view should always be visible to ensure
* secondary users can traverse inside. */
visible_mode = 0711;
} else if (node->under_android) {
/* Block "other" access to Android directories, since only apps
* belonging to a specific user should be in there; we still
* leave +x open for the default view. */
if (fuse->gid == AID_SDCARD_RW) {
visible_mode = visible_mode & ~0006;
} else {
visible_mode = visible_mode & ~0007;
}
}
int owner_mode = s->st_mode & 0700;
int filtered_mode = visible_mode & (owner_mode | (owner_mode >> 3) | (owner_mode >> 6));
attr->mode = (attr->mode & S_IFMT) | filtered_mode;
}
static int touch(char* path, mode_t mode) {
int fd = open(path, O_RDWR | O_CREAT | O_EXCL | O_NOFOLLOW, mode);
if (fd == -1) {
if (errno == EEXIST) {
return 0;
} else {
ERROR("Failed to open(%s): %s\n", path, strerror(errno));
return -1;
}
}
close(fd);
return 0;
}
static void derive_permissions_locked(struct fuse* fuse, struct node *parent,
struct node *node) {
appid_t appid;
/* By default, each node inherits from its parent */
node->perm = PERM_INHERIT;
node->userid = parent->userid;
node->uid = parent->uid;
node->under_android = parent->under_android;
/* Derive custom permissions based on parent and current node */
switch (parent->perm) {
case PERM_INHERIT:
/* Already inherited above */
break;
case PERM_PRE_ROOT:
/* Legacy internal layout places users at top level */
node->perm = PERM_ROOT;
node->userid = strtoul(node->name, NULL, 10);
break;
case PERM_ROOT:
/* Assume masked off by default. */
if (!strcasecmp(node->name, "Android")) {
/* App-specific directories inside; let anyone traverse */
node->perm = PERM_ANDROID;
node->under_android = true;
}
break;
case PERM_ANDROID:
if (!strcasecmp(node->name, "data")) {
/* App-specific directories inside; let anyone traverse */
node->perm = PERM_ANDROID_DATA;
} else if (!strcasecmp(node->name, "obb")) {
/* App-specific directories inside; let anyone traverse */
node->perm = PERM_ANDROID_OBB;
/* Single OBB directory is always shared */
node->graft_path = fuse->global->obb_path;
node->graft_pathlen = strlen(fuse->global->obb_path);
} else if (!strcasecmp(node->name, "media")) {
/* App-specific directories inside; let anyone traverse */
node->perm = PERM_ANDROID_MEDIA;
}
break;
case PERM_ANDROID_DATA:
case PERM_ANDROID_OBB:
case PERM_ANDROID_MEDIA:
appid = (appid_t) (uintptr_t) hashmapGet(fuse->global->package_to_appid, node->name);
if (appid != 0) {
node->uid = multiuser_get_uid(parent->userid, appid);
}
break;
}
}
static void derive_permissions_recursive_locked(struct fuse* fuse, struct node *parent) {
struct node *node;
for (node = parent->child; node; node = node->next) {
derive_permissions_locked(fuse, parent, node);
if (node->child) {
derive_permissions_recursive_locked(fuse, node);
}
}
}
/* Kernel has already enforced everything we returned through
* derive_permissions_locked(), so this is used to lock down access
* even further, such as enforcing that apps hold sdcard_rw. */
static bool check_caller_access_to_name(struct fuse* fuse,
const struct fuse_in_header *hdr, const struct node* parent_node,
const char* name, int mode) {
/* Always block security-sensitive files at root */
if (parent_node && parent_node->perm == PERM_ROOT) {
if (!strcasecmp(name, "autorun.inf")
|| !strcasecmp(name, ".android_secure")
|| !strcasecmp(name, "android_secure")) {
return false;
}
}
/* Root always has access; access for any other UIDs should always
* be controlled through packages.list. */
if (hdr->uid == 0) {
return true;
}
/* No extra permissions to enforce */
return true;
}
static bool check_caller_access_to_node(struct fuse* fuse,
const struct fuse_in_header *hdr, const struct node* node, int mode) {
return check_caller_access_to_name(fuse, hdr, node->parent, node->name, mode);
}
struct node *create_node_locked(struct fuse* fuse,
struct node *parent, const char *name, const char* actual_name)
{
struct node *node;
size_t namelen = strlen(name);
// Detect overflows in the inode counter. "4 billion nodes should be enough
// for everybody".
if (fuse->global->inode_ctr == 0) {
ERROR("No more inode numbers available");
return NULL;
}
node = calloc(1, sizeof(struct node));
if (!node) {
return NULL;
}
node->name = malloc(namelen + 1);
if (!node->name) {
free(node);
return NULL;
}
memcpy(node->name, name, namelen + 1);
if (strcmp(name, actual_name)) {
node->actual_name = malloc(namelen + 1);
if (!node->actual_name) {
free(node->name);
free(node);
return NULL;
}
memcpy(node->actual_name, actual_name, namelen + 1);
}
node->namelen = namelen;
node->nid = ptr_to_id(node);
node->ino = fuse->global->inode_ctr++;
node->gen = fuse->global->next_generation++;
node->deleted = false;
derive_permissions_locked(fuse, parent, node);
acquire_node_locked(node);
add_node_to_parent_locked(node, parent);
return node;
}
static int rename_node_locked(struct node *node, const char *name,
const char* actual_name)
{
size_t namelen = strlen(name);
int need_actual_name = strcmp(name, actual_name);
/* make the storage bigger without actually changing the name
* in case an error occurs part way */
if (namelen > node->namelen) {
char* new_name = realloc(node->name, namelen + 1);
if (!new_name) {
return -ENOMEM;
}
node->name = new_name;
if (need_actual_name && node->actual_name) {
char* new_actual_name = realloc(node->actual_name, namelen + 1);
if (!new_actual_name) {
return -ENOMEM;
}
node->actual_name = new_actual_name;
}
}
/* update the name, taking care to allocate storage before overwriting the old name */
if (need_actual_name) {
if (!node->actual_name) {
node->actual_name = malloc(namelen + 1);
if (!node->actual_name) {
return -ENOMEM;
}
}
memcpy(node->actual_name, actual_name, namelen + 1);
} else {
free(node->actual_name);
node->actual_name = NULL;
}
memcpy(node->name, name, namelen + 1);
node->namelen = namelen;
return 0;
}
static struct node *lookup_node_by_id_locked(struct fuse *fuse, __u64 nid)
{
if (nid == FUSE_ROOT_ID) {
return &fuse->global->root;
} else {
return id_to_ptr(nid);
}
}
static struct node* lookup_node_and_path_by_id_locked(struct fuse* fuse, __u64 nid,
char* buf, size_t bufsize)
{
struct node* node = lookup_node_by_id_locked(fuse, nid);
if (node && get_node_path_locked(node, buf, bufsize) < 0) {
node = NULL;
}
return node;
}
static struct node *lookup_child_by_name_locked(struct node *node, const char *name)
{
for (node = node->child; node; node = node->next) {
/* use exact string comparison, nodes that differ by case
* must be considered distinct even if they refer to the same
* underlying file as otherwise operations such as "mv x x"
* will not work because the source and target nodes are the same. */
if (!strcmp(name, node->name) && !node->deleted) {
return node;
}
}
return 0;
}
static struct node* acquire_or_create_child_locked(
struct fuse* fuse, struct node* parent,
const char* name, const char* actual_name)
{
struct node* child = lookup_child_by_name_locked(parent, name);
if (child) {
acquire_node_locked(child);
} else {
child = create_node_locked(fuse, parent, name, actual_name);
}
return child;
}
static void fuse_status(struct fuse *fuse, __u64 unique, int err)
{
struct fuse_out_header hdr;
hdr.len = sizeof(hdr);
hdr.error = err;
hdr.unique = unique;
write(fuse->fd, &hdr, sizeof(hdr));
}
static void fuse_reply(struct fuse *fuse, __u64 unique, void *data, int len)
{
struct fuse_out_header hdr;
struct iovec vec[2];
int res;
hdr.len = len + sizeof(hdr);
hdr.error = 0;
hdr.unique = unique;
vec[0].iov_base = &hdr;
vec[0].iov_len = sizeof(hdr);
vec[1].iov_base = data;
vec[1].iov_len = len;
res = writev(fuse->fd, vec, 2);
if (res < 0) {
ERROR("*** REPLY FAILED *** %d\n", errno);
}
}
static int fuse_reply_entry(struct fuse* fuse, __u64 unique,
struct node* parent, const char* name, const char* actual_name,
const char* path)
{
struct node* node;
struct fuse_entry_out out;
struct stat s;
if (lstat(path, &s) < 0) {
return -errno;
}
pthread_mutex_lock(&fuse->global->lock);
node = acquire_or_create_child_locked(fuse, parent, name, actual_name);
if (!node) {
pthread_mutex_unlock(&fuse->global->lock);
return -ENOMEM;
}
memset(&out, 0, sizeof(out));
attr_from_stat(fuse, &out.attr, &s, node);
out.attr_valid = 10;
out.entry_valid = 10;
out.nodeid = node->nid;
out.generation = node->gen;
pthread_mutex_unlock(&fuse->global->lock);
fuse_reply(fuse, unique, &out, sizeof(out));
return NO_STATUS;
}
static int fuse_reply_attr(struct fuse* fuse, __u64 unique, const struct node* node,
const char* path)
{
struct fuse_attr_out out;
struct stat s;
if (lstat(path, &s) < 0) {
return -errno;
}
memset(&out, 0, sizeof(out));
attr_from_stat(fuse, &out.attr, &s, node);
out.attr_valid = 10;
fuse_reply(fuse, unique, &out, sizeof(out));
return NO_STATUS;
}
static void fuse_notify_delete(struct fuse* fuse, const __u64 parent,
const __u64 child, const char* name) {
struct fuse_out_header hdr;
struct fuse_notify_delete_out data;
struct iovec vec[3];
size_t namelen = strlen(name);
int res;
hdr.len = sizeof(hdr) + sizeof(data) + namelen + 1;
hdr.error = FUSE_NOTIFY_DELETE;
hdr.unique = 0;
data.parent = parent;
data.child = child;
data.namelen = namelen;
data.padding = 0;
vec[0].iov_base = &hdr;
vec[0].iov_len = sizeof(hdr);
vec[1].iov_base = &data;
vec[1].iov_len = sizeof(data);
vec[2].iov_base = (void*) name;
vec[2].iov_len = namelen + 1;
res = writev(fuse->fd, vec, 3);
/* Ignore ENOENT, since other views may not have seen the entry */
if (res < 0 && errno != ENOENT) {
ERROR("*** NOTIFY FAILED *** %d\n", errno);
}
}
static int handle_lookup(struct fuse* fuse, struct fuse_handler* handler,
const struct fuse_in_header *hdr, const char* name)
{
struct node* parent_node;
char parent_path[PATH_MAX];
char child_path[PATH_MAX];
const char* actual_name;
pthread_mutex_lock(&fuse->global->lock);
parent_node = lookup_node_and_path_by_id_locked(fuse, hdr->nodeid,
parent_path, sizeof(parent_path));
TRACE("[%d] LOOKUP %s @ %"PRIx64" (%s)\n", handler->token, name, hdr->nodeid,
parent_node ? parent_node->name : "?");
pthread_mutex_unlock(&fuse->global->lock);
if (!parent_node || !(actual_name = find_file_within(parent_path, name,
child_path, sizeof(child_path), 1))) {
return -ENOENT;
}
if (!check_caller_access_to_name(fuse, hdr, parent_node, name, R_OK)) {
return -EACCES;
}
return fuse_reply_entry(fuse, hdr->unique, parent_node, name, actual_name, child_path);
}
static int handle_forget(struct fuse* fuse, struct fuse_handler* handler,
const struct fuse_in_header *hdr, const struct fuse_forget_in *req)
{
struct node* node;
pthread_mutex_lock(&fuse->global->lock);
node = lookup_node_by_id_locked(fuse, hdr->nodeid);
TRACE("[%d] FORGET #%"PRIu64" @ %"PRIx64" (%s)\n", handler->token, req->nlookup,
hdr->nodeid, node ? node->name : "?");
if (node) {
__u64 n = req->nlookup;
while (n--) {
release_node_locked(node);
}
}
pthread_mutex_unlock(&fuse->global->lock);
return NO_STATUS; /* no reply */
}
static int handle_getattr(struct fuse* fuse, struct fuse_handler* handler,
const struct fuse_in_header *hdr, const struct fuse_getattr_in *req)
{
struct node* node;
char path[PATH_MAX];
pthread_mutex_lock(&fuse->global->lock);
node = lookup_node_and_path_by_id_locked(fuse, hdr->nodeid, path, sizeof(path));
TRACE("[%d] GETATTR flags=%x fh=%"PRIx64" @ %"PRIx64" (%s)\n", handler->token,
req->getattr_flags, req->fh, hdr->nodeid, node ? node->name : "?");
pthread_mutex_unlock(&fuse->global->lock);
if (!node) {
return -ENOENT;
}
if (!check_caller_access_to_node(fuse, hdr, node, R_OK)) {
return -EACCES;
}
return fuse_reply_attr(fuse, hdr->unique, node, path);
}
static int handle_setattr(struct fuse* fuse, struct fuse_handler* handler,
const struct fuse_in_header *hdr, const struct fuse_setattr_in *req)
{
struct node* node;
char path[PATH_MAX];
struct timespec times[2];
pthread_mutex_lock(&fuse->global->lock);
node = lookup_node_and_path_by_id_locked(fuse, hdr->nodeid, path, sizeof(path));
TRACE("[%d] SETATTR fh=%"PRIx64" valid=%x @ %"PRIx64" (%s)\n", handler->token,
req->fh, req->valid, hdr->nodeid, node ? node->name : "?");
pthread_mutex_unlock(&fuse->global->lock);
if (!node) {
return -ENOENT;
}
if (!(req->valid & FATTR_FH) &&
!check_caller_access_to_node(fuse, hdr, node, W_OK)) {
return -EACCES;
}
/* XXX: incomplete implementation on purpose.
* chmod/chown should NEVER be implemented.*/
if ((req->valid & FATTR_SIZE) && truncate64(path, req->size) < 0) {
return -errno;
}
/* Handle changing atime and mtime. If FATTR_ATIME_and FATTR_ATIME_NOW
* are both set, then set it to the current time. Else, set it to the
* time specified in the request. Same goes for mtime. Use utimensat(2)
* as it allows ATIME and MTIME to be changed independently, and has
* nanosecond resolution which fuse also has.
*/
if (req->valid & (FATTR_ATIME | FATTR_MTIME)) {
times[0].tv_nsec = UTIME_OMIT;
times[1].tv_nsec = UTIME_OMIT;
if (req->valid & FATTR_ATIME) {
if (req->valid & FATTR_ATIME_NOW) {
times[0].tv_nsec = UTIME_NOW;
} else {
times[0].tv_sec = req->atime;
times[0].tv_nsec = req->atimensec;
}
}
if (req->valid & FATTR_MTIME) {
if (req->valid & FATTR_MTIME_NOW) {
times[1].tv_nsec = UTIME_NOW;
} else {
times[1].tv_sec = req->mtime;
times[1].tv_nsec = req->mtimensec;
}
}
TRACE("[%d] Calling utimensat on %s with atime %ld, mtime=%ld\n",
handler->token, path, times[0].tv_sec, times[1].tv_sec);
if (utimensat(-1, path, times, 0) < 0) {
return -errno;
}
}
return fuse_reply_attr(fuse, hdr->unique, node, path);
}
static int handle_mknod(struct fuse* fuse, struct fuse_handler* handler,
const struct fuse_in_header* hdr, const struct fuse_mknod_in* req, const char* name)
{
struct node* parent_node;
char parent_path[PATH_MAX];
char child_path[PATH_MAX];
const char* actual_name;
pthread_mutex_lock(&fuse->global->lock);
parent_node = lookup_node_and_path_by_id_locked(fuse, hdr->nodeid,
parent_path, sizeof(parent_path));
TRACE("[%d] MKNOD %s 0%o @ %"PRIx64" (%s)\n", handler->token,
name, req->mode, hdr->nodeid, parent_node ? parent_node->name : "?");
pthread_mutex_unlock(&fuse->global->lock);
if (!parent_node || !(actual_name = find_file_within(parent_path, name,
child_path, sizeof(child_path), 1))) {
return -ENOENT;
}
if (!check_caller_access_to_name(fuse, hdr, parent_node, name, W_OK)) {
return -EACCES;
}
__u32 mode = (req->mode & (~0777)) | 0664;
if (mknod(child_path, mode, req->rdev) < 0) {
return -errno;
}
return fuse_reply_entry(fuse, hdr->unique, parent_node, name, actual_name, child_path);
}
static int handle_mkdir(struct fuse* fuse, struct fuse_handler* handler,
const struct fuse_in_header* hdr, const struct fuse_mkdir_in* req, const char* name)
{
struct node* parent_node;
char parent_path[PATH_MAX];
char child_path[PATH_MAX];
const char* actual_name;
pthread_mutex_lock(&fuse->global->lock);
parent_node = lookup_node_and_path_by_id_locked(fuse, hdr->nodeid,
parent_path, sizeof(parent_path));
TRACE("[%d] MKDIR %s 0%o @ %"PRIx64" (%s)\n", handler->token,
name, req->mode, hdr->nodeid, parent_node ? parent_node->name : "?");
pthread_mutex_unlock(&fuse->global->lock);
if (!parent_node || !(actual_name = find_file_within(parent_path, name,
child_path, sizeof(child_path), 1))) {
return -ENOENT;
}
if (!check_caller_access_to_name(fuse, hdr, parent_node, name, W_OK)) {
return -EACCES;
}
__u32 mode = (req->mode & (~0777)) | 0775;
if (mkdir(child_path, mode) < 0) {
return -errno;
}
/* When creating /Android/data and /Android/obb, mark them as .nomedia */
if (parent_node->perm == PERM_ANDROID && !strcasecmp(name, "data")) {
char nomedia[PATH_MAX];
snprintf(nomedia, PATH_MAX, "%s/.nomedia", child_path);
if (touch(nomedia, 0664) != 0) {
ERROR("Failed to touch(%s): %s\n", nomedia, strerror(errno));
return -ENOENT;
}
}
if (parent_node->perm == PERM_ANDROID && !strcasecmp(name, "obb")) {
char nomedia[PATH_MAX];
snprintf(nomedia, PATH_MAX, "%s/.nomedia", fuse->global->obb_path);
if (touch(nomedia, 0664) != 0) {
ERROR("Failed to touch(%s): %s\n", nomedia, strerror(errno));
return -ENOENT;
}
}
return fuse_reply_entry(fuse, hdr->unique, parent_node, name, actual_name, child_path);
}
static int handle_unlink(struct fuse* fuse, struct fuse_handler* handler,
const struct fuse_in_header* hdr, const char* name)
{
struct node* parent_node;
struct node* child_node;
char parent_path[PATH_MAX];
char child_path[PATH_MAX];
pthread_mutex_lock(&fuse->global->lock);
parent_node = lookup_node_and_path_by_id_locked(fuse, hdr->nodeid,
parent_path, sizeof(parent_path));
TRACE("[%d] UNLINK %s @ %"PRIx64" (%s)\n", handler->token,
name, hdr->nodeid, parent_node ? parent_node->name : "?");
pthread_mutex_unlock(&fuse->global->lock);
if (!parent_node || !find_file_within(parent_path, name,
child_path, sizeof(child_path), 1)) {
return -ENOENT;
}
if (!check_caller_access_to_name(fuse, hdr, parent_node, name, W_OK)) {
return -EACCES;
}
if (unlink(child_path) < 0) {
return -errno;
}
pthread_mutex_lock(&fuse->global->lock);
child_node = lookup_child_by_name_locked(parent_node, name);
if (child_node) {
child_node->deleted = true;
}
pthread_mutex_unlock(&fuse->global->lock);
if (parent_node && child_node) {
/* Tell all other views that node is gone */
TRACE("[%d] fuse_notify_delete parent=%"PRIx64", child=%"PRIx64", name=%s\n",
handler->token, (uint64_t) parent_node->nid, (uint64_t) child_node->nid, name);
if (fuse != fuse->global->fuse_default) {
fuse_notify_delete(fuse->global->fuse_default, parent_node->nid, child_node->nid, name);
}
if (fuse != fuse->global->fuse_read) {
fuse_notify_delete(fuse->global->fuse_read, parent_node->nid, child_node->nid, name);
}
if (fuse != fuse->global->fuse_write) {
fuse_notify_delete(fuse->global->fuse_write, parent_node->nid, child_node->nid, name);
}
}
return 0;
}
static int handle_rmdir(struct fuse* fuse, struct fuse_handler* handler,
const struct fuse_in_header* hdr, const char* name)
{
struct node* child_node;
struct node* parent_node;
char parent_path[PATH_MAX];
char child_path[PATH_MAX];
pthread_mutex_lock(&fuse->global->lock);
parent_node = lookup_node_and_path_by_id_locked(fuse, hdr->nodeid,
parent_path, sizeof(parent_path));
TRACE("[%d] RMDIR %s @ %"PRIx64" (%s)\n", handler->token,
name, hdr->nodeid, parent_node ? parent_node->name : "?");
pthread_mutex_unlock(&fuse->global->lock);
if (!parent_node || !find_file_within(parent_path, name,
child_path, sizeof(child_path), 1)) {
return -ENOENT;
}
if (!check_caller_access_to_name(fuse, hdr, parent_node, name, W_OK)) {
return -EACCES;
}
if (rmdir(child_path) < 0) {
return -errno;
}
pthread_mutex_lock(&fuse->global->lock);
child_node = lookup_child_by_name_locked(parent_node, name);
if (child_node) {
child_node->deleted = true;
}
pthread_mutex_unlock(&fuse->global->lock);
if (parent_node && child_node) {
/* Tell all other views that node is gone */
TRACE("[%d] fuse_notify_delete parent=%"PRIx64", child=%"PRIx64", name=%s\n",
handler->token, (uint64_t) parent_node->nid, (uint64_t) child_node->nid, name);
if (fuse != fuse->global->fuse_default) {
fuse_notify_delete(fuse->global->fuse_default, parent_node->nid, child_node->nid, name);
}
if (fuse != fuse->global->fuse_read) {
fuse_notify_delete(fuse->global->fuse_read, parent_node->nid, child_node->nid, name);
}
if (fuse != fuse->global->fuse_write) {
fuse_notify_delete(fuse->global->fuse_write, parent_node->nid, child_node->nid, name);
}
}
return 0;
}
static int handle_rename(struct fuse* fuse, struct fuse_handler* handler,
const struct fuse_in_header* hdr, const struct fuse_rename_in* req,
const char* old_name, const char* new_name)
{
struct node* old_parent_node;
struct node* new_parent_node;
struct node* child_node;
char old_parent_path[PATH_MAX];
char new_parent_path[PATH_MAX];
char old_child_path[PATH_MAX];
char new_child_path[PATH_MAX];
const char* new_actual_name;
int res;
pthread_mutex_lock(&fuse->global->lock);
old_parent_node = lookup_node_and_path_by_id_locked(fuse, hdr->nodeid,
old_parent_path, sizeof(old_parent_path));
new_parent_node = lookup_node_and_path_by_id_locked(fuse, req->newdir,
new_parent_path, sizeof(new_parent_path));
TRACE("[%d] RENAME %s->%s @ %"PRIx64" (%s) -> %"PRIx64" (%s)\n", handler->token,
old_name, new_name,
hdr->nodeid, old_parent_node ? old_parent_node->name : "?",
req->newdir, new_parent_node ? new_parent_node->name : "?");
if (!old_parent_node || !new_parent_node) {
res = -ENOENT;
goto lookup_error;
}
if (!check_caller_access_to_name(fuse, hdr, old_parent_node, old_name, W_OK)) {
res = -EACCES;
goto lookup_error;
}
if (!check_caller_access_to_name(fuse, hdr, new_parent_node, new_name, W_OK)) {
res = -EACCES;
goto lookup_error;
}
child_node = lookup_child_by_name_locked(old_parent_node, old_name);
if (!child_node || get_node_path_locked(child_node,
old_child_path, sizeof(old_child_path)) < 0) {
res = -ENOENT;
goto lookup_error;
}
acquire_node_locked(child_node);
pthread_mutex_unlock(&fuse->global->lock);
/* Special case for renaming a file where destination is same path
* differing only by case. In this case we don't want to look for a case
* insensitive match. This allows commands like "mv foo FOO" to work as expected.
*/
int search = old_parent_node != new_parent_node
|| strcasecmp(old_name, new_name);
if (!(new_actual_name = find_file_within(new_parent_path, new_name,
new_child_path, sizeof(new_child_path), search))) {
res = -ENOENT;
goto io_error;
}
TRACE("[%d] RENAME %s->%s\n", handler->token, old_child_path, new_child_path);
res = rename(old_child_path, new_child_path);
if (res < 0) {
res = -errno;
goto io_error;
}
pthread_mutex_lock(&fuse->global->lock);
res = rename_node_locked(child_node, new_name, new_actual_name);
if (!res) {
remove_node_from_parent_locked(child_node);
derive_permissions_locked(fuse, new_parent_node, child_node);
derive_permissions_recursive_locked(fuse, child_node);
add_node_to_parent_locked(child_node, new_parent_node);
}
goto done;
io_error:
pthread_mutex_lock(&fuse->global->lock);
done:
release_node_locked(child_node);
lookup_error:
pthread_mutex_unlock(&fuse->global->lock);
return res;
}
static int open_flags_to_access_mode(int open_flags) {
if ((open_flags & O_ACCMODE) == O_RDONLY) {
return R_OK;
} else if ((open_flags & O_ACCMODE) == O_WRONLY) {
return W_OK;
} else {
/* Probably O_RDRW, but treat as default to be safe */
return R_OK | W_OK;
}
}
static int handle_open(struct fuse* fuse, struct fuse_handler* handler,
const struct fuse_in_header* hdr, const struct fuse_open_in* req)
{
struct node* node;
char path[PATH_MAX];
struct fuse_open_out out;
struct handle *h;
pthread_mutex_lock(&fuse->global->lock);
node = lookup_node_and_path_by_id_locked(fuse, hdr->nodeid, path, sizeof(path));
TRACE("[%d] OPEN 0%o @ %"PRIx64" (%s)\n", handler->token,
req->flags, hdr->nodeid, node ? node->name : "?");
pthread_mutex_unlock(&fuse->global->lock);
if (!node) {
return -ENOENT;
}
if (!check_caller_access_to_node(fuse, hdr, node,
open_flags_to_access_mode(req->flags))) {
return -EACCES;
}
h = malloc(sizeof(*h));
if (!h) {
return -ENOMEM;
}
TRACE("[%d] OPEN %s\n", handler->token, path);
h->fd = open(path, req->flags);
if (h->fd < 0) {
free(h);
return -errno;
}
out.fh = ptr_to_id(h);
out.open_flags = 0;
out.padding = 0;
fuse_reply(fuse, hdr->unique, &out, sizeof(out));
return NO_STATUS;
}
static int handle_read(struct fuse* fuse, struct fuse_handler* handler,
const struct fuse_in_header* hdr, const struct fuse_read_in* req)
{
struct handle *h = id_to_ptr(req->fh);
__u64 unique = hdr->unique;
__u32 size = req->size;
__u64 offset = req->offset;
int res;
__u8 *read_buffer = (__u8 *) ((uintptr_t)(handler->read_buffer + PAGE_SIZE) & ~((uintptr_t)PAGE_SIZE-1));
/* Don't access any other fields of hdr or req beyond this point, the read buffer
* overlaps the request buffer and will clobber data in the request. This
* saves us 128KB per request handler thread at the cost of this scary comment. */
TRACE("[%d] READ %p(%d) %u@%"PRIu64"\n", handler->token,
h, h->fd, size, (uint64_t) offset);
if (size > MAX_READ) {
return -EINVAL;
}
res = pread64(h->fd, read_buffer, size, offset);
if (res < 0) {
return -errno;
}
fuse_reply(fuse, unique, read_buffer, res);
return NO_STATUS;
}
static int handle_write(struct fuse* fuse, struct fuse_handler* handler,
const struct fuse_in_header* hdr, const struct fuse_write_in* req,
const void* buffer)
{
struct fuse_write_out out;
struct handle *h = id_to_ptr(req->fh);
int res;
__u8 aligned_buffer[req->size] __attribute__((__aligned__(PAGE_SIZE)));
if (req->flags & O_DIRECT) {
memcpy(aligned_buffer, buffer, req->size);
buffer = (const __u8*) aligned_buffer;
}
TRACE("[%d] WRITE %p(%d) %u@%"PRIu64"\n", handler->token,
h, h->fd, req->size, req->offset);
res = pwrite64(h->fd, buffer, req->size, req->offset);
if (res < 0) {
return -errno;
}
out.size = res;
out.padding = 0;
fuse_reply(fuse, hdr->unique, &out, sizeof(out));
return NO_STATUS;
}
static int handle_statfs(struct fuse* fuse, struct fuse_handler* handler,
const struct fuse_in_header* hdr)
{
char path[PATH_MAX];
struct statfs stat;
struct fuse_statfs_out out;
int res;
pthread_mutex_lock(&fuse->global->lock);
TRACE("[%d] STATFS\n", handler->token);
res = get_node_path_locked(&fuse->global->root, path, sizeof(path));
pthread_mutex_unlock(&fuse->global->lock);
if (res < 0) {
return -ENOENT;
}
if (statfs(fuse->global->root.name, &stat) < 0) {
return -errno;
}
memset(&out, 0, sizeof(out));
out.st.blocks = stat.f_blocks;
out.st.bfree = stat.f_bfree;
out.st.bavail = stat.f_bavail;
out.st.files = stat.f_files;
out.st.ffree = stat.f_ffree;
out.st.bsize = stat.f_bsize;
out.st.namelen = stat.f_namelen;
out.st.frsize = stat.f_frsize;
fuse_reply(fuse, hdr->unique, &out, sizeof(out));
return NO_STATUS;
}
static int handle_release(struct fuse* fuse, struct fuse_handler* handler,
const struct fuse_in_header* hdr, const struct fuse_release_in* req)
{
struct handle *h = id_to_ptr(req->fh);
TRACE("[%d] RELEASE %p(%d)\n", handler->token, h, h->fd);
close(h->fd);
free(h);
return 0;
}
static int handle_fsync(struct fuse* fuse, struct fuse_handler* handler,
const struct fuse_in_header* hdr, const struct fuse_fsync_in* req)
{
bool is_dir = (hdr->opcode == FUSE_FSYNCDIR);
bool is_data_sync = req->fsync_flags & 1;
int fd = -1;
if (is_dir) {
struct dirhandle *dh = id_to_ptr(req->fh);
fd = dirfd(dh->d);
} else {
struct handle *h = id_to_ptr(req->fh);
fd = h->fd;
}
TRACE("[%d] %s %p(%d) is_data_sync=%d\n", handler->token,
is_dir ? "FSYNCDIR" : "FSYNC",
id_to_ptr(req->fh), fd, is_data_sync);
int res = is_data_sync ? fdatasync(fd) : fsync(fd);
if (res == -1) {
return -errno;
}
return 0;
}
static int handle_flush(struct fuse* fuse, struct fuse_handler* handler,
const struct fuse_in_header* hdr)
{
TRACE("[%d] FLUSH\n", handler->token);
return 0;
}
static int handle_opendir(struct fuse* fuse, struct fuse_handler* handler,
const struct fuse_in_header* hdr, const struct fuse_open_in* req)
{
struct node* node;
char path[PATH_MAX];
struct fuse_open_out out;
struct dirhandle *h;
pthread_mutex_lock(&fuse->global->lock);
node = lookup_node_and_path_by_id_locked(fuse, hdr->nodeid, path, sizeof(path));
TRACE("[%d] OPENDIR @ %"PRIx64" (%s)\n", handler->token,
hdr->nodeid, node ? node->name : "?");
pthread_mutex_unlock(&fuse->global->lock);
if (!node) {
return -ENOENT;
}
if (!check_caller_access_to_node(fuse, hdr, node, R_OK)) {
return -EACCES;
}
h = malloc(sizeof(*h));
if (!h) {
return -ENOMEM;
}
TRACE("[%d] OPENDIR %s\n", handler->token, path);
h->d = opendir(path);
if (!h->d) {
free(h);
return -errno;
}
out.fh = ptr_to_id(h);
out.open_flags = 0;
out.padding = 0;
fuse_reply(fuse, hdr->unique, &out, sizeof(out));
return NO_STATUS;
}
static int handle_readdir(struct fuse* fuse, struct fuse_handler* handler,
const struct fuse_in_header* hdr, const struct fuse_read_in* req)
{
char buffer[8192];
struct fuse_dirent *fde = (struct fuse_dirent*) buffer;
struct dirent *de;
struct dirhandle *h = id_to_ptr(req->fh);
TRACE("[%d] READDIR %p\n", handler->token, h);
if (req->offset == 0) {
/* rewinddir() might have been called above us, so rewind here too */
TRACE("[%d] calling rewinddir()\n", handler->token);
rewinddir(h->d);
}
de = readdir(h->d);
if (!de) {
return 0;
}
fde->ino = FUSE_UNKNOWN_INO;
/* increment the offset so we can detect when rewinddir() seeks back to the beginning */
fde->off = req->offset + 1;
fde->type = de->d_type;
fde->namelen = strlen(de->d_name);
memcpy(fde->name, de->d_name, fde->namelen + 1);
fuse_reply(fuse, hdr->unique, fde,
FUSE_DIRENT_ALIGN(sizeof(struct fuse_dirent) + fde->namelen));
return NO_STATUS;
}
static int handle_releasedir(struct fuse* fuse, struct fuse_handler* handler,
const struct fuse_in_header* hdr, const struct fuse_release_in* req)
{
struct dirhandle *h = id_to_ptr(req->fh);
TRACE("[%d] RELEASEDIR %p\n", handler->token, h);
closedir(h->d);
free(h);
return 0;
}
static int handle_init(struct fuse* fuse, struct fuse_handler* handler,
const struct fuse_in_header* hdr, const struct fuse_init_in* req)
{
struct fuse_init_out out;
size_t fuse_struct_size;
TRACE("[%d] INIT ver=%d.%d maxread=%d flags=%x\n",
handler->token, req->major, req->minor, req->max_readahead, req->flags);
/* Kernel 2.6.16 is the first stable kernel with struct fuse_init_out
* defined (fuse version 7.6). The structure is the same from 7.6 through
* 7.22. Beginning with 7.23, the structure increased in size and added
* new parameters.
*/
if (req->major != FUSE_KERNEL_VERSION || req->minor < 6) {
ERROR("Fuse kernel version mismatch: Kernel version %d.%d, Expected at least %d.6",
req->major, req->minor, FUSE_KERNEL_VERSION);
return -1;
}
/* We limit ourselves to 15 because we don't handle BATCH_FORGET yet */
out.minor = MIN(req->minor, 15);
fuse_struct_size = sizeof(out);
#if defined(FUSE_COMPAT_22_INIT_OUT_SIZE)
/* FUSE_KERNEL_VERSION >= 23. */
/* If the kernel only works on minor revs older than or equal to 22,
* then use the older structure size since this code only uses the 7.22
* version of the structure. */
if (req->minor <= 22) {
fuse_struct_size = FUSE_COMPAT_22_INIT_OUT_SIZE;
}
#endif
out.major = FUSE_KERNEL_VERSION;
out.max_readahead = req->max_readahead;
out.flags = FUSE_ATOMIC_O_TRUNC | FUSE_BIG_WRITES;
out.max_background = 32;
out.congestion_threshold = 32;
out.max_write = MAX_WRITE;
fuse_reply(fuse, hdr->unique, &out, fuse_struct_size);
return NO_STATUS;
}
static int handle_fuse_request(struct fuse *fuse, struct fuse_handler* handler,
const struct fuse_in_header *hdr, const void *data, size_t data_len)
{
switch (hdr->opcode) {
case FUSE_LOOKUP: { /* bytez[] -> entry_out */
const char* name = data;
return handle_lookup(fuse, handler, hdr, name);
}
case FUSE_FORGET: {
const struct fuse_forget_in *req = data;
return handle_forget(fuse, handler, hdr, req);
}
case FUSE_GETATTR: { /* getattr_in -> attr_out */
const struct fuse_getattr_in *req = data;
return handle_getattr(fuse, handler, hdr, req);
}
case FUSE_SETATTR: { /* setattr_in -> attr_out */
const struct fuse_setattr_in *req = data;
return handle_setattr(fuse, handler, hdr, req);
}
// case FUSE_READLINK:
// case FUSE_SYMLINK:
case FUSE_MKNOD: { /* mknod_in, bytez[] -> entry_out */
const struct fuse_mknod_in *req = data;
const char *name = ((const char*) data) + sizeof(*req);
return handle_mknod(fuse, handler, hdr, req, name);
}
case FUSE_MKDIR: { /* mkdir_in, bytez[] -> entry_out */
const struct fuse_mkdir_in *req = data;
const char *name = ((const char*) data) + sizeof(*req);
return handle_mkdir(fuse, handler, hdr, req, name);
}
case FUSE_UNLINK: { /* bytez[] -> */
const char* name = data;
return handle_unlink(fuse, handler, hdr, name);
}
case FUSE_RMDIR: { /* bytez[] -> */
const char* name = data;
return handle_rmdir(fuse, handler, hdr, name);
}
case FUSE_RENAME: { /* rename_in, oldname, newname -> */
const struct fuse_rename_in *req = data;
const char *old_name = ((const char*) data) + sizeof(*req);
const char *new_name = old_name + strlen(old_name) + 1;
return handle_rename(fuse, handler, hdr, req, old_name, new_name);
}
// case FUSE_LINK:
case FUSE_OPEN: { /* open_in -> open_out */
const struct fuse_open_in *req = data;
return handle_open(fuse, handler, hdr, req);
}
case FUSE_READ: { /* read_in -> byte[] */
const struct fuse_read_in *req = data;
return handle_read(fuse, handler, hdr, req);
}
case FUSE_WRITE: { /* write_in, byte[write_in.size] -> write_out */
const struct fuse_write_in *req = data;
const void* buffer = (const __u8*)data + sizeof(*req);
return handle_write(fuse, handler, hdr, req, buffer);
}
case FUSE_STATFS: { /* getattr_in -> attr_out */
return handle_statfs(fuse, handler, hdr);
}
case FUSE_RELEASE: { /* release_in -> */
const struct fuse_release_in *req = data;
return handle_release(fuse, handler, hdr, req);
}
case FUSE_FSYNC:
case FUSE_FSYNCDIR: {
const struct fuse_fsync_in *req = data;
return handle_fsync(fuse, handler, hdr, req);
}
// case FUSE_SETXATTR:
// case FUSE_GETXATTR:
// case FUSE_LISTXATTR:
// case FUSE_REMOVEXATTR:
case FUSE_FLUSH: {
return handle_flush(fuse, handler, hdr);
}
case FUSE_OPENDIR: { /* open_in -> open_out */
const struct fuse_open_in *req = data;
return handle_opendir(fuse, handler, hdr, req);
}
case FUSE_READDIR: {
const struct fuse_read_in *req = data;
return handle_readdir(fuse, handler, hdr, req);
}
case FUSE_RELEASEDIR: { /* release_in -> */
const struct fuse_release_in *req = data;
return handle_releasedir(fuse, handler, hdr, req);
}
case FUSE_INIT: { /* init_in -> init_out */
const struct fuse_init_in *req = data;
return handle_init(fuse, handler, hdr, req);
}
default: {
TRACE("[%d] NOTIMPL op=%d uniq=%"PRIx64" nid=%"PRIx64"\n",
handler->token, hdr->opcode, hdr->unique, hdr->nodeid);
return -ENOSYS;
}
}
}
static void handle_fuse_requests(struct fuse_handler* handler)
{
struct fuse* fuse = handler->fuse;
for (;;) {
ssize_t len = TEMP_FAILURE_RETRY(read(fuse->fd,
handler->request_buffer, sizeof(handler->request_buffer)));
if (len < 0) {
if (errno == ENODEV) {
ERROR("[%d] someone stole our marbles!\n", handler->token);
exit(2);
}
ERROR("[%d] handle_fuse_requests: errno=%d\n", handler->token, errno);
continue;
}
if ((size_t)len < sizeof(struct fuse_in_header)) {
ERROR("[%d] request too short: len=%zu\n", handler->token, (size_t)len);
continue;
}
const struct fuse_in_header *hdr = (void*)handler->request_buffer;
if (hdr->len != (size_t)len) {
ERROR("[%d] malformed header: len=%zu, hdr->len=%u\n",
handler->token, (size_t)len, hdr->len);
continue;
}
const void *data = handler->request_buffer + sizeof(struct fuse_in_header);
size_t data_len = len - sizeof(struct fuse_in_header);
__u64 unique = hdr->unique;
int res = handle_fuse_request(fuse, handler, hdr, data, data_len);
/* We do not access the request again after this point because the underlying
* buffer storage may have been reused while processing the request. */
if (res != NO_STATUS) {
if (res) {
TRACE("[%d] ERROR %d\n", handler->token, res);
}
fuse_status(fuse, unique, res);
}
}
}
static void* start_handler(void* data)
{
struct fuse_handler* handler = data;
handle_fuse_requests(handler);
return NULL;
}
static bool remove_str_to_int(void *key, void *value, void *context) {
Hashmap* map = context;
hashmapRemove(map, key);
free(key);
return true;
}
static bool package_parse_callback(pkg_info *info, void *userdata) {
struct fuse_global *global = (struct fuse_global *)userdata;
char* name = strdup(info->name);
hashmapPut(global->package_to_appid, name, (void*) (uintptr_t) info->uid);
packagelist_free(info);
return true;
}
static bool read_package_list(struct fuse_global* global) {
pthread_mutex_lock(&global->lock);
hashmapForEach(global->package_to_appid, remove_str_to_int, global->package_to_appid);
bool rc = packagelist_parse(package_parse_callback, global);
TRACE("read_package_list: found %zu packages\n",
hashmapSize(global->package_to_appid));
/* Regenerate ownership details using newly loaded mapping */
derive_permissions_recursive_locked(global->fuse_default, &global->root);
pthread_mutex_unlock(&global->lock);
return rc;
}
static void watch_package_list(struct fuse_global* global) {
struct inotify_event *event;
char event_buf[512];
int nfd = inotify_init();
if (nfd < 0) {
ERROR("inotify_init failed: %s\n", strerror(errno));
return;
}
bool active = false;
while (1) {
if (!active) {
int res = inotify_add_watch(nfd, PACKAGES_LIST_FILE, IN_DELETE_SELF);
if (res == -1) {
if (errno == ENOENT || errno == EACCES) {
/* Framework may not have created yet, sleep and retry */
ERROR("missing \"%s\"; retrying\n", PACKAGES_LIST_FILE);
sleep(3);
continue;
} else {
ERROR("inotify_add_watch failed: %s\n", strerror(errno));
return;
}
}
/* Watch above will tell us about any future changes, so
* read the current state. */
if (read_package_list(global) == false) {
ERROR("read_package_list failed\n");
return;
}
active = true;
}
int event_pos = 0;
int res = read(nfd, event_buf, sizeof(event_buf));
if (res < (int) sizeof(*event)) {
if (errno == EINTR)
continue;
ERROR("failed to read inotify event: %s\n", strerror(errno));
return;
}
while (res >= (int) sizeof(*event)) {
int event_size;
event = (struct inotify_event *) (event_buf + event_pos);
TRACE("inotify event: %08x\n", event->mask);
if ((event->mask & IN_IGNORED) == IN_IGNORED) {
/* Previously watched file was deleted, probably due to move
* that swapped in new data; re-arm the watch and read. */
active = false;
}
event_size = sizeof(*event) + event->len;
res -= event_size;
event_pos += event_size;
}
}
}
static int usage() {
ERROR("usage: sdcard [OPTIONS] <source_path> <label>\n"
" -u: specify UID to run as\n"
" -g: specify GID to run as\n"
" -U: specify user ID that owns device\n"
" -m: source_path is multi-user\n"
" -w: runtime write mount has full write access\n"
"\n");
return 1;
}
static int fuse_setup(struct fuse* fuse, gid_t gid, mode_t mask) {
char opts[256];
fuse->fd = open("/dev/fuse", O_RDWR);
if (fuse->fd == -1) {
ERROR("failed to open fuse device: %s\n", strerror(errno));
return -1;
}
umount2(fuse->dest_path, MNT_DETACH);
snprintf(opts, sizeof(opts),
"fd=%i,rootmode=40000,default_permissions,allow_other,user_id=%d,group_id=%d",
fuse->fd, fuse->global->uid, fuse->global->gid);
if (mount("/dev/fuse", fuse->dest_path, "fuse", MS_NOSUID | MS_NODEV | MS_NOEXEC |
MS_NOATIME, opts) != 0) {
ERROR("failed to mount fuse filesystem: %s\n", strerror(errno));
return -1;
}
fuse->gid = gid;
fuse->mask = mask;
return 0;
}
static void run(const char* source_path, const char* label, uid_t uid,
gid_t gid, userid_t userid, bool multi_user, bool full_write) {
struct fuse_global global;
struct fuse fuse_default;
struct fuse fuse_read;
struct fuse fuse_write;
struct fuse_handler handler_default;
struct fuse_handler handler_read;
struct fuse_handler handler_write;
pthread_t thread_default;
pthread_t thread_read;
pthread_t thread_write;
memset(&global, 0, sizeof(global));
memset(&fuse_default, 0, sizeof(fuse_default));
memset(&fuse_read, 0, sizeof(fuse_read));
memset(&fuse_write, 0, sizeof(fuse_write));
memset(&handler_default, 0, sizeof(handler_default));
memset(&handler_read, 0, sizeof(handler_read));
memset(&handler_write, 0, sizeof(handler_write));
pthread_mutex_init(&global.lock, NULL);
global.package_to_appid = hashmapCreate(256, str_hash, str_icase_equals);
global.uid = uid;
global.gid = gid;
global.multi_user = multi_user;
global.next_generation = 0;
global.inode_ctr = 1;
memset(&global.root, 0, sizeof(global.root));
global.root.nid = FUSE_ROOT_ID; /* 1 */
global.root.refcount = 2;
global.root.namelen = strlen(source_path);
global.root.name = strdup(source_path);
global.root.userid = userid;
global.root.uid = AID_ROOT;
global.root.under_android = false;
strcpy(global.source_path, source_path);
if (multi_user) {
global.root.perm = PERM_PRE_ROOT;
snprintf(global.obb_path, sizeof(global.obb_path), "%s/obb", source_path);
} else {
global.root.perm = PERM_ROOT;
snprintf(global.obb_path, sizeof(global.obb_path), "%s/Android/obb", source_path);
}
fuse_default.global = &global;
fuse_read.global = &global;
fuse_write.global = &global;
global.fuse_default = &fuse_default;
global.fuse_read = &fuse_read;
global.fuse_write = &fuse_write;
snprintf(fuse_default.dest_path, PATH_MAX, "/mnt/runtime/default/%s", label);
snprintf(fuse_read.dest_path, PATH_MAX, "/mnt/runtime/read/%s", label);
snprintf(fuse_write.dest_path, PATH_MAX, "/mnt/runtime/write/%s", label);
handler_default.fuse = &fuse_default;
handler_read.fuse = &fuse_read;
handler_write.fuse = &fuse_write;
handler_default.token = 0;
handler_read.token = 1;
handler_write.token = 2;
umask(0);
if (multi_user) {
/* Multi-user storage is fully isolated per user, so "other"
* permissions are completely masked off. */
if (fuse_setup(&fuse_default, AID_SDCARD_RW, 0006)
|| fuse_setup(&fuse_read, AID_EVERYBODY, 0027)
|| fuse_setup(&fuse_write, AID_EVERYBODY, full_write ? 0007 : 0027)) {
ERROR("failed to fuse_setup\n");
exit(1);
}
} else {
/* Physical storage is readable by all users on device, but
* the Android directories are masked off to a single user
* deep inside attr_from_stat(). */
if (fuse_setup(&fuse_default, AID_SDCARD_RW, 0006)
|| fuse_setup(&fuse_read, AID_EVERYBODY, full_write ? 0027 : 0022)
|| fuse_setup(&fuse_write, AID_EVERYBODY, full_write ? 0007 : 0022)) {
ERROR("failed to fuse_setup\n");
exit(1);
}
}
/* Drop privs */
if (setgroups(sizeof(kGroups) / sizeof(kGroups[0]), kGroups) < 0) {
ERROR("cannot setgroups: %s\n", strerror(errno));
exit(1);
}
if (setgid(gid) < 0) {
ERROR("cannot setgid: %s\n", strerror(errno));
exit(1);
}
if (setuid(uid) < 0) {
ERROR("cannot setuid: %s\n", strerror(errno));
exit(1);
}
if (multi_user) {
fs_prepare_dir(global.obb_path, 0775, uid, gid);
}
if (pthread_create(&thread_default, NULL, start_handler, &handler_default)
|| pthread_create(&thread_read, NULL, start_handler, &handler_read)
|| pthread_create(&thread_write, NULL, start_handler, &handler_write)) {
ERROR("failed to pthread_create\n");
exit(1);
}
watch_package_list(&global);
ERROR("terminated prematurely\n");
exit(1);
}
static int sdcardfs_setup(const char *source_path, const char *dest_path, uid_t fsuid,
gid_t fsgid, bool multi_user, userid_t userid, gid_t gid, mode_t mask) {
char opts[256];
snprintf(opts, sizeof(opts),
"fsuid=%d,fsgid=%d,%smask=%d,userid=%d,gid=%d",
fsuid, fsgid, multi_user?"multiuser,":"", mask, userid, gid);
if (mount(source_path, dest_path, "sdcardfs",
MS_NOSUID | MS_NODEV | MS_NOEXEC | MS_NOATIME, opts) != 0) {
ERROR("failed to mount sdcardfs filesystem: %s\n", strerror(errno));
return -1;
}
return 0;
}
static void run_sdcardfs(const char* source_path, const char* label, uid_t uid,
gid_t gid, userid_t userid, bool multi_user, bool full_write) {
char dest_path_default[PATH_MAX];
char dest_path_read[PATH_MAX];
char dest_path_write[PATH_MAX];
char obb_path[PATH_MAX];
snprintf(dest_path_default, PATH_MAX, "/mnt/runtime/default/%s", label);
snprintf(dest_path_read, PATH_MAX, "/mnt/runtime/read/%s", label);
snprintf(dest_path_write, PATH_MAX, "/mnt/runtime/write/%s", label);
umask(0);
if (multi_user) {
/* Multi-user storage is fully isolated per user, so "other"
* permissions are completely masked off. */
if (sdcardfs_setup(source_path, dest_path_default, uid, gid, multi_user, userid,
AID_SDCARD_RW, 0006)
|| sdcardfs_setup(source_path, dest_path_read, uid, gid, multi_user, userid,
AID_EVERYBODY, 0027)
|| sdcardfs_setup(source_path, dest_path_write, uid, gid, multi_user, userid,
AID_EVERYBODY, full_write ? 0007 : 0027)) {
ERROR("failed to fuse_setup\n");
exit(1);
}
} else {
/* Physical storage is readable by all users on device, but
* the Android directories are masked off to a single user
* deep inside attr_from_stat(). */
if (sdcardfs_setup(source_path, dest_path_default, uid, gid, multi_user, userid,
AID_SDCARD_RW, 0006)
|| sdcardfs_setup(source_path, dest_path_read, uid, gid, multi_user, userid,
AID_EVERYBODY, full_write ? 0027 : 0022)
|| sdcardfs_setup(source_path, dest_path_write, uid, gid, multi_user, userid,
AID_EVERYBODY, full_write ? 0007 : 0022)) {
ERROR("failed to fuse_setup\n");
exit(1);
}
}
/* Drop privs */
if (setgroups(sizeof(kGroups) / sizeof(kGroups[0]), kGroups) < 0) {
ERROR("cannot setgroups: %s\n", strerror(errno));
exit(1);
}
if (setgid(gid) < 0) {
ERROR("cannot setgid: %s\n", strerror(errno));
exit(1);
}
if (setuid(uid) < 0) {
ERROR("cannot setuid: %s\n", strerror(errno));
exit(1);
}
if (multi_user) {
snprintf(obb_path, sizeof(obb_path), "%s/obb", source_path);
fs_prepare_dir(&obb_path[0], 0775, uid, gid);
}
exit(0);
}
static bool supports_sdcardfs(void) {
FILE *fp;
char *buf = NULL;
size_t buflen = 0;
fp = fopen("/proc/filesystems", "r");
if (!fp) {
ERROR("Could not read /proc/filesystems, error: %s\n", strerror(errno));
return false;
}
while ((getline(&buf, &buflen, fp)) > 0) {
if (strstr(buf, "sdcardfs\n")) {
free(buf);
fclose(fp);
return true;
}
}
free(buf);
fclose(fp);
return false;
}
static bool should_use_sdcardfs(void) {
char property[PROPERTY_VALUE_MAX];
// Allow user to have a strong opinion about state
property_get(PROP_SDCARDFS_USER, property, "");
if (!strcmp(property, "force_on")) {
ALOGW("User explicitly enabled sdcardfs");
return supports_sdcardfs();
} else if (!strcmp(property, "force_off")) {
ALOGW("User explicitly disabled sdcardfs");
return false;
}
// Fall back to device opinion about state
if (property_get_bool(PROP_SDCARDFS_DEVICE, false)) {
ALOGW("Device explicitly enabled sdcardfs");
return supports_sdcardfs();
} else {
ALOGW("Device explicitly disabled sdcardfs");
return false;
}
}
int main(int argc, char **argv) {
const char *source_path = NULL;
const char *label = NULL;
uid_t uid = 0;
gid_t gid = 0;
userid_t userid = 0;
bool multi_user = false;
bool full_write = false;
int i;
struct rlimit rlim;
int fs_version;
int opt;
while ((opt = getopt(argc, argv, "u:g:U:mw")) != -1) {
switch (opt) {
case 'u':
uid = strtoul(optarg, NULL, 10);
break;
case 'g':
gid = strtoul(optarg, NULL, 10);
break;
case 'U':
userid = strtoul(optarg, NULL, 10);
break;
case 'm':
multi_user = true;
break;
case 'w':
full_write = true;
break;
case '?':
default:
return usage();
}
}
for (i = optind; i < argc; i++) {
char* arg = argv[i];
if (!source_path) {
source_path = arg;
} else if (!label) {
label = arg;
} else {
ERROR("too many arguments\n");
return usage();
}
}
if (!source_path) {
ERROR("no source path specified\n");
return usage();
}
if (!label) {
ERROR("no label specified\n");
return usage();
}
if (!uid || !gid) {
ERROR("uid and gid must be nonzero\n");
return usage();
}
rlim.rlim_cur = 8192;
rlim.rlim_max = 8192;
if (setrlimit(RLIMIT_NOFILE, &rlim)) {
ERROR("Error setting RLIMIT_NOFILE, errno = %d\n", errno);
}
while ((fs_read_atomic_int("/data/.layout_version", &fs_version) == -1) || (fs_version < 3)) {
ERROR("installd fs upgrade not yet complete. Waiting...\n");
sleep(1);
}
if (should_use_sdcardfs()) {
run_sdcardfs(source_path, label, uid, gid, userid, multi_user, full_write);
} else {
run(source_path, label, uid, gid, userid, multi_user, full_write);
}
return 1;
}